заказ решений на аукционе за минимальную цену с максимальным качеством
Предлагаю идею сайта-аукциона по выполнению домашних заданий. Он будет включать:
- решение задач по математике (сейчас доступен решебник Филиппова), физике, химии, экономике
- написание лабораторных, рефератов и курсовых
- выполнение заданий по литературе, русскому или иностранному языку.
Основное отличие от большинства сайтов, предлагающих выполнение работ на заказ – сайт рассчитан на две категории пользователей: заказчиков и решающих задания. Причем, по желанию (чтобы заработать, увеличить свой рейтинг, получить решение сложной задачи) пользователи могут играть любую из этих ролей.
Объединение сервисов в одну систему
Основой для идеи послужили несколько работающих систем, объединение которых позволит сделать сервис для решения задач на заказ. Эти системы:
- Форум, где посетители обмениваются идеями и помогают друг другу
- Система bugtracking
- Аукцион, где цена за товар или услугу определяется в результате торгов
- Система рейтингов, где участники могут оценивать ответы друг друга. Причем, чем больше рейтинг пользователя, тем более значимым становится его голос
Принцип работы
Для удобства и проведения аналогий с реальной жизнью назовем заказчиков студентами, а решающих задания – репетиторами.
Итак, студенту необходимо решить несколько задач. Он заходит на сайт, выбирает раздел с соответствующей дисциплиной и создает новую тему (аналогия с форумом). Но при создании темы он также указывает стартовую (максимальную) цену, которую он готов заплатить за решение задач и крайний срок исполнения задания. Можно будет назначить и нулевую цену – если студенту нужно только бесплатное решение.
Как только тема создана, все пожелавшие подписаться на раздел репетиторы получают уведомление. Причем, условие получения уведомлений можно настроить. Например, уведомлять только о заказах со стартовой ценой более 500 р. и сроком решения не менее недели.
Заинтересовавшиеся репетиторы делают ставки. Причем студент (автор темы) видит ставки и может посмотреть информацию по каждому репетитору (его решения, рейтинг, дату начала участия в проекте). Когда студент посчитает нужным, он может остановить аукцион и назначить задание одному из репетиторов, сделавшему ставку (не обязательно самую низкую, т.к. можно учитывать и другие факторы – см. выше).
Деньги блокируются на счете студента, и репетитор начинает решать задание. Он должен представить его к сроку, заданному изначально. Выполненное решение публикуется в свободном доступе и его может оценить как заказчик, так и другие репетиторы. На этих оценках и строится рейтинг. Если к решению нет претензий – деньги окончательно переводятся со счета студента на счет репетитора.
За счет чего будет развиваться сервис
Первое – положительная обратная связь. Чем больше условий задач и решений будет опубликовано на сайте, тем чаще его будут находить пользователи через поисковики, будет больше ссылок на готовые решения. Именно поэтому важно размещать решенные задачи в свободном доступе. Знаю это по опыту своего сайта exir.ru (ex irodov.nm.ru) – большая ссылочная база получена исключительно за счет благодарных пользователей.
Второе – удобный сервис для заказчиков и для желающих заработать на решениях.
Преимущества для заказчиков
Студентам и школьникам не нужно перебирать десятки сайтов для сравнения цен, а потом надеяться, что после оплаты они получат качественное решение (и, вообще, все не закончится перечислением денег). Заказчики создают аукцион на понижение цены и могут смотреть на рейтинги желающих решить задачи и ранее выполненные ими решения. Кроме того, деньги окончательно перечисляются исполнителю только после полного решения.
Преимущества для решающих задания
Не нужно создавать и продвигать свой сайт, размещать множество объявлений во всех доступных источниках информации. Заказчики сами придут к вам. Не нужно решать все присланные задания с целью поддержания репутации – можно выбирать те, которые будут интересны по уровню сложности, цене и срокам решения.
Преимущества для владельца сервиса
Если вы не понимаете, какую выгоду получит делающий вам какое-нибудь предложение – будьте осторожны! 🙂 У меня уже есть большой опыт работы с сайтом, предоставляющим бесплатные решения по физике. И вариант с получением прибыли от размещения рекламы подходит и для нового сервиса. Кроме того, мне нравится помогать людям и довольно тяжело смотреть, как множество вопросов по задачам остаются на форуме без ответа. Предложенный аукцион решений сможет значительно сократить число вопросов без ответов.
В будущем возможен вариант и с получением некоторого небольшого процента от оплаты заказов. Но процент этот должен быть минимален и на начальном этапе он взиматься точно не будет.
Что необходимо для создания сервиса
- Самым важное сейчас – собрать команду, готовую принять участие в выполнении заданий. Если покупатели заходят в пустой магазин – они надолго забывают в него дорогу.
Поэтому я собираю предварительные заявки от посетителей, готовых заниматься решениями. Не нужно подписания никаких договоров о намерениях. Просто сообщите, на какие темы вы готовы решать задания, какой у вас опыт подобной работы (e-mail: [email protected]). Когда сервис заработает – я пришлю приглашение на регистрацию.
- Выбрать платежную систему.
- Сделать подходящий движок для сайта. Нужно решить – создавать его с нуля или изменить какой-нибудь существующий движок (например, форумный) с открытой лицензией.
- Привлечь посетителей. Учитывая посещаемость exir.ru и число публикуемых на форуме вопросов, думаю, это не будет большой проблемой.
1 | Найти производную — d/dx | бревно натуральное х | |
2 | Оценить интеграл | интеграл натурального логарифма x относительно x | |
3 | Найти производную — d/dx | 92)||
21 | Оценить интеграл | интеграл от 0 до 1 кубического корня из 1+7x относительно x | |
22 | Найти производную — d/dx | грех(2x) | |
23 | Найти производную — d/dx | 9(3x) по отношению к x||
41 | Оценить интеграл | интеграл от cos(2x) относительно x | |
42 | Найти производную — d/dx | 1/(корень квадратный из х) | |
43 | Оценка интеграла 9бесконечность | ||
45 | Найти производную — d/dx | х/2 | |
46 | Найти производную — d/dx | -cos(x) | |
47 | Найти производную — d/dx | грех(3x) | 92+1|
68 | Оценить интеграл | интеграл от sin(x) по x | |
69 | Найти производную — d/dx | угловой синус(х) | |
70 | Оценить предел | ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х | |
85 | Найти производную — d/dx | лог х | |
86 | арктан(х) | ||
87 | Найти производную — d/dx | бревно натуральное 5х92 |
исчисление — Is $\ln (x/y) = \ln |x| — \ln |y|$?
Задай вопрос
спросил
Изменено 2 года, 3 месяца назад
Просмотрено 415 раз
$\begingroup$
Если мне нужно найти $y$ следующего уравнения
$$\ln(x/y) = x + y,$$
, вы сначала попытаетесь разделить левую часть, выполнив $\ ln х — \ln у$.
У меня такой вопрос: нужно ли использовать абсолютную функцию как для $x$, так и для $y$?
Я думаю, хотя вы знаете, что $x/y > 0$, вы не знаете, больше или меньше нуля они оба. На мой взгляд, я не думаю, что это математически правильно, поскольку и $x$, и $y$ могут быть отрицательными. Поэтому мне интересно, правильнее ли вместо этого писать так:
$$\ln |x| — \лн |у| = x + y.$$
Может ли кто-нибудь сообщить мне, действительно ли это правильный способ разделения журнала? Спасибо!
- исчисление
- алгебра-предварительное исчисление
- логарифмы
$\endgroup$
2
$\begingroup$
Выражение $\ln(x/y)$ имеет смысл только тогда, когда $x/y>0$. В данном конкретном случае имеем $x>0$ и $y>0$ или $x<0$ и $y<0$. Когда ($x>0$ и $y>0$) или ($x<0$ и $y<0$), мы можем написать,
$$\frac xy=\frac{|x|}{|y|}$$ а затем
$$\ln (x/y)=\ln |x|-\ln |y|. $$
$\endgroup$
8
$\begingroup$
Сам по себе $\ln |x| — \лн |у| = x + y$ будет давать ложные решения вида $x=-y$.
Альтернативный подход может состоять в том, чтобы решить $\ln x — \ln y = x + y$, когда $x>0$ и $y>0$
, а затем отметить, что любое положительное решение $x=a,y= b$, что также дает отрицательное решение $x=-b,y=-a$ 9{-x}\right).$$ С отражением для отрицательных решений вы получите ответ, подобный этому, выделенный красным, с разрывом в $(0,0)$; крайние значения сверху и слева составляют около $(1, 0,2784645)$ и его отражение $(-0,2784645,-1)$
$\endgroup$
2
$\begingroup$
Нам нужно $\frac x y>0$, тогда в этом случае для разбиения $\log$ выражения $\ln(x/y)=\ln |x| — \лн |у| = x + y$ в порядке.