Логарифм 6: Mathway | Популярные задачи

{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:


Аргумент логарифма обычно пишется на его уровне, а основание — подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».


Как вычислить логарифм?

Чтобы вычислить логарифм — нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например, вычислите логарифм:  а) \(\log_{4}{16}\)     б) \(\log_{3}\)\(\frac{1}{3}\)     в) \(\log_{\sqrt{5}}{1}\)     г) \(\log_{\sqrt{7}}{\sqrt{7}}\)      д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому: 

\(\log_{4}{16}=2\)

б) В какую степень надо возвести \(3\), чтобы получить \(\frac{1}{3}\)? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).

\(\log_{3}\)\(\frac{1}{3}\)\(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень — это степень \(\frac{1}{2}\).

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример: Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение:

\(\log_{4\sqrt{2}}{8}=x\)

                              

Нам надо найти значение логарифма, обозначим его за икс. {b}=c\)       \(\Leftrightarrow\)       \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

 

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

 

Перед нами линейное уравнение. Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу. 

\(5x=\log_{4}{10}+4\)

 

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание — число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть,

\(\ln{a}\) это то же самое, что и \(\log_{e}{a}\), где \(a\) — некоторое число.

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\), где \(a\) — некоторое число. {2}=25\)

     

Ответ готов.

Ответ: \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\). 

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\)  . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается  

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}…\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}…\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}…\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\)\(=\) \(\log_{3}\)\(\frac{1}{3}\)\(=\) \(\log_{4}\)\(\frac{1}{4}\)\(=\) \(\log_{5}\)\(\frac{1}{5}\)\(=\) \(\log_{6}\)\(\frac{1}{6}\)\(=\) \(\log_{7}\)\(\frac{1}{7}\)\(…\)

И с одной третьей:

\(\frac{1}{3}\)\(=\log_{2}{\sqrt[3]{2}}=\log_{3}{\sqrt[3]{3}}=\log_{4}{\sqrt[3]{4}}=\log_{5}{\sqrt[3]{5}}=\log_{6}{\sqrt[3]{6}}=\log_{7}{\sqrt[3]{7}}…\)

И так далее.

Любое число \(a\) может быть представлено как логарифм с основанием \(b\):       \(a=\log_{b}{b^{a}}\)

Пример: Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение:

\(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)\(=\)

          

Превращаем единицу в логарифм с основанием \(2\): \(1=\log_{2}{2}\)

\(=\)\(\frac{\log_{2}{14}}{\log_{2}{2}+\log_{2}{7}}\)\(=\)

 

Теперь пользуемся свойством логарифмов:
\(\log_{a}{b}+\log_{a}{c}=\log_{a}{(bc)}\)

\(=\)\(\frac{\log_{2}{14}}{\log_{2}{(2\cdot7)}}\)\(=\)\(\frac{\log_{2}{14}}{\log_{2}{14}}\)\(=\)

 

В числителе и знаменателе одинаковые числа – их можно сократить.

\(=1\)

 

Ответ готов.

Ответ: \(1\)

Смотрите также:
Логарифмические уравнения
Логарифмические неравенства

3-8
9 Оценить квадратный корень из 12 10 Оценить квадратный корень из 20 11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 92

Логарифмы

Логарифмы

 

Логарифм является показателем. Логарифм – показатель степени, указывающий, в какой степени основание должно быть поднято, чтобы произвести данное число.

 

                        г = б х экспоненциальная форма

 

                       x = log b y         логарифмический форма

 

x — логарифм y по основанию b

log b y — степень, в которую нужно возвести b, чтобы получить y

 

Мы выражаем x через y

 

Примеры

 

х = логарифм б у

 

.
  х = log 2 8 Это означает логарифм 8 по основанию 2.  Это показатель степени, до которого нужно возвести 2, чтобы получить 8. Мы знаем, что 2(2)(2) = 8. Следовательно, x = 3,

  х = log 6 36 Это означает логарифм 36 по основанию 6.  Это показатель, в который нужно возвести 6, чтобы получить 36. Мы знаем, что 6(6) = 36. Следовательно, x = 2,

.
  х = log 10 10 000 Это означает логарифм 10 000 по основанию 10.  Это это показатель степени, в которую нужно возвести 10, чтобы получить 10 000. Мы знаем что 10(10)(10)(10) = 10 000. Следовательно, х = 4,

  логарифм б б  =  1 Логарифм любого числа по тому же основанию равен 1.

.
  x = логарифм 11 11 Это означает логарифм 11 по основанию 11. Это показатель степени до которого нужно возвести 11, чтобы получить 11. Мы знаем, что 1 (1) = 11. Следовательно, х = 1,

  журнал б 1 = 0

Логарифм 1 всегда равен 0.

Любое число может служить основанием b.

Общий (бриггсовские) логарифмы Основание равно 10.

Логарифмы по основанию 10 широко используются. Таким образом, обычно опускают индекс. Если основание не отображается, считается, что основание равно 10.

            журнал 10 у = log у

Натуральный (Наперовы) логарифмы      Основание равно e.

Помнить e — иррациональное число, где e = 2,71828… Символ «ln» относится к натуральным логарифмам.

  log e x = ln x   ln x — показатель степени, в которую нужно возвести e, чтобы получить x.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта