Логарифмы уравнения примеры решения – Логарифмические уравнения Решения. Разбор примеров..

Методика решения логарифмических уравнений

Разделы: Математика

Класс:

#}

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

(1)

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

(3)

и его решения подставить в систему неравенств

(4),

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Решение:

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

(5)

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Решим уравнение:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х, если

Решение:

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

4. ЛОГАРИФМИРОВАНИЕ.

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.

Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.

Пусть ; тогда

Учитывая, что

Получим уравнение:

После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.

7. ГРАФИЧЕСКИЙ СПОСОБ.

Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.

Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.

Пример 7: Решить уравнение

Решение: Построим графики функций и y = x

Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).

Ответ: корней нет

8. МЕТОД ПОДБОРА.

Пример 8: Найти х, если

Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.

Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,

истинно

Докажем, что других корней данное уравнение не имеет.

Эти корни следует искать во множестве значений х.

Допустимые значения х находятся в промежутке

На этом промежутке функция убывает, а функция возрастает. И, значит, если уравнение имеет решение, то оно единственное.

Итак, получаем

Ответ: х = 10

Упражнения для закрепления:

26.02.2006

urok.1sept.ru

«Некоторые методы решения логарифмических уравнений»

Разделы:

Математика

Класс:

#}

Некоторые методы решения логарифмических уравнений.

Настоящая статья содержит систематическое изложение методов решения логарифмических уравнений  с одной переменной. Это поможет учителю, прежде всего в дидактическом смысле: подбор упражнений позволяет составить для учащихся индивидуальные задания  с учетом их возможностей. Данные упражнения могут быть использованы для урока обобщения и для подготовки к ЕГЭ.
Краткие теоретические сведения и решения задач позволяют учащимся самостоятельно развивать умения и навыки решения логарифмических уравнений.

Решение логарифмических уравнений.

Логарифмические уравнения – уравнения, содержащие неизвестное под знаком логарифма. При решении логарифмических уравнений часто используются теоретические сведения:

Обычно решение логарифмических уравнений   начинается с определения ОДЗ. В логарифмических уравнениях рекомендуется все логарифмы преобразовать так, чтобы их основания были равны. Затем уравнения либо выражают через один какой – либо логарифм, который обозначается новой переменной, либо уравнение преобразовывают к виду, удобному для потенцирования.
Преобразования логарифмических выражений не должны приводить к сужению ОДЗ, если же примененный метод решения сужает ОДЗ, выпуская из рассмотрения отдельные числа, то эти числа в конце задачи необходимо проверить подстановкой в исходное уравнение, т.к. при сужении ОДЗ возможна потеря корней.

1.  Уравнения вида – выражение, содержащее неизвестное число, а число .
Для решения таких уравнений надо:

1) воспользоваться  определением логарифма: ;
2) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).

Если ) .

2. Уравнения первой степени относительно логарифма, при решении которых используются свойства логарифмов.

Для решения таких уравнений надо:

1) используя свойства логарифмов, преобразовать уравнение;
2) решить полученное уравнение;
3) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).
).

3. Уравнение второй и выше  степени относительно логарифма.

Для решения таких уравнений надо:

  1. сделать замену переменной;
  2.  решить полученное уравнение;
  3. сделать обратную замену;
  4. решить полученное уравнение;
  5. сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).

4.Уравнения, содержащие неизвестное в основании и в показателе степени.

Для решения таких уравнений надо:

  1. прологарифмировать уравнение;
  2. решить полученное уравнение;
  3. сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им
    корни (решения).

5. Уравнения, которые не имеют решения.

  1. Для решения таких уравнений надо найти ОДЗ уравнения.
  2. Проанализировать  левую и правую часть уравнения.
  3.  Сделать соответствующие выводы.

Примеры:

Исходное уравнение равносильно системе:

Доказать, что уравнение не имеет решения.

ОДЗ уравнения определяется неравенством  х ≥ 0. На ОДЗ имеем

Сумма положительного числа и неотрицательного числа не равна нулю, поэтому исходное уравнение решений не имеет.

Ответ : решений нет.

В ОДЗ попадает только один корень х = 0. Ответ: 0.

Произведем обратную замену.

Найденные корни принадлежат ОДЗ.

ОДЗ уравнения – множество всех положительных чисел.

Поскольку

Аналогично решаются данные уравнения:

Задачи для самостоятельного  решения:

Используемая литература.

  1. Бесчетнов В.М. Математика. Москва Демиург 1994
  2. Бородуля И.Т. Показательная и логарифмическая функции. ( задачи и упражнения). Москва «Просвещение» 1984
  3. Вавилов В.В., Мельников И.И., Олехник С.Н.,  Пасиченко П.И. Задачи по математике. Уравнения и неравенства. Москва «Наука» 1987
  4. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер. Москва «Илекса»2007
  5. Саакян С.М., Гольдман А.М., Денисов Д.В.. Задачи по алгебре и началам анализа. Москва «Просвещение» 2003

Приложение 1

Приложение 2

26.03.2010

Поделиться страницей:

urok.1sept.ru

Логарифмическим уравнением называется уравнение, в котором неизвестная величина содержится под знаком логарифма или в его основании.

При решении логарифмических уравнений обязательно учитывается ОДЗ логарифма. Если ОДЗ найти сложно, то можно только выписать условия, а затем проверить полученные корни подстановкой в ОДЗ (можно проверять подстановкой в уравнение, не выписывая ОДЗ).

Типы уравнений и способы их решения

Всюду далее F(X), G(X), H(X) – некоторые выражения с переменной (число).

I тип: уравнение вида

(6.8)

Где C Î R.

ОДЗ:

На указанной ОДЗ уравнение (6.8) решают по определению логарифма:

II тип: уравнение вида

(6.9)

ОДЗ:

На основании равенства логарифмов, уравнение (6.9) сводится к равносильному ему (на указанной ОДЗ) уравнению:

(6.10)

ОДЗ:

Данное уравнение на ОДЗ равносильно совокупности уравнений:

III тип: уравнения, решаемые заменой переменной

(6.11)

Где F – некоторое выражение относительно

Необходимо определить ОДЗ уравнения, учитывая все условия существования логарифма и выражения F.

Далее заменяют и решают уравнение

Если – корни последнего уравнения, то, после возвращения к старой переменной, необходимо решить совокупность

Полученные корни проверяют по ОДЗ.

З а м е ч а н и е. Если вместо какого-либо выражения F(X), G(X), H(X) уравнения (6.8)–(6.11) содержат число, то соответствующее условие не записывают в ОДЗ.

Пример 1. Решить уравнение

Решение. Находим ОДЗ:

Решение системы:

Преобразуем уравнение к виду

Получили уравнение I типа, которое решается по определению логарифма:

Откуда

Из полученных значений корень Х = 4 не подходит по ОДЗ.

Получаем ответ: Х = 6.

Пример 2. Решить уравнение

Решение. Записываем условия, определяющие ОДЗ:

Заданное уравнение относится к I типу. Получаем:

Снова используем определение логарифма:

т. е. откуда

Полученные корни проверяем подстановкой в условия, определяющие ОДЗ уравнения. Убеждаемся, что корень подходит, а корень не подходит по ОДЗ.

Получаем ответ:

Пример 3. Решить уравнение

Решение. Записываем условия, определяющие ОДЗ:

Данное уравнение относится ко II типу, т. е. решается по свойству равенства логарифмов. Получаем:

т. е.

Раскладываем левую часть на множители:

откуда получаем

Подставляем найденные значения в ОДЗ, находим, что уравнение имеет только один корень Х = 3.

В ответе имеем: Х = 3.

Пример 4. Решить уравнение

Решение. Находим ОДЗ:

т. е.

Данное уравнение относится ко II типу. Решаем совокупность:

По ОДЗ подходит только корень Х = 2, так как

Получаем ответ: Х = 2.

Пример 5. Решить уравнение

Решение. ОДЗ: Преобразуем уравнение:

Имеем квадратное уравнение относительно (уравнение III типа). Заменяем

Решая полученное квадратное уравнение, находим корни Возвращаемся к переменной X:

Оба корня подходят по ОДЗ, получаем ответ:

Пример 6. Решить уравнение

Решение. Запишем условия ОДЗ:

Воспользуемся тем, что

Тогда

Решаем полученное уравнение как уравнение I типа:

Среди целых делителей свободного члена находим корень Х = –2. Он подходит по ОДЗ.

Пришли к ответу: Х = –2.

Пример 7. Решить уравнение

Решение. ОДЗ: т. е.

Воспользуемся свойствами модуля: если и Тогда уравнение перепишется в виде

Заменяем и приходим к квадратному уравнению

Корнями которого являются числа

Возвращаемся к старой переменной:

Раскрываем модуль, используя ОДЗ:

Получаем ответ:

Пример 8. Решить уравнение

Решение. ОДЗ: т. е. Х Î R.

Рассмотрим левую часть уравнения:

Преобразуем правую часть. Получим:

Используя функциональный метод решения, заключаем, что решением исходного уравнения является решение системы

т. е. Х = –2.

Получаем ответ: Х = –2.

Пример 9. Найти сумму корней уравнения

Решение. Для данного уравнения характерно следующее: если Х – корень уравнения, то и (–Х) тоже корень уравнения. Поэтому если уравнение имеет корни, то их сумма будет равна нулю. Подстановкой находим корни

Получаем ответ: 0.

< Предыдущая   Следующая >

matica.org.ua

Логарифмические уравнения

Введение

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Логарифмические уравнения и неравенства

1. Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

loga x = b . (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = ab .

Пример 1. Решить уравнения:

a) log2x = 3, b) log3x = -1, c)

Решение. Используя утверждение 1, получим a) x = 23 или x = 8; b) x = 3-1 или x = 1 /3 ; c)

или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0, a ≠ 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

loga N 1 ·N 2 = loga N 1 + loga N 2 (a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если N 1 ·N 2 > 0, тогда свойство P2 примет вид

loga N 1 ·N 2 = loga |N 1 | + loga |N 2 | (a > 0, a ≠ 1, N 1 ·N 2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если

, (что равносильно N 1N 2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N 1N 2 > 0).

P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:

loga N k = k loga N (a > 0, a ≠ 1, N > 0).

Замечание. Если k — четное число (k = 2s ), то

loga N 2s = 2s loga |N | (a > 0, a ≠ 1, N ≠ 0).

P5. Формула перехода к другому основанию:

(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),

в частности, если N = b , получим

(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)

Используя свойства P4 и P5, легко получить следующие свойства

(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)

и, если в (5) c — четное число (c = 2n ), имеет место

(b > 0, a ≠ 0, |a | ≠ 1). (6)

Перечислим и основные свойства логарифмической функции f (x ) = loga x :

1. Область определения логарифмической функции есть множество положительных чисел.

2. Область значений логарифмической функции — множество действительных чисел.

3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 loga x 1 < loga x 2 ), а при 0 < a < 1, — строго убывает (0 < x 1 < x 2 loga x 1 > loga x 2 ).

4. loga 1 = 0 и loga a = 1 (a > 0, a ≠ 1).

5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x  (0;1) и отрицательна при x (1;+∞).

6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) — выпукла вниз.

Следующие утверждения (см., например, [1]) используются при решении логарифмических уравнений.

Утверждение 2. Уравнение loga f (x ) = loga g (x ) (a > 0, a ≠ 1) равносильно одной из систем (очевидно, выбирается та система, неравенство которой решается проще)

Утверждение 3. Уравнение logh (x )f (x ) = logh (x )g (x ) равноси

mirznanii.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *