Корень из 4 x 5: Найти производную y’ = f'(x) = sqrt(4*x-5) (квадратный корень из (4 умножить на х минус 5))

Содержание

Как найти Дискриминант? 🤔 Формулы, Примеры решений.

Понятие квадратного уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 8 + 4 = 12. При вычислении левой части получается верное числовое равенство, то есть 12 = 12.

Уравнением можно назвать выражение 8 + x = 12, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени, значит, такое уравнение является квадратным.

Квадратное уравнение — это ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Есть три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, которое находится под корнем в формуле нахождения корней квадратного уравнения. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.


Чаще всего для поиска дискриминанта используют формулу:

В этом ключе универсальная формула для поиска корней квадратного уравнения выглядит так:


Эта формула подходит даже для неполных квадратных уравнений.

Но есть и другие формулы — все зависит от вида уравнения. Чтобы в них не запутаться, сохраняйте табличку или распечатайте ее и храните в учебнике.


Как решать квадратные уравнения через дискриминант

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения.

Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный. Только после этого вычисляем значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax2 + bx + c = 0:

  • как найти дискрининант: D = b2 − 4ac;
  • если дискриминант отрицательный — зафиксировать, что действительных корней нет;
  • если дискриминант равен нулю — вычислить единственный корень уравнения по формуле х = — b2/2a;
  • если дискриминант положительный — найти два действительных корня квадратного уравнения по формуле корней

А вот и еще одна табличка: в ней вы найдете формулы для поиска корней квадратных уравнений при помощи дискриминанта:


Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, важно практиковаться. Вперед!

Примеры решения квадратных уравнений с помощью дискриминанта

Пример 1. Решить уравнение: 3x2 — 4x + 2 = 0.

Как решаем:

  1. Определим коэффициенты: a = 3, b = -4, c = 2.

  2. Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 3 * 2 = 16 — 24 = -8.

Ответ: D < 0, корней нет.

Пример 2. Решить уравнение: x2 — 6x + 9 = 0.

Как решаем:

  1. Определим коэффициенты: a = 1, b = -6, c = 9.

  2. Найдем дискриминант: D = b2 — 4ac = (-6)2 — 4 * 1 * 9 = 36 — 36 = 0.

  3. D = 0, значит уравнение имеет один корень:

Ответ: корень уравнения 3.

Пример 3. Решить уравнение: x2 — 4x — 5 = 0.

Как решаем:

  1. Определим коэффициенты: a = 1, b = -4, c = -5.

  2. Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 1 * (-5) = 16 + 20 = 36.

  3. D > 0, значит уравнение имеет два корня:

     

x1 = (4 + 6) : 2 = 5,

x2 = (4 — 6) : 2 = -1.

Ответ: два корня x1 = 5, x2 = -1.

Не желаешь повторить формулы сокращенного умножения?

Как вынести из под корня число

Извлечь из данного числа корень какой-нибудь степени значит найти такое число, которое при возведении в эту степень, будет равно данному числу.

Из правил знаков при возведении в степень следует, что:

    Корень нечётной степени из положительного числа есть число положительное, а из отрицательного – отрицательное.

, так как (+3) 3 =27

, так как (-3) 3 =-27

Корень чётной степени из положительного числа может быть как положительным, так и отрицательным числом.

, так как (+3) 2 =+9 и (-3) 2 =+9

, так как (+4) 4 =+256 и (-4) 4 =+256

  • Корень чётной степени из отрицательного числа является невозможным выражением, потому что любое положительное или отрицательное число при возведении в чётную степень даёт только положительный результат. Таким образом, – это невозможные выражения. Невозможные выражения иначе называют мнимыми.
  • Извлечение корня из произведения, степени и дроби

    Чтобы извлечь корень из произведения, надо извлечь его из каждого множителя отдельно.

    Так же можно сказать, что корень произведения равен произведению корней всех его множителей:

    Чтобы извлечь корень из степени, следует показатель степени разделить на показатель корня:

    Чтобы извлечь корень из дроби, следует извлечь его отдельно из числителя и из знаменателя:

    Вынесение множителя из-под знака корня

    Когда нельзя извлечь корень из всего подкоренного числа или выражения, то подкоренное число или выражение раскладывают на множители и извлекают корень только из тех множителей, из которых это возможно сделать.

    Внесение множителя под корень

    Если нужно внести множитель под знак корня, то его следует возвести в степень, равную показателю корня.

    Как выносить из под корня число

    Часто вынесение множителя (числа) из под знака корня может быть необходимо для совершения каких-либо арифметических операций, например, для сокращения дроби или вынесения общего множителя и дальнейшего преобразования выражения.

    Давайте рассмотрим основные арифметические правила и определения, необходимые для того, чтобы понять, как вынести число из под корня.

    Необходимые операции и определения

    Разложение выражения на множители — это преобразование этого числа в произведение нескольких сомножителей без изменения значения исходного выражения.

    Это довольно частая операция, необходимая для вынесения множителя из-под знака корня.

    Для разложения на множители используются следующие приёмы:

    • Вынесение за скобки общего множителя;
    • Группировка множителей;
    • Применение формул сокращённого умножения;
    • Комбинация вышеизложенных методов.

    При вынесении за скобки общего множителя для начала нужно определить множитель, который можно вынести, а затем разделить всё выражение на этот множитель и записать результат частного рядом со множителем как произведение, например:

    Попробуй обратиться за помощью к преподавателям

    $6x^2 – 8xy +4x = 2x cdot 3x – 2x cdot 4y + 2x cdot 2 = 2x cdot (3x – 4y + 2)$. 2$.

    Оба продемонстрированных выше метода можно комбинировать.

    Свойства корня

    Теперь перейдём к более детальному рассмотрению корня.

    Корнем $n$-нной степени из числа $b$ называют число, которое нужно возвести в $n$-нную степень чтобы получить число $b$:

    Процесс получения корня называется его извлечением.

    Левая часть равенства вида $sqrt[n] = m$ называется радикалом, то, что стоит непосредственно под знаком корня — подкоренным выражением, а число, стоящее слева сверху перед знаком корня называется показателем корня.

    Правая же часть равенства после знака «равно» называется корнем $n$-нной степени из числа $b$.

    Задай вопрос специалистам и получи
    ответ уже через 15 минут!

    При извлечении числа из-под корня нужно учитывать то, что в случае с корнем нечётной степени возможен лишь один ответ, математически это запишется так: $sqrt[n] = b$, тогда как в случае с извлечением корня чётной степени ответа будет два, причём один с положительным знаком, а другой с отрицательным, это записывается так: $sqrt[n]= ±b$.

    Также существует ещё одна теорема, которую нужно знать при вынесении множителя из-под знака корня:

    Для извлечения корня $n$-ой степени из произведения, моно извлечь его из каждого сомножителя отдельно, а результаты перемножить. Математически это запишется так: $sqrt[n]=sqrt[n]sqrt[n]sqrt[n]left(1
    ight)$.

    Докажем эту теорему для случая если под корнем стоит положительное число, а степень $n$ является нечётной.

    Применим эту логику к равенству $(1)$.

    Для этого возведём в степень правую часть равенства. Но для того чтобы сделать это, необходимо возвести в степень произведение, а для этого нужно возвести в степень каждый сомножитель и затем перемножить их все между собой:

    Получилось выражение, стоящее под знаком корня, а это значит, что теорема доказана.

    Правила вынесения множителя из под знака корня

    Вынесение множителя из-под знака корня $n$-ой степени — это упрощение выражения с помощью записи какого-либо множителя, являющегося частью подкоренного выражения, перед знаком корня. Например, $sqrt[6] <192>= sqrt[6] <64 cdot 3>= 2 sqrt[6]<3>$.

    Для вынесения множителей из-под знака корня необходимо показатель выносимого множителя разделить на показатель корня и разместить перед корнем этот множитель с тем показателем степени, который получится в результате этого деления:

    В частном случае, если приходится иметь дело с квадртным корнем, степень множителя, который необходимо вынести, нужно разделить на два, а сам множитель записать перед знаком корня:

    В случае если приходится иметь дело с множителем-дробью, можно извлечь по отдельности корень из числителя и знаменателя, например:

    Общий порядок вынесения множителя из под корня такой:

    1. Сначала подкоренное значение раскладывается на множители непосредственно под знаком корня, а у этих множителей выделяются показатели степени.
    2. Затем показатель степени при множителе делится на показатель корня, а сам выносимый множитель записывается слева от радикала.

    Вынесите множитель из-под знака корня в следующих выражениях:

    Так и не нашли ответ
    на свой вопрос?

    Просто напиши с чем тебе
    нужна помощь

    В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня. В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило. Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.

    Что такое вынесение множителя из-под знака корня

    Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:

    Вынесение множителя из-под знака корня представляет собой замену выражения B n · C n на произведение B · C n с условием, что n – нечетное число, или же на произведение B · C – где n – четное число, а B и C – другие числа и выражения.

    Если мы имеем в виду только квадратный корень, то есть число n равно двум, то процесс вынесения множителя можно свести к замене выражения B 2 · C на произведение B · C . Отсюда и название данного преобразования: после того, как оно было проведено, множитель B y оказывается свободным от знака корня.

    Приведем примеры, поясняющие данное определение. Так, допустим, у нас есть выражение 2 2 · 3 . Оно аналогично B 2 · C , где B равно двум, а C – трем. Заменив данный корень на произведение 2 · 3 и опустив знаки модулей (это можно сделать, поскольку оба множителя являются положительными числами), мы получим 2 · 3 . Мы вынесли множитель 2 2 из-под знака корня.

    Приведем еще один пример подобного преобразования. У нас есть выражение ( x 2 – 3 · x · y · z ) 2 · x = x 2 – 3 · x · y · z · x . Здесь из-под корня был вынесен не просто числовой множитель, а целое выражение с переменными ( x 2 − 3 · x · y · z ) 2 .

    Оба примера относятся к случаю вынесения множителя из-под квадратного корня. Можно также производить данные преобразования и для корней n -ной степени. Вот пример с кубическим корнем: ( 3 · a 2 ) 3 · 2 · a 2 3 = 3 · a 2 · 2 · a 2 3

    Пример с корнем шестой степени: 1 2 · x 2 + y 2 6 · 5 · ( x 2 + y 2 ) 6 можно преобразовать в произведение 1 2 · x 2 + y 2 · 5 · ( x 2 · y 2 ) 6 , которое, в свою очередь, упрощается до 1 2 · ( x 2 + y 2 ) · 5 · ( x 2 + y 2 ) 6 . В данном случае мы выносим множитель 1 2 · x 2 + y 2 6 .

    Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.

    Почему возможно заменить корень на произведение

    В этом пункте мы будем разбираться, как возможна такая замена и почему корень B n · C n равнозначен произведениям B · C n и B · C n . Обратимся к ранее изученным теоретическим положениям.

    Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:

    1. Выражение A · B n при условии нечетности n может быть заменено на A n · B n , а для четных n – A n · B n .

    2. Выражение A n n при нечетном значении n может быть преобразовано в A , а при четном – в | A | .

    Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:

    • при четном n : B n · C n = B n n · C n = B · C n ;
    • при нечетном n : B n · C n = B n n · C n = B n n · C n = B · C n .

    Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.

    Следовательно, можно вывести две формулы:

    • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для нечетного n ;
    • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для четного n .

    Здесь B 1 , B 2 , и др. могут быть как числами, так и выражениями.

    С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.

    Основное правило вынесения множителя из-под корня

    Когда нам нужно решать примеры с подобными преобразованиями, чаще всего приходится предварительно приводить подкоренное выражение к виду B n · C . С учетом этого момента мы можем записать следующие правила.

    Для вынесения множителя из-под корня в выражении A n нужно предварительно привести корень к виду B n · C n и после этого перейти к произведению B · C n (при нечетном показателе) или к B · C n (при четном показателе, при необходимости раскрываем модули).

    Таким образом, схема решения подобных задач выглядит следующим образом:

    A n → B n · C n → B · C n , е с л и n – н е ч е т н о е B · C n , е с л и n – ч е т н о е

    Если нам надо вынести несколько множителей, то действуем так:

    A n → B 1 n · B 2 n · . . . · B k n · C n → B 1 · B 2 · . . . · B k · C n , е с л и n – н е ч е т н о е B 1 · B 2 · . . . · B k · C n , е с л и n – ч е т н о е

    Теперь можно переходить к решению задач.

    Задачи на вынесение множителя из-под знака корня

    Условие: выполните вынесение множителя за знак корня в трех выражениях: 2 2 · 7 , – 1 2 3 2 · 5 , ( – 0 , 4 ) 7 · 11 7 .

    Решение

    Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:

    1. Показатель корня равен 2 . Берем правило вынесения множителя для четного показателя и вычисляем: 2 2 · 7 = 2 · 7 = 2 · 7
    2. Во втором выражении показатель тоже четный, значит, – 1 2 3 2 · 5 = – 1 2 3 · 5 = 1 2 3 · 5
      В этом случае мы можем сначала преобразовать выражения, исходя из основных свойств корня:
      – 1 2 3 2 · 5 = – 1 2 · 1 2 3 2 · 5 = 1 2 3 2 · 5
      А потом уже выносить множитель: 1 2 3 2 · 5 = 1 2 3 · 5 = 1 2 3 · 5 .
    3. Последнее выражение имеет нечетный показатель, поэтому нам понадобится другое правило: ( – 0 , 4 ) 7 · 11 7 = – 0 , 4 · 11 7 .
      Возможен и такой вариант расчета:
      – 0 , 4 7 · 11 7 = ( – 1 ) 7 · 0 , 4 7 · 11 7 = = – 0 , 4 7 · 11 7 = – 0 , 4 7 · 11 7 = – 0 , 4 · 11 7
      ​​​​​​Или такой:
      – 0 , 4 7 · 11 7 = ( – 1 ) 7 · 0 , 4 7 · 11 7 = = – 0 , 4 7 · 11 7 = 0 , 4 7 · – 11 7 = 0 , 4 · – 11 7 = – 0 , 4 · 11 7

    Ответ: 1 ) 2 · 7 ; 2 ) 1 2 3 · 5 ; 3 ) – 0 , 4 · 11 7 .

    Условие: преобразуйте выражение ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 .

    Решение:

    При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.

    ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = – 2 · 0 , 3 · 7 · 11 4 = 4 , 2 · 11 4

    Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.

    Есть и другой способ. Преобразуем само выражение, приведя его к виду

    B n · C . После этого уже будем выносить множители:

    ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = ( – 2 · 0 , 3 · 7 ) 4 · 11 4 = ( – 4 , 2 ) 4 · 11 4 = = – 4 , 2 · 11 4 = 4 , 2 · 11 4

    Ответ: ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = – 4 , 2 · 11 4 = 4 , 2 · 11 4 .

    Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.

    Предварительное преобразование подкоренного выражения

    Мы уже отмечали, что выражение под корнем не всегда имеет удобный для нас вид. Часто корень дан как A n , и множитель, который нужно вынести, не представлен в явном виде. Иногда это обозначено в условии, но довольно часто множитель приходится определять самостоятельно. Посмотрим, как надо действовать в этих случаях.

    Допустим, нам надо вынести заранее определенный множитель B . Естественно, подкоренное выражение должно быть таким, чтобы эта операция была возможна. Тогда для преобразования A n в B n · C n достаточно определить второй множитель, т.е. вычислить значение C из выражения A = B n · C .

    Условие: есть выражение 24 · x 3 . Вынесите из-под знака корня множитель 2 3 .

    Решение

    Здесь мы имеем n = 3 , A = 24 · x , B 3 = 2 3 . Тогда из A = B n · С вычисляем C = A : ( B n ) = 24 · x : ( 2 3 ) = 3 · x .

    Значит, 24 · x 3 = 2 3 · 3 · x 3 . Подкоренное выражение имеет нужный нам вид, и мы можем воспользоваться правилом для нечетного показателя и подсчитать: 24 · x 3 = 2 3 · 3 · x 3 = 2 · 3 · x 3 .

    Ответ: 24 · x 3 = 2 · 3 · x 3 .

    А как быть в случае, если множитель, который нужно вынести, не указан? Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.

    Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.

    Условие: необходимо вынести множитель из-под корня в трех выражениях – 2 4 · 5 4 , 2 7 · 5 4 , 2 22 · 5 4 .

    Решение

    Преобразование первого выражения не представляет особой сложности, т.к. подобные примеры мы уже разбирали. Сразу вычисляем: 2 4 · 5 4 = 2 · 5 4 = 2 · 5 4 .

    Во втором примере легко догадаться, как преобразовать подкоренное выражение: нужно просто представить 2 7 как 2 4 · 2 3 .

    2 7 · 5 4 = 2 4 · 2 3 · 5 4 = 2 4 · 40 4 = 2 · 40 4 = 2 · 40 4

    В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:

    2 5 4 · 2 2 · 5 4

    Теперь покажем, как именно прийти к этому виду. Сначала выполняем деление 22 на 4 , получаем 5 с остатком 2 (если нужно, повторите, как правильно выполнять деление с остатком). Иначе говоря, 22 можно рассматривать как 4 · 5 + 2 . Используя свойства степени, можем записать:

    2 22 + 2 5 · 4 + 2 = 2 5 · 4 · 2 2 = ( 2 5 ) 4 · 2 2

    2 22 · 5 4 = ( 2 5 ) 4 · 2 2 · 5 4 = ( 2 5 ) 4 · 20 4 = = 2 5 · 20 4 = 32 · 20 4

    Ответ: 1 ) 2 4 · 5 4 = 2 · 5 4 , 2 ) 2 7 · 5 4 = 2 · 40 4 , 3 ) 2 22 · 5 4 = 32 · 20 4 .

    Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.

    Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.

    Условие: выполните вынесение множителя из-под знака корня в следующих выражениях: 1 ) 45 ; 2 ) 135 ; 3 ) 3456 ; 4 ) 102 .

    1. Выполняем разложение 45 на простые множители.

    45 15 5 1 3 3 5

    То есть 45 = 3 · 3 · 5 = 3 2 · 5 , а 45 = 3 2 · 5 . В этом выражении видно, что выносить мы будем множитель 3 2 . Вычисляем:

    3 2 · 5 = 3 · 5 = 3 · 5

    1. Теперь представим в нужном виде число 135 и получим: 135 = 3 · 3 · 3 · 5 = 3 3 · 15 . Иначе можно записать, что 3 2 · 3 · 5 = 3 2 · 15 . Следовательно, 135 = 3 2 · 15 . Мы видим, что вынесению из-под знака корня подлежит множитель 3 2 :

    3 2 · 15 = 3 · 15 = 3 · 15

    1. Разложим на простые множители число 3456 :

    3456 1728 864 432 216 108 54 27 9 3 1 2 2 2 2 2 2 2 3 3 3

    У нас получилось, что 3456 = 2 7 · 3 3 , а 3456 = 2 7 · 3 3 . Поскольку 2 7 = 2 3 · 2 + 1 = ( 2 3 ) 2 · 2 и 3 3 = 3 2 · 3 , то 2 7 · 3 3 = ( 2 3 ) 2 · 2 · 3 2 · 3 = ( 2 3 ) 2 · 3 2 · 6 = = 2 3 · 3 · 6 = 24 · 6

    1. Представим натуральное число 102 как произведение простых множителей и получим 2 · 3 · 17 . Видим, что все множители имеют показатель, равный единице, а показатель корня в этом примере равен двум. Следовательно, в данном примере ни один множитель не нужно выносить из-под знака корня, то есть такое действие для 102 нецелесообразно.

    Ответ: 1 ) 45 = 3 · 5 ; 2 ) 135 = 3 · 15 ; 3 ) 3456 = 24 · 6 ; 4 ) 102 .

    Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби. В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня. Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.

    Условие: выполните вынесение множителя за корень в выражении 200 · 0 , 000189 · x 3 и упростите его.

    Решение

    Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.

    0 , 189 = 189 1000000 = 3 3 · 7 2 6 · 5 6

    Используя свойства степени, перепишем выражение в следующем виде:

    3 2 2 · 5 2 3 · 7

    Подставим получившееся выражение в исходное и получим:

    200 · 0 , 000189 · x 3 = = 200 · 3 2 2 · 5 2 3 · 7 · x 3 = = 200 · 3 2 2 · 5 2 · 7 · x 3 = 6 · 7 · x 3

    К такому же ответу можно прийти и с помощью других преобразований:

    200 · 0 , 000189 · x 3 = = 200 · 189 1000000 · x 3 = 200 · 189 1000000 3 · x 3 = = 200 · 189 3 1000000 3 · x 3 = 200 · 3 3 · 7 3 100 3 3 · x 3 = = 200 · 3 · 7 3 100 · x 3 = 6 · 7 3 · x 3 = 6 · 7 · x 3

    Ответ: 200 · 0 , 000189 · x 3 = 6 · 7 · x 3 .

    Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.

    Условие: выполните упрощение иррационального выражения 2 · ( 3 + 2 · 2 ) .

    Решение

    Мы можем преобразовать выражение в скобках как 2 + 2 · 2 + 1 и далее как 2 2 + 2 · 2 · 1 + 1 2 .

    То, что у нас получилось, можно свернуть в квадрат суммы с помощью формулы сокращенного умножения: 2 2 + 2 · 2 · 1 + 1 = 2 + 1 2 .

    В итоге: 2 · 3 + 2 · 2 = 2 · 2 + 1 2 . Теперь выносим 2 + 1 2 за знак корня и упрощаем выражение:

    2 · 2 + 1 2 = 2 · 2 + 1 = = 2 · 2 + 1 = 2 + 2

    Ответ: 2 · 3 + 2 · 2 = 2 + 2 .

    Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.

    Условие: вынесите множитель из-под знака корня в выражениях ( x – 5 ) 5 4 и ( x – 5 ) 6 4 .

    Решение

    1. Выполняем преобразование в первом примере.

    ( x – 5 ) 5 4 = ( x – 5 ) 4 · x – 5 4 = x – 5 · x – 5 4

    Знак модуля можно опустить. Посмотрим, каким условием определяется область допустимых значений переменной для исходного выражения. Таким условием будет неравенство ( x − 5 ) 5 ≥ 0 . Для его решения выбираем метод интервалов и получаем x ≥ 5 . Если значение x принадлежит области допустимых значений, то значением выражения x – 5 будет неотрицательное число. Значит, можем записать следующее:

    x – 5 · x – 5 4 = x – 5 · x – 5 4

    1. ( x – 5 ) 6 4 = ( x – 5 ) 4 · x – 5 2 4 = = x – 5 · ( x – 5 ) 2 4 = x – 5 · x – 5 2 4

    Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение A m n · m можно заменить на A n при условии, что m и n – натуральные числа. Следовательно,

    x – 5 · x – 5 2 4 = x – 5 · x – 5

    Нужно ли здесь убирать знак модуля? Посмотрим на область допустимых значений данного выражения: ее составляют все действительные числа, поскольку ( x − 5 ) 6 ≥ 0 для любого x . При этом значения x − 5 могут быть больше 0 , если x > 5 , равными 0 или отрицательными. Значит, оставляем выражение в виде x – 5 · x – 5 или представляем его в виде системы уравнений

    ( x – 5 ) · x – 5 , x ≥ 5 ( 5 – x ) · 5 – x , x 5

    Ответ: 1 ) ( x – 5 ) 5 4 = ( x – 5 ) · x – 5 4 ; 2 ) ( x – 5 ) 6 4 = x – 5 · x – 5 .

    Условие: выполните упрощение выражения x 5 + 2 · x 4 · y + x 3 · y 2 .

    Решение

    Выносим за скобки x 3 и получаем x 3 · ( x 2 + 2 · x · y + y 2 ) . Выражение в скобках можно представить в виде квадрата суммы: x 3 · ( x 2 + 2 · x · y + y 2 ) = x 3 · ( x + y ) 2 .

    Теперь видим множители, подлежащие вынесению из-под корня: x 3 · ( x + y ) 2 = x 2 · x · ( x + y ) 2 = x · x + y · x

    Также мы можем убрать знаки модуля, в которых находится x, поскольку область допустимых значений будет определена условием x 5 + 2 · x 4 · y + x 3 · y 2 ≥ 0 . Оно равносильно x 3 · ( x + y ) 2 ≥ 0 , а из него можно сделать вывод, что x ≥ 0 . У нас получилось, что x · x + y · x .

    Ответ: x 5 + 2 · x 4 · y + x 3 · y 2 = x · x + y · x .

    Это все, что мы хотели бы вам рассказать о вынесении множителя за знак корня. В следующей статье мы разберем обратное действие – внесение множителя под корень.

    Intel Atom x5Z8350 Processor 2M Cache up to 1.92 GHz Спецификации продукции

    Дата выпуска

    Дата выпуска продукта.

    Литография

    Литография указывает на полупроводниковую технологию, используемую для производства интегрированных наборов микросхем и отчет показывается в нанометре (нм), что указывает на размер функций, встроенных в полупроводник.

    Количество ядер

    Количество ядер — это термин аппаратного обеспечения, описывающий число независимых центральных модулей обработки в одном вычислительном компоненте (кристалл).

    Количество потоков

    Поток или поток выполнения — это термин программного обеспечения, обозначающий базовую упорядоченную последовательность инструкций, которые могут быть переданы или обработаны одним ядром ЦП.

    Базовая тактовая частота процессора

    Базовая частота процессора — это скорость открытия/закрытия транзисторов процессора. Базовая частота процессора является рабочей точкой, где задается расчетная мощность (TDP). Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

    Частота сигналов

    Частота сигналов — это максимальная частота работы одного ядра, с которой способен работать процессор. Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

    Кэш-память

    Кэш-память процессора — это область быстродействующей памяти, расположенная в процессоре. Интеллектуальная кэш-память Intel® Smart Cache указывает на архитектуру, которая позволяет всем ядрам совместно динамически использовать доступ к кэшу последнего уровня.

    Scenario Design Power (SDP)

    Макс. расч. мощность представляет собой дополнительную опорную точку терморегуляции, предназначенную для использования устройств, связанных с высокой температурой, с имитацией реальных условий эксплуатации. Она балансирует требования к производительности и мощности во время рабочих нагрузок по всей системе, и предоставляет самое мощное в мире использование систем. Обратитесь к техническому описанию продукции для получения полной информации о спецификациях мощностей.

    Доступные варианты для встраиваемых систем

    Доступные варианты для встраиваемых систем указывают на продукты, обеспечивающие продленную возможность приобретения для интеллектуальных систем и встроенных решений. Спецификация продукции и условия использования представлены в отчете Production Release Qualification (PRQ). Обратитесь к представителю Intel для получения подробной информации.

    Макс. объем памяти (зависит от типа памяти)

    Макс. объем памяти означает максимальный объем памяти, поддерживаемый процессором.

    Типы памяти

    Процессоры Intel® поддерживают четыре разных типа памяти: одноканальная, двухканальная, трехканальная и Flex.

    Макс. число каналов памяти

    От количества каналов памяти зависит пропускная способность приложений.

    Макс. пропускная способность памяти

    Макс. пропускная способность памяти означает максимальную скорость, с которой данные могут быть считаны из памяти или сохранены в памяти процессором (в ГБ/с).

    Базовая частота графической системы

    Базовая частота графической системы — это номинальная/гарантированная тактовая частота рендеринга графики (МГц).

    Макс.

    динамическая частота графической системы

    Макс. динамическая частота графической системы — это максимальная условная частота рендеринга (МГц), поддерживаемая HD-графикой Intel® с функцией Dynamic Frequency.

    Макс. объем видеопамяти графической системы

    Максимальное количество памяти, доступное для графической системы процессора. Графическая система процессора использует ту же память, что и сам процессор (с учетом ограничений для ОС, драйвера и системы т.д).

    Объекты для выполнения

    Исполнительный блок является основным компонентом графической архитектуры Intel. Исполнительные блоки представляют собой процессоры, оптимизированные для одновременной многопоточной обработки данных и обеспечения высокой производительности компьютеров.

    Макс. разрешение (HDMI 1.4)‡

    Максимальное разрешение (HDMI) — максимальное разрешение, поддерживаемое процессором через интерфейс HDMI (24 бита на пиксель с частотой 60 Гц). Системное разрешение или разрешение экрана зависит от нескольких факторов дизайна системы, а именно, фактическое разрешение в системе может быть ниже.

    Редакция PCI Express

    Редакция PCI Express — это версия, поддерживаемая процессором. PCIe (Peripheral Component Interconnect Express) представляет собой стандарт высокоскоростной последовательной шины расширения для компьютеров для подключения к нему аппаратных устройств. Различные версии PCI Express поддерживают различные скорости передачи данных.

    Конфигурации PCI Express

    Конфигурации PCI Express (PCIe) описывают доступные конфигурации каналов PCIe, которые можно использовать для привязки каналов PCH PCIe к устройствам PCIe.

    Макс. кол-во каналов PCI Express

    Полоса PCI Express (PCIe) состоит из двух дифференциальных сигнальных пар для получения и передачи данных, а также является базовым элементом шины PCIe. Количество полос PCI Express — это общее число полос, которое поддерживается процессором.

    Версия USB

    USB (Универсальная последовательная шина) — это технология подключения отраслевого стандарта для подключения периферийных устройств к компьютеру.

    Поддерживаемые разъемы

    Разъемом называется компонент, которые обеспечивает механические и электрические соединения между процессором и материнской платой.

    T

    JUNCTION

    Температура на фактическом пятне контакта — это максимальная температура, допустимая на кристалле процессора.

    Технология Intel® Turbo Boost Max 3.0

    Технология Intel® Turbo Boost Max 3.0 определяет лучшую производительность ядер в процессоре и обеспечивает увеличенную производительность в ядрах с помощью возрастающей по мере необходимости частоты, пользуясь преимуществом резерва мощности и температуры.

    Соответствие платформе Intel® vPro™

    Платформа Intel vPro® представляет собой набор аппаратных средств и технологий, используемых для создания конечных систем бизнес-вычислений с высокой производительностью, встроенной безопасностью, современными функциями управления и стабильности платформы.
    Подробнее о технологии Intel vPro®

    Безопасная загрузка

    Безопасная загрузка гарантирует, что в ходе процесса загрузки будет выполняться только надежное программное обеспечение с известной конфигурацией. Она включает аппаратный корень доверия, который запускает поэтапную проверку подлинности для микропрограммного обеспечения платформы и последовательную загрузку программного обеспечения, например, операционной системы.

    Технология виртуализации Intel® (VT-x)

    Технология Intel® Virtualization для направленного ввода/вывода (VT-x) позволяет одной аппаратной платформе функционировать в качестве нескольких «виртуальных» платформ. Технология улучшает возможности управления, снижая время простоев и поддерживая продуктивность работы за счет выделения отдельных разделов для вычислительных операций.

    Архитектура Intel® 64

    Архитектура Intel® 64 в сочетании с соответствующим программным обеспечением поддерживает работу 64-разрядных приложений на серверах, рабочих станциях, настольных ПК и ноутбуках.¹ Архитектура Intel® 64 обеспечивает повышение производительности, за счет чего вычислительные системы могут использовать более 4 ГБ виртуальной и физической памяти.

    Набор команд

    Набор команд содержит базовые команды и инструкции, которые микропроцессор понимает и может выполнять. Показанное значение указывает, с каким набором команд Intel совместим данный процессор.

    Технология защиты конфиденциальности Intel®

    Технология защиты конфиденциальности Intel® — встроенная технология безопасности, основанная на использовании токенов. Эта технология предоставляет простые и надежные средства контроля доступа к коммерческим и бизнес-данным в режиме онлайн, обеспечивая защиту от угроз безопасности и мошенничества. Технология защиты конфиденциальности Intel® использует аппаратные механизмы аутентификации ПК на веб-сайтах, в банковских системах и сетевых службах, подтверждая уникальность данного ПК, защищает от несанкционированного доступа и предотвращает атаки с использованием вредоносного ПО. Технология защиты конфиденциальности Intel® может использоваться в качестве ключевого компонента решений двухфакторной аутентификации, предназначенных для защиты информации на веб-сайтах и контроля доступа в бизнес-приложения.

    Программа Intel® Stable Image Platform (Intel® SIPP)

    Программа Intel® SIPP (Intel® Stable Image Platform Program) подразумевает нулевые изменения основных компонентов платформ и драйверов в течение не менее чем 15 месяцев или до следующего выпуска поколения, что упрощает эффективное управление конечными вычислительными системами ИТ-персоналом.
    Подробнее о программе Intel® SIPP

    Новые команды Intel® AES

    Команды Intel® AES-NI (Intel® AES New Instructions) представляют собой набор команд, позволяющий быстро и безопасно обеспечить шифрование и расшифровку данных. Команды AES-NI могут применяться для решения широкого спектра криптографических задач, например, в приложениях, обеспечивающих групповое шифрование, расшифровку, аутентификацию, генерацию случайных чисел и аутентифицированное шифрование.

    Логарифмические уравнения

       Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях «Тригонометрические уравнения», «Решение рациональных уравнений». В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.

    Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение  в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

    Определение

    Логарифмом числа a  по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.

    Основное логарифмическое тождество:

    Например:

     log39 = 2, так как  32 = 9

    Свойства логарифмов:

    Частные случаи логарифмов:

    Решим задачи. В первом примере мы сделаем проверку. В последующих проверку сделайте самостоятельно.

    Найдите корень уравнения:  log3(4–x) = 4

    Используем основное логарифмическое тождество.

    Так как  logba = x   bx = a,  то

    34 = 4 – x

    x = 4 – 81

    x =  – 77

    Проверка:

    log3(4–(–77)) = 4

    log381 = 4

    34 = 81  Верно.

    Ответ: – 77

    Решите самостоятельно:

    Найдите корень уравнения:  log(4 – x) = 7

    Посмотреть решение 

    Найдите корень уравнения log5 (4 + x) = 2

    Используем основное логарифмическое тождество.

    Так как   logab = x       bx = a,   то

    52 = 4 + x

    x =52 – 4

    x = 21

    Проверка:

    log5(4 + 21) = 2

    log525 = 2

    52 = 25 Верно.

    Ответ: 21

    Найдите корень уравнения  log3(14 – x) = log35.

    Имеет место следующее свойство, смысл его таков: если в левой и правой частях уравнения имеем логарифмы с одинаковым основанием, то можем приравнять выражения, стоящие под знаками логарифмов.

     Если    logca = logcb,   то  a = b

    14 – x = 5

    x = 9

    Сделайте проверку.

    Ответ: 9

    Решите самостоятельно:

    Найдите корень уравнения  log5(5 – x) = log53.

    Посмотреть решение 

    Найдите корень уравнения: log4(x + 3) = log4(4x – 15).

    Если   logca = logcb,   то  a = b

    x + 3 = 4x – 15

    3x = 18

    x = 6

    Сделайте проверку.

    Ответ: 6

    Найдите корень уравнения   log1/8(13 – x) = – 2.

    (1/8)–2 = 13 – x

    82 = 13 – x

    x = 13 – 64

    x = – 51

    Сделайте проверку.

    Небольшое дополнение – здесь используется свойство

    степени (отрицательная степень дроби).

    Ответ: – 51

    Решите самостоятельно: 

    Найдите корень уравнения:  log1/7(7 – x) = – 2

    Посмотреть решение 

    Найдите корень уравнения  log(4 – x) = 2 log5.

    Преобразуем правую часть. воспользуемся свойством:

    logabm = m∙logab

    log2(4 – x) = log252

    Если    logca = logcb,   то  a = b

    4 – x = 52

    4 – x = 25

    x = – 21

    Сделайте проверку.

    Ответ: – 21

    Решите самостоятельно: 

    Найдите корень уравнения:  log5(5 – x) = 2 log3

    Посмотреть решение 

    Решите уравнение   log5(x2 + 4x) = log5(x2 + 11)

    Если    logca = logcb,   то  a = b

    x2 + 4x = x2 + 11

    4x = 11

    x = 2,75

    Сделайте проверку.

    Ответ: 2,75

    Решите самостоятельно: 

    Найдите корень уравнения  log5(x2 + x) = log5(x2 + 10).

    Посмотреть решение 

    Решите уравнение   log2(2 – x) = log2(2 – 3x) +1.

    Необходимо с правой стороны уравнения получить выражение вида:

    log2 (……)

    Представляем 1 как логарифм с основанием 2:

    1 = log2

    Далее применяем свойство:

    logс(ab) = logсa + logсb

    log2(2 – x) = log2(2 – 3x) + log22

    Получаем:

    log2(2 – x) = log2 2 (2 – 3x)

    Если    logca = logcb,   то  a = b, значит

    2 – x = 4 – 6x

    5x = 2

    x = 0,4

    Сделайте проверку.

    Ответ: 0,4

    Решите самостоятельно: 

    Найдите корень уравнения  log5(7 – x) = log5(3 – x) +1

    Посмотреть решение 

    Решите уравнение logх–125 = 2.  Если уравнение имеет более одного корня, в ответе укажите меньший из них.

    Воспользуемся основным логарифмическим тождеством:

    (x – 1)2= 25

    Далее необходимо решить квадратное уравнение. Кстати, квадратное уравнение, как вы поняли, это очень важная «буковка» в математической азбуке. К нему сводятся очень многие решения совершенно различных задач. Помнить формулы дискриминанта и корней нужно обязательно, и уметь решать такое уравнение вы должны очень быстро, периодически практикуйтесь.

    Конечно же, опытный глаз сразу увидит, что в нашем примере выражение, стоящее под знаком квадрата равно 5 или – 5, так как только эти два числа  при возведении в квадрат дают 25, устно можно посчитать:

    корни равны 6  и  – 4.

    Корень  «–4» не является решением, так как основание логарифма должно быть больше нуля, а при  «– 4» оно равно «–5». Решением является корень 6. Сделайте проверку.

    Ответ: 6.

    Решите самостоятельно: 

    Решите уравнение logx–5 49 = 2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

    Посмотреть решение

     

    Как вы убедились, никаких сложных преобразований с логарифмическими уравнениями нет. Достаточно знать  свойства логарифма и уметь применять их. В задачах ЕГЭ, связанных с преобразованием логарифмических выражений, выполняются более серьёзные преобразования и требуются более глубокие навыки в решении. Такие примеры мы рассмотрим, не пропустите! Успехов вам!!!

    С уважением, Александр Крутицких. 

    P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

    5 корень из x 4

    Вы искали 5 корень из x 4? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и корень из 5 4x 5, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «5 корень из x 4».

    Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как 5 корень из x 4,корень из 5 4x 5,корень из 5 x 4,корень из x 5 4. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и 5 корень из x 4. Просто введите задачу в окошко и нажмите «решить» здесь (например, корень из 5 x 4).

    Где можно решить любую задачу по математике, а так же 5 корень из x 4 Онлайн?

    Решить задачу 5 корень из x 4 вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

    Брить наголо не поможет. В зоопарках рассказали, как охлаждают медведей, мороженое у них — 1,5 кило — Общество — Новости Санкт-Петербурга

    Скриншот из видео Ленинградского зоопарка в YouTubeПоделиться

    «Никакого мороженого, пока не съешь суп» — это правило не для Хаарчааны. Знаменитая белая медведица из Ленинградского зоопарка ест мороженое на завтрак три раза в неделю, до основного приёма пищи. Она должна быть достаточно голодна, чтобы охотно играть с ним и доставать из глыбы льда вкусняшки. Об этом зоопарк рассказывает в своих соцсетях 15 июля.

    «Мороженым» это блюдо называется условно, к сливочному десерту оно не имеет никакого отношения, более того, животным категорически нельзя еду с сахаром. Из чего же готовят мороженое для медведицы? Состав бывает разным. Чаще всего в большой пластиковый контейнер кладут морковку, яблоки, свёклу и разную рыбу, заливают всё водой и ставят в морозилку. Свёкла — любимый ингредиент Хаарчааны. До двух лет она её не признавала, а потом вкусы изменились. Сейчас красавице 4,5 года, и в день она поглощает по 1,3 кг этого овоща. «Представьте, какого размера медвежья мороженка, если наш с вами фруктовый лёд весит около 50–60 г, а лакомство Хаарчааны — больше 1,5 кг!» — отмечают в зоопарке.