Метод гаусса 3 на 3: Решение систем линейных уравнений методом Гаусса

Содержание

Решение методом Гаусса СЛАУ 3-5-ого порядка

Метод Гаусса решения систем линейных алгебраических уравнений состоит в последовательном исключении неизвестных с помощью элементарных преобразований и сведении к верхней треугольной (ступенчатой или трапециевидной). После чего решают систему с конца к началу, подстановкой найденных решений.

Рассмотрим примеры решения систем линейных уравнений методом Гаусса, взяв за справочник сборник задач Дубовика В.П., Юрика И.И. «Высшая математика».

————-

Задача.

Решить систему линейных алгебраических уравнений.

1) (1. 189)

2) (4. 195)

3) (4. 198)

Решение.

1) Преобразуем исходную систему к ступенчатому виду. Для этого от второго уравнения вычтем первое, умноженное на 3, а от четвертого вычтем первое, умноженное на 4.

В результате с третьего уравнения имеем Полученное значение подставляем в исходное уравнение для нахождения

Полученные значения подставляем в первое уравнение

Решением системы трех линейных уравнений будут следующие значения переменных

2) Имеем систему трех уравнений с четырьмя неизвестными. В таких случаях одна переменная может быть свободна, а остальные будут выражаться через нее. Сведем систему к ступенчатому виду. Для этого от второго и третьего уравнения вычтем первое

Из последних двух уравнений получаем идентичные решения

.

После подстановки в первое уравнение получим

Данное уравнение связывает три переменные. Таким образом любая из переменных может быть выражена через две других

Итак получим следующее решение

3) Имеем разреженную систему линейных уравнений пятого порядка с пятью неизвестными. Сведем ее к ступенчатому виду. От второго уравнения вычтем первое и запишем в удобном для анализа виде

Из второго уравнения находим, что . Подставляем значения во все нижние уравнения и переносим за знак равенства. Также поменяем второе с третьим уравнения местами

Четвёртое и пятое уравнения эквивалентны. Выразим одну из переменных через другую

Полученное значение подставим во второе уравнение и найдем

Из первого уравнения определяем

Решение системы уравнений следующее

При вычислениях систем линейных алгебраических уравнений методом Гаусса нужно свезти систему линейных уравнений к ступенчатому виду. Для этого удобно записывать переменные под переменными, как в последнем примере, это ускорит решение. Остальное все зависит от матрицы, которую нужно решить и Ваших умений.

———————————————-

Посмотреть материалы:

Страница не найдена — ПриМат

© 2012-2016: Нохум-Даниэль Блиндер (11), Анастасия Лозинская (10), Денис Стехун (8), Валентин Малявко (8), Елизавета Савицкая (8), Игорь Любинский (8), Юлия Стерлянко (8), Александр Базан (7), Анна Чалапчий (7), Константин Берков (7), Олег Шпинарев (7), Максим Швандт (6), Людмила Рыбальченко (6), Кирилл Волков (6), Татьяна Корнилова (6), Влад Радзивил (6), Елизавета Снежинская (5), Вадим Покровский (5), Даниил Радковский (5), Влад Недомовный (5), Александр Онищенко (5), Андрей Метасов (5), Денис Базанов (5), Александр Ковальский (5), Александр Земсков (5), Марина Чайковская (5), Екатерина Шибаева (5), Мария Корень (5), Анна Семененко (5), Мария Илларионова (5), Сергей Черкес (5), Алиса Ворохта (5), Валерия Заверюха (5), Никита Савко (4), Кондрат Воронов (4), Алина Зозуля (4), Иван Чеповский (4), Артем Рогулин (4), Игорь Чернега (4), Даниил Кубаренко (4), Ольга Денисова (4), Татьяна Осипенко (4), Яков Юсипенко (4), Ольга Слободянюк (4), Руслан Авсенин (4), Екатерина Фесенко (4), Дмитрий Заславский (4), Алина Малыхина (4), Андрей Лисовой (4), Полина Сорокина (4), Кирилл Демиденко (4), Дмитрий Стеценко (4), Александр Рапчинский (4), Святослав Волков (4), Иван Мясоедов (4), Владислав Стасюк (4), Алёна Гирняк (4), Николай Царев (4), Валентин Цушко (4), Павел Жуков (4), Роман Бронфен-Бова (4), Артём Романча (4), Анна Шохина (4), Иван Киреев (4), Виктор Булгаков (3), Дмитрий Мороз (3), Богдан Павлов (3), Игорь Вустянюк (3), Андрей Яроцкий (3), Лаура Казарян (3), Екатерина Мальчик (3), Анатолий Осецимский (3), Иван Дуков (3), Дмитрий Робакидзе (3), Вячеслав Зелинский (3), Данила Савчак (3), Дмитрий Воротов (3), Стефания Амамджян (3), Валерия Сиренко (3), Георгий Мартынюк (3), Виктор Иванов (3), Вячеслав Иванов (3), Валерия Ларикова (3), Евгений Радчин (3), Андрей Бойко (3), Милан Карагяур (3), Александр Димитриев (3), Иван Василевский (3), Руслан Масальский (3), Даниил Кулык (3), Стас Коциевский (3), Елизавета Севастьянова (3), Павел Бакалин (3), Антон Локтев (3), Андрей-Святозар Чернецкий (3), Николь Метри (3), Евелина Алексютенко (3), Константин Грешилов (3), Марина Кривошеева (3), Денис Куленюк (3), Константин Мысов (3), Мария Карьева (3), Константин Григорян (3), Колаев Демьян (3), Станислав Бондаренко (3), Ильдар Сабиров (3), Владимир Дроздин (3), Кирилл Сплошнов (3), Карина Миловская (3), Дмитрий Козачков (3), Мария Жаркая (3), Алёна Янишевская (3), Александра Рябова (3), Дмитрий Байков (3), Павел Загинайло (3), Томас Пасенченко (3), Виктория Крачилова (3), Таисия Ткачева (3), Владислав Бебик (3), Илья Бровко (3), Максим Носов (3), Филип Марченко (3), Катя Романцова (3), Илья Черноморец (3), Евгений Фищук (3), Анна Цивинская (3), Михаил Бутник (3), Станислав Чмиленко (3), Катя Писова (3), Дмитрий Дудник (3), Дарья Кваша (3), Игорь Стеблинский (3), Артем Чернобровкин (3), Яна Колчинская (2), Юрий Олейник (2), Кирилл Бондаренко (2), Елена Шихова (2), Татьяна Таран (2), Наталья Федина (2), Настя Кондратюк (2), Никита Гербали (2), Сергей Запорожченко (2), Николай Козиний (2), Георгий Луценко (2), Владислав Гринькив (2), Александр Дяченко (2), Анна Неделева (2), Никита Строгуш (2), Настя Панько (2), Кирилл Веремьев (2), Даниил Мозгунов (2), Андрей Зиновьев (2), Андрей Данилов (2), Даниил Крутоголов (2), Наталия Писаревская (2), Дэвид Ли (2), Александр Коломеец (2), Александра Филистович (2), Евгений Рудницкий (2), Олег Сторожев (2), Евгения Максимова (2), Алексей Пожиленков (2), Юрий Молоканов (2), Даниил Кадочников (2), Александр Колаев (2), Александр Гутовский (2), Павел Мацалышенко (2), Таня Спичак (2), Радомир Сиденко (2), Владислав Шиманский (2), Илья Балицкий (2), Алина Гончарова (2), Владислав Шеванов (2), Андрей Сидоренко (2), Александр Мога (2), Юлия Стоева (2), Александр Розин (2), Надежда Кибакова (2), Майк Евгеньев (2), Евгений Колодин (2), Денис Карташов (2), Александр Довгань (2), Нина Хоробрых (2), Роман Гайдей (2), Антон Джашимов (2), Никита Репнин (2), Инна Литвиненко (2), Яна Юрковская (2), Гасан Мурадов (2), Богдан Подгорный (2), Алексей Никифоров (2), Настя Филипчук (2), Гук Алина (2), Михаил Абабин (2), Дмитрий Калинин (2), Бриткариу Ирина (2), Никита Шпилевский (2), Алексей Белоченко (2), Юлиана Боурош (2), Никита Семерня (2),

1.2.3. Метод Гаусса

Как было отмечено выше, метод Крамера и матричный метод имеют один существенный недостаток: они неприменимы, если определитель системы равен нулю. В связи с этим, рассмотрим еще один, наиболее универсальный метод решения систем линейных алгебраических уравнений – метод Гаусса.

Пусть число уравнений системы совпадает с числом неизвестных1.

(1.2)

Расширенной матрицей системы (1.2) называется матрица системы, дополненная столбцом свободных членов:

(1.3)

Расширенная матрица системы называется

верхнетреугольной, если в матрице системы все элементы ниже главной диагонали равны нулю:

(1.4)

Расширенную матрицу системы мы будем называть диагональной, если матрица системы представляет собой единичную:

(1.5)

К элементарным преобразованиям расширенной матрицы системы относятся преобразования трех типов:

1) Перемена местами любых двух строк:

.

2) Умножение любой строки на любое число, отличное от нуля

.

3) Прибавление к любой строке любой другой, умноженной на произвольное число:

.

Известно, что элементарные преобразования расширенной матрицы системы приводят к эквивалентной матрице, т.е. система линейных алгебраических уравнений, соответствующая полученной матрице, имеет те же решения, что и исходная.

Идея метода Гаусса заключается в том, чтобы с помощью элементарных преобразований от расширенной матрицы системы вида (1.3) перейти вначале к верхнетреугольной матрице (1.4) (прямой ход метода Гаусса), а затем и к диагональной (1.5) (обратный ход метода Гаусса).

Если при переходе к верхнетреугольной матрице в матрице системы не возникло ни одной нулевой строки (это соответствует тому, что определитель исходной системы отличен от нуля), то система имеет единственное решение. Его легко найти, исходя из диагонального вида: .

Продемонстрируем на примерах технику использования элементарных преобразований.

Пример 8. Решить систему уравнений

.

Решение. Запишем расширенную матрицу системы:

.

Выберем в первом столбце ведущий элемент, т.е. элемент, с помощью которого удобно будет сделать нули под ним. Таким числом является единица. Поменяем местами первую и третью строки (элементарное преобразование 1-го вида):

С помощью элементарных преобразований 3-го типа делаем нули под ведущим элементом ():

.

Теперь выбираем ведущий элемент во втором столбце. Поскольку пока единицы нет, то её желательно создать. Для этого из второй строки вычтем удвоенную третью ():

.

Делаем нуль под ведущим элементом ():

.

Умножим третью строку на (– элементарное преобразование 2-го типа):

.

Мы получили матрицу верхнетреугольного вида. Переходим к обратному ходу метода Гаусса. В качестве ведущего элемента выбираем единицу, стоящую в третьем столбце. Делаем нули над ней ():

.

Последний шаг. С помощью единицы во втором столбце зануляем элемент над ней ():

.

Получена матрица диагонального вида. Проверку полученного решения сделайте самостоятельно. Ответ: .n

Если при переходе к верхнетреугольной матрице в матрице системы возникает хотя бы одна нулевая строка (это означает, что определитель исходной системы равен нулю), то система либо не имеет решения вовсе, либо имеет бесчисленное множество решений.

Пример 9. Решить систему уравнений

Решение.

Распишем последнюю строку полученной матрицы в виде уравнения:

Очевидно, что это уравнение, а значит и вся система, решений не имеет. n

Пример 10. Решить систему уравнений .

Решение.

.

Вотличие от предыдущего примера, последняя строка непротиворечива. Она указывает на то, что третье уравнение системы является следствием первых двух. Таким образом, мы, фактически, получили систему из двух уравнений с тремя неизвестными. Такая система имеет бесчисленное множество решений. Для того чтобы их найти, одну из переменных (её называют свободной) переносят в правую часть расширенной матрицы, а остальные переменные (их называют базисными или связными) выражают через эту свободную. Имеем

.

Таким образом, .

Это общее решение системы. Присваивая свободной переменной конкретные значения, можно получать частные решения, например,

и т.д.

Ответ: .n

Отметим ещё одно достоинство метода Гаусса. Для систем линейных уравнений 4-го порядка и выше метод Гаусса оказывается эффективнее метода Крамера и матричного метода и приводит к решению гораздо быстрее.

Пример 11. Решить систему уравнений

.

Решение.

Проверку сделайте самостоятельно.

Ответ: .n

Метод Гаусса — определение с примерами решения

Содержание:

  1. Опишем метод Гаусса подробнее
  2. Примеры с решением

Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных.

Пусть дана система уравнений (4.3)

Процесс решения по методу Гаусса состоит из двух этапов. На нервом этапе (прямой ход) система приводится к i ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид

где

Коэффициенты называются главными элементами системы. На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Опишем метод Гаусса подробнее

Прямой ход. Будем считать, что элемент (если то первым в системе запишем уравнение, в котором коэффициент при отличен от нуля). Преобразуем систему (4.3), исключив неизвестное во всех уравнениях, кроме первого (используя элементарные преобразования системы).

Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы.

Затем умножим обе части первого уравнения на и сложим с третьим уравнением сиап стемы. Продолжая этот процесс, получим эквивалентную систему

Здесь

новые значения коэффициентов и правых частей, которые полу чаю юя после первого шага. Аналогичным образом, считая главным элементом исключим неизвестное из всех уравнений системы, кроме первого и второго, и так далее.

Продолжаем этот процесс, пока это возможно. Если в процессе приведения системы (4.3) к ступенчатому виду появятся нулевые уравнения, т. е. равенства вида их отбрасывают. Если же появится уравнение вида то это свидетельствует о несовместности системы. Второй этап {обратный ход) заключается в решении ступенчатой системы.

Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений. В последнем уравнении этой системы выражаем первое неизвестное через остальные неизвестные Затем подставляем значение в предпоследнее уравнение системы и выражаем затем находим Придавая свободным неизвестным произвольные значения, получим бесчисленное множество решений системы.

Возможно вам будут полезны данные страницы:

Замечания: 1. Если ступенчатая система оказывается треугольной, т. е. то исходная система имеет единственное решение. Из последнего уравнения находим хп, из предпоследнего уравнения далее поднимаясь по системе вверх, найдем все остальные неизвестные На практике удобнее работать не с системой (4.3), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на ).

Примеры с решением

Пример 4.4.

Решить систему методом Гаусса:

Решение:

В результате элементарных преобразований над расширенной матрицей системы

исходная система свелась к ступенчатой:

Поэтому общее решение системы: Если положить, например, то найдем одно из частных решений этой системы

Пример 4.5.

Решить систему методом Гаусса:

Решение:

Произведем элементарные преобразования над строчками расширенной матрицы системы:

Полученная матрица соответствует системе

Осуществляя обратный ход, находим Рассмотрим решение системы (1.25) т линейных уравнений с п неизвестными. Заметим, что матрица коэффициентов системы не обязательно должна быть квадратной.

Предлагаемые методы решения систем линейных алгебраических уравнений сводятся к элементарным преобразованиям над уравнениями системы.

Преобразования Гаусса удобно проводить, осуществляя преобразования не самих уравнений, а строк матрицы их коэффициентов.

Рассмотрим матрицу

(1.33) называемую расширенной матрицей системы (1.25), так как в нее, кроме коэффициентов матрицы А системы (1.25), дополнительно включен столбец свободных членов В. Метод Гаусса (метод последовательного исключения неизвестных. Рассмотрим систему (1.25) в случае

Суть метода Гаусса заключается в том, что с помощью элементарных преобразований расширенная матрица системы (1.33) приводится к равносильной матрице ступенчатого вида по алгоритму поиска ранга матрицы (см. пример 1.13). Это и есть прямой ход метода Гаусса.

На основании полученной ступенчатой матрицы составляется новая система уравнений, равносильная исходной, из которой последовательно, начиная с последнего уравнения, находятся все неизвестные; это суть обратного хода метода Гаусса.

Пример 1.18.

Решить систему уравнений методом Гаусса:

Решение:

Расширенная матрица системы имеет вид

Используя элементарные преобразования (см. пример 1.14), сведем эту матрицу к ступенчатой, не забывая при этом, что теперь в строке уже не три, а четыре элемента.

Вспомнив, что до черты стоят коэффициенты системы уравнений, а после нее — столбец свободных членов, выпишем получившуюся систему уравнений:

Теперь применим обратный ход метода Гаусса. Из последнего 4 2 тл уравнения полученной системы найдем

Из второго уравнения найдем Аналогично найдем из первого уравнения, подставив в него уже наиденные два неизвестных

Получим решение системы

Предлагаем читателю убедиться, что найденные числа образуют решение данной системы. Расширенная матрица системы. Ступенчатая матрица. Метод Гаусса. Коэффициенты системы (1.1) удобно объединить в прямоугольную таблицу, называемую матрицей системы. Для матрицы принято обозначение:

Матрица содержит т горизонтальных рядов, называемых строками, и вертикальных рядов, называемых столбцами, числа называются ее элементами. Таким образом, первый индекс элемента — это номер строки (номер уравнения системы (1.1)), а второй индекс — номер столбца (или номер неизвестного коэффициентом при котором является уравнении системы (1.1)).

Например, матрица

квадратная матрица 3-го — единичная матрица 2-го порядка. Если к матрице А добавить столбец из свободных членов, то получим так называемую расширенную матрицу А* системы, содержащую всю информацию о системе:

Для системы из примера 1.1 матрицей системы является а расширенной матрицей этой системы является матрица На практике элементарным преобразованиям подвергают не саму систему, а ее расширенную матрицу.

Преобразованиям двух типов над системой (1.1) соответствуют два типа элементарных преобразований над строками матрицы 1-й тип — перестановка местами двух любых ее строк; 2-й тип — сложение соответствующих элементов двух любых строк, все элементы одной из которых предварительно умножены на одно и то же число.

Целью элементарных преобразований является приведение расширенной матрицы системы (1.1) к так называемой ступенчатой форме.

Определение 1.6. Матрица называется ступенчатой, если для нее выполняются следующие условия: 1) если какая-либо строка данной матрицы состоит из нулей, то и все последующие строки также состоят из нулей; 2) если — первый ненулевой элемент строки, а — первый ненулевой элемент строки,то Так, например, матрица

является ступенчатой.

Матрица из одной строки считается ступенчатой по определению. Теорема 1.2. Любую матрицу Л конечным числом элементарных преобразований первого и второго типов можно преобразовать в ступенчатую матрицу.

Пример 1.7.

Привести к ступенчатому виду матрицу

Решение:

Выполним следующие элементарные преобразования над матрицей

1) к элементам второй строки прибавим элементы первой строки и из элементов третьей строки вычтем элементы первой строки, в результате преобразуется к виду: — расширенная матрица системы.

2) переставим вторую и третью строки:

3) из третьей строки полученной матрицы вычтем вторую строку, умноженную на 3, получим:

На приведении расширенной матрицы системы (1.1) к ступенчатой матрице основан метод Гаусса, или метод последовательного исключения неизвестных. Система линейных уравнений с расширенной ступенчатой матрицей называется ступенчатой системой, по теореме 1.1 она будет равносильна соответствующей системе в форме (1.1). Приведение системы (1.1) к ступенчатой форме называется прямым ходом метода Гаусса.

Решение полученной ступенчатой системы называется обратным ходом метода Гаусса. Он может быть выполнен как в форме последовательного определения неизвестных, начиная с последнего уравнения ступенчатой системы, так и в форме преобразования матрицы к ступенчатой матрице специального вида.

Пример 1.8.

Решить методом Гаусса систему уравнений

Решение:

Прямой ход метода Гаусса. В примере 1.7 матрица при помощи элементарных преобразований приведена к ступенчатой матрице

Теперь матрице сопоставим систему, для которой она будет расширенной матрицей:

Обратный ход метода Гаусса. 1-й способ. Имеем: . 2-й способ.

Умножим последнюю строку матрицы на 1 /5, сложим со второй строкой, после чего к первой строке прибавим последнюю, умноженную на (-2), с целью получить нули в третьем столбце:

Напишем систему с расширенной матрицей

Ответ: система совместная и определенная, она имеет единственное решение:

метод гаусса на python 3

Мне необходимо выполнить задачу: Метод Гаусса на питоне. Собственно сам алгоритм я реализовал, там ничего сложного, вот он:

myA=[
 [1.0, -2.0, 3.0, -4.0],
 [3.0, 3.0, -5.0, -1.0],
 [3.0, 0.0, 3.0, -10.0],
 [-2.0, 1.0, 2.0, -3.0]
]

myB = [
 2.0,
 -3.0,
 8.0,
 5.0]
# --- end of исходные данные

# --- вывод системы на экран
def FancyPrint(A, B, selected):
    for row in range(len(B)):
        print("(", end='')
        for col in range(len(A[row])):
             print("\t{1:10.2f}{0}".format(" " if (selected is None
or selected != (row, col)) else "*", A[row][col]), end='')
        print("\t) * (\tX{0}) = (\t{1:10.2f})".format(row + 1, B[row]))
# --- end of вывод системы на экран

# --- перемена местами двух строк системы
def SwapRows(A, B, row1, row2):
    A[row1], A[row2] = A[row2], A[row1]
    B[row1], B[row2] = B[row2], B[row1]
# --- end of перемена местами двух строк системы

# --- деление строки системы на число
def DivideRow(A, B, row, divider):
    A[row] = [a / divider for a in A[row]]
    B[row] /= divider
# --- end of деление строки системы на число

# --- сложение строки системы с другой строкой, умноженной на число
def CombineRows(A, B, row, source_row, weight):
    A[row] = [(a + k * weight) for a, k in zip(A[row], A[source_row])]
    B[row] += B[source_row] * weight
# --- end of сложение строки системы с другой строкой, умноженной начисло

# --- решение системы методом Гаусса (приведением к треугольному виду)
def Gauss(A, B):
    column = 0
    while (column < len(B)):
        print("Ищем максимальный по модулю элемент в {0}-м столбце:".format(column + 1))
        current_row = None
        for r in range(column, len(A)):
            if current_row is None or abs(A[r][column]) > abs(A[current_row][column]):
                 current_row = r
        if current_row is None:
            print("решений нет")
            return None
        FancyPrint(A, B, (current_row, column))
        if current_row != column:
            print("Переставляем строку с найденным элементом повыше:")
            SwapRows(A, B, current_row, column)
            FancyPrint(A, B, (column, column))
        print("Нормализуем строку с найденным элементом:")
        DivideRow(A, B, column, A[column][column])
        FancyPrint(A, B, (column, column))
        print("Обрабатываем нижележащие строки:")
        for r in range(column + 1, len(A)):
            CombineRows(A, B, r, column, -A[r][column])
        FancyPrint(A, B, (column, column))
        column += 1
    print("Матрица приведена к треугольному виду, считаем решение")
    X = [0 for b in B]
    for i in range(len(B) - 1, -1, -1):
        X[i] = B[i] - sum(x * a for x, a in zip(X[(i + 1):], A[i][(i + 1):]))
    print("Получили ответ:")
    print("\n".join("X{0} =\t{1:10.2f}".format(i + 1, x) for i, x in
enumerate(X)))
    return X
# --- end of решение системы методом Гаусса (приведением к треугольному виду)
print("Исходная система:")
FancyPrint(myA, myB, None)
print("Решаем:")
Gauss(myA, myB)

Но мне необходимо, чтобы матрицу коэффицентов и правых частей можно было вводить в самой программе, а не в коде. То есть чтобы появилось поле «Введите матрицу коэфицентов» и «Введите матрицу правых частей», я ввожу туда данные и программа вычисляет. Пробовал изменить первые две строки на

myA = input("введите матрицу коэфициентов")
myB= input("Введите матрицу правых частей")

Но выдает ошибку Не подскажите как можно исправить? Заранее спасибо!

НОУ ИНТУИТ | Лекция | Умножение разреженных матриц

Аннотация: В лекции рассматриваются типовые алгоритмы, применяемые в работе с плотными и разреженными матрицами. Рассказывается о некоторых форматах хранения этих матриц. Рассматриваются основные свойства матриц, методы решения СЛАУ, прямые и итерационные методы.

Цель лекции: Основной целью лекции является применение полученные знания о разработке и отладке параллельных программ в реализации численных алгоритмов для работы с матрицами.

Прямые методы решения СЛАУ

Методы решения систем линейных алгебраических уравнений (СЛАУ) относятся к численным методам алгебры. При формальном подходе решение подобных задач не встречает затруднений: решение системы можно найти, раскрыв определители в формуле Крамера. Однако при непосредственном раскрытии определителей решение системы с n неизвестными требует арифметических операций; уже при n порядка 20 такое число операций недоступно для современных компьютеров. При сколько-нибудь больших n применение методов с таким порядком числа операций будет невозможно и в обозримом будущем. Другой причиной, по которой этот классический способ неприменим даже при малых n, является сильное влияние на окончательный результат округлений при вычислениях.

Методы решения алгебраических задач можно разделить на точные и итерационные. Классы задач, для решения которых обычно применяют методы этих групп, можно условно назвать соответственно классами задач со средним и большим числом неизвестных. Изменение объема и структуры памяти вычислительных систем, увеличение их быстродействия и развитие численных методов приводят к смещению границ применения методов в сторону систем более высоких порядков.

Например, в 80-х годах прошлого века точные методы применялись для решения систем до порядка 104, итерационные – до порядка 107, в 90-х – до порядков 105 и 108 соответственно. Современные суперкомпьютеры способны использовать точные методы при решении еще больших систем.

Мы будем рассматривать систему из n линейных алгебраических уравнений вида

( 7.1)

В матричном виде система может быть представлена как

( 7.2)

где есть вещественная матрица размера ; b и x — вектора из n элементов.

Под задачей решения системы линейных уравнений для заданных матрицы А и вектора b мы будем считать нахождение значения вектора неизвестных x, при котором выполняются все уравнения системы.

Метод исключения Гаусса

В первую очередь рассмотрим алгоритмыы, предназначенные для решения системы

( 7.3)

с произвольной квадратной матрицей А. Основой для всех них служит широко известный метод последовательного исключения неизвестных, или же метод Гаусса.

Метод Гаусса основывается на возможности выполнения преобразований линейных уравнений, которые не меняют при этом решение рассматриваемой системы (такие преобразования носят наименование эквивалентных). К числу таких преобразований относятся:

  • умножение любого из уравнений на ненулевую константу,
  • перестановка уравнений,
  • прибавление к уравнению любого другого уравнения системы.

Метод Гаусса включает последовательное выполнение двух этапов. На первом этапе, который называется прямой ход, исходная система линейных уравнений при помощи последовательного исключения неизвестных приводится к верхнему треугольному виду. При выполнении обратного хода (второй этап алгоритма) осуществляется определение значений неизвестных.

Последовательный алгоритм

Прямой ход состоит в последовательном исключении неизвестных в уравнениях решаемой системы линейных уравнений.

На итерации i, метода производится исключение неизвестной i для всех уравнений с номерами k, больших i(т.е.) Для этого из этих уравнений осуществляется вычитание строки i, умноженной на константу с тем, чтобы результирующий коэффициент при неизвестной в строках оказался нулевым – все необходимые вычисления могут быть определены при помощи соотношений:

( 7.4)

где — множители Гаусса.

В итоге приходим к системе с верхней треугольной матрицей

При выполнении прямого хода метода Гаусса строка, которая используется для исключения неизвестных, носит наименование ведущей, а диагональный элемент ведущей строки называется ведущим элементом. Как можно заметить, выполнение вычислений является возможным только, если ведущий элемент имеет ненулевое значение. Более того, если ведущий элемент

имеет малое значение, то деление и умножение строк на этот элемент может приводить к накоплению вычислительной погрешности и вычислительной неустойчивости алгоритма.

Избежать подобной проблемы можно, если при выполнении каждой очередной итерации прямого хода метода Гаусса определить коэффициент с максимальным значением по абсолютной величине в столбце, соответствующем исключаемой неизвестной, т.е.

и выбрать в качестве ведущей строку, в которой этот коэффициент располагается (данная схема выбора ведущего значения носит наименование метода главных элементов).

Обратный ход алгоритма состоит в следующем. После приведения матрицы коэффициентов к верхнему треугольному виду становится возможным определение значений неизвестных. Из последнего уравнения преобразованной системы может быть вычислено значение переменной

, после этого из предпоследнего уравнения становится возможным определение переменной и т.д. В общем виде выполняемые вычисления при обратном ходе метода Гаусса могут быть представлены при помощи соотношений:

Оценим трудоемкость метода Гаусса. При выполнении прямого хода число операций составит

Для выполнения обратного хода потребуется

Таким образом, общее время выполнения метода Гаусса при больших n можно оценить как

где время выполнения одной операции.

Параллельный алгоритм

При внимательном рассмотрении метода Гаусса можно заметить, что все вычисления сводятся к однотипным вычислительным операциям над строками матрицы коэффициентов системы линейных уравнений. Как результат, в основу параллельной реализации алгоритма Гаусса может быть положен принцип распараллеливания по данным. В качестве базовой подзадачи можно принять тогда все вычисления, связанные с обработкой одной строки матрицы A и соответствующего элемента вектора b. Рассмотрим общую схему параллельных вычислений и возникающие при этом информационные зависимости между базовыми подзадачами.

Для выполнения прямого хода метода Гаусса необходимо осуществить итерацию по исключению неизвестных для преобразования матрицы коэффициентов A к верхнему треугольному виду. Выполнение итерации i, , прямого хода метода Гаусса включает ряд последовательных действий. Прежде всего, в самом начале итерации необходимо выбрать ведущую строку, которая при использовании метода главных элементов определяется поиском строки с наибольшим по абсолютной величине значением среди элементов столбца i, соответствующего исключаемой переменной . Зная ведущую строку, подзадачи выполняют вычитание строк, обеспечивая тем самым исключение соответствующей неизвестной .

При выполнении обратного хода метода Гаусса подзадачи выполняют необходимые вычисления для нахождения значения неизвестных. Как только какая-либо подзадача i, , определяет значение своей переменной , это значение должно быть использовано всеми подзадачам с номерами k, : подзадачи подставляют полученное значение новой неизвестной и выполняют корректировку значений для элементов вектора b.

Выделенные базовые подзадачи характеризуются одинаковой вычислительной трудоемкостью. Однако размер матрицы, описывающей систему линейных уравнений, является существенно большим, чем число потоков в программе (т.е.,), и базовые подзадачи можно укрупнить, объединив в рамках одной подзадачи несколько строк матрицы. При этом применение последовательной схемы разделения данных для параллельного решения систем линейных уравнений приведет к неравномерной вычислительной нагрузке между потоками: по мере исключения (на прямом ходе) или определения (на обратном ходе) неизвестных в методе Гаусса для большей части потоков все необходимые вычисления будут завершены и они окажутся простаивающими. Возможное решение проблемы балансировки вычислений может состоять в использовании ленточной циклической схемы для распределения данных между укрупненными подзадачами. В этом случае матрица A делится на наборы (полосы) строк вида (см. рис. 7.1).


Рис. 7.1. Ленточная схема

Сопоставив схему разделения данных и порядок выполнения вычислений в методе Гаусса, можно отметить, что использование циклического способа формирования полос позволяет обеспечить лучшую балансировку вычислительной нагрузки между подзадачами.

Итак, проведя анализ последовательного варианта алгоритма Гаусса, можно заключить, что распараллеливание возможно для следующих вычислительных процедур:

  • поиск ведущей строки,
  • вычитание ведущей строки из всех строк, подлежащих обработке,
  • выполнение обратного хода.

Оценим трудоемкость рассмотренного параллельного варианта метода Гаусса. Пусть n есть порядок решаемой системы линейных уравнений, а p, , обозначает число потоков. При разработке параллельного алгоритма все вычислительные операции, выполняемые алгоритмом Гаусса, были распределены между потоками параллельной программы. Следовательно, время, необходимое для выполнения вычислений на этапе прямого хода, можно оценить как

Подставив выражение получим, что время выполнения вычислений для параллельного варианта метода Гаусса описывается выражением:

Теперь можно оценить величину накладных расходов, обусловленных организацией и закрытием параллельных секций. Пусть – время, необходимое на организацию и закрытие параллельной секции. Параллельная секция создается при каждом выборе ведущей строки, при выполнении вычитания ведущей строки из остальных строк линейной системы, подлежащих обработке, а также при выполнении каждой итерации обратного хода метода Гаусса. Таким образом, общее число параллельных секций составляет .

Сводя воедино все полученные оценки можно заключить, что время выполнения параллельного метода Гаусса описывается соотношением

( 7.5)
Связь метода Гаусса и LU-разложения

LU-разложение — представление матрицы A в виде

( 7.6)

где L — нижняя треугольная матрица с диагональными элементами, равными единице, а U — верхняя треугольная матрица с ненулевыми диагональными элементами. LU-разложение также называют LU-факторизацией. Известно [4], что LU-разложение существует и единственно, если главные миноры матрицы A отличны от нуля.

Алгоритм LU-разложения тесно связан с методом исключения Гаусса. В самом деле, пусть мы решаем систему уравнений вида (7.2). Непосредственно проверяется, что преобразования k-го шага метода Гаусса равносильны домножению системы (7.2) слева на матрицу

где — множители Гаусса из (7.4). Как было рассмотрено в п. 7.1.1, прямой ход метода Гаусса преобразует исходную систему уравнений к виду

с верхней треугольной матрицей U. Зная матрицы , можно записать матрицу U и вектор c как

Обозначим Можно непосредственно проверить, что

Отсюда получаем .

Таким образом, матрицу L можно получить как нижнюю треугольную матрицу коэффициентов Гаусса, а матрицу U — как верхнюю треугольную матрицу, получаемую в результате работы метода Гаусса. При этом очевидно, что трудоемкость получения LU-факторизации будет такой же-.

Рассмотренный нами алгоритм LU-факторизации реализован с помощью исключения по столбцу. Следует отметить, что можно сформулировать аналогичный алгоритм, основанный на исключении по строке. В самом деле, основная идея алгоритма с помощью исключения по столбцу заключается в том, что на i-й итерации ведущая строка с подходящими множителями вычитается из строк, лежащих ниже, чтобы занулить все элементы матрицы, расположенные в i-м столбце ниже диагонали. Между тем возможно и другое: на каждой i-й итерации можно вычитать из i-й строки все строки, расположенные выше, умноженные на подходящие коэффициенты, так, чтобы занулить все элементы i-й строки левее диагонали. При этом элементы матрицы L ниже главной диагонали и элементы матрицы U на главной диагонали и выше нее можно вычислять на месте матрицы А. Как и в случае исключения по столбцу, приведенная схема требует проведения операций

Рассмотрим теперь еще один способ LU-факторизаци, называемый компактной схемой. Пусть матрица допускает LU-разложение (7.6), где

т.е. при а при . Из соотношения (7.6) следует, что

Преобразуем эту сумму двумя способами:

Отсюда находим

Оценка числа операций данного алгоритма LUфакторизаци также составляет

Если разложение (7.6) получено, то решение системы (7.2) сводится к последовательному решению двух систем уравнений с треугольными матрицами (обратный ход)

( 7.7)

Обратный ход требует операций.

Как следует из приведенных оценок, вычислительная сложность метода исключения Гаусса и метода LU-разложения одинакова. Однако если необходимо решить несколько систем с одинаковыми матрицами коэффициентов, но различными векторами свободных членов (правая часть СЛАУ), то метод LU-разложения окажется предпочтительным, так как в этом случае нет необходимости производить разложение матрицы коэффициентов многократно. Достаточно лишь сохранить полученные треугольные матрицы в памяти и, подставляя различные вектора свободных членов, получать решения методами прямой и обратной подстановки. Это позволит значительно сократить объем вычислений по сравнению с методом Гаусса.

Решение систем линейных уравнений методом Гаусса

1. Решение систем линейных уравнений методом Гаусса

2. Метод Гаусса – это метод последовательного исключения переменных

• Систему уравнений приводят к
эквивалентной ей системе с
треугольной матрицей. Это называется
прямым ходом.
• Из полученной треугольной системы
переменные находят с помощью
последовательных подстановок. Это
называется обратным ходом.

3. При выполнении прямого хода используют следующие преобразования:

1. Умножение или деление коэффициентов
свободных членов на одно и то же число;
2. Сложение и вычитание уравнений;
3. Перестановка уравнений системы;
4. Исключение из системы уравнений, в
которых все коэффициенты при
неизвестных и свободные члены равны
нулю.

4. Решить систему уравнений методом Гаусса

x y 5
2 x y 7
Нужно записать расширенную матрицу системы
1 1 5
2 1 7
Вертикальная черта внутри матрицы не несёт
никакого математического смысла – это
просто отчеркивание для удобства
оформления.
Матрица системы – это матрица,
составленная только из
коэффициентов при неизвестных.
Расширенная матрица системы – это
та же матрица системы плюс
столбец свободных членов, в
данном случае.

6. Решение. Умножим первую строку на (-2)

1 1 5
2 1 7
2 2 10
2 1 7

7. ко второй строке прибавим первую строку умноженную на -2

1 1 5
2 1 7
2 2 10
0 3 3
2 2 10
2 1 7

8. Разделим опять первую строку на (-2)

1 1 5
2 1 7
2 2 10
0 3 3
2 2 10
2 1 7
1 1 5
0 3 3
строка, которую ПРИБАВЛЯЛИ – не изменилась.
Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ.

9. Цель элементарных преобразований –

Цель элементарных преобразований

привести матрицу к ступенчатому виду.
Сам термин «ступенчатый вид» не
вполне теоретический, в научной и
учебной литературе он часто
называется трапециевидный
вид или треугольный

10. В результате элементарных преобразований получена эквивалентная исходной система уравнений

В результате элементарных преобразований
получена эквивалентная исходной система уравнений
x y 5
2 x y 7
x y 5
y 1
Выполняем обратный ход, т.е. подстановку в первое
уравнение вместо у,
х =-5+у
х=-5+1
х=-4
Ответ: (-4; 1)

11. Решить систему уравнений методом Гаусса

3 x 2 y z 4
2 x y 3z 9
x 2 y 2z 3
Решение.
Переставим третье уравнение на место первого и запишем расширенную
матрицу:
x 2 y 2z 3
3 x 2 y z 4
2 x y 3z 9
1 2 2 3
3 2 1 4
2 1 3 9

12. Чтобы в первом столбце получить а2=а3=0, умножим 1-ю строку сначала на 3, а затем на 2 и вычтем результаты из 2-й и 3-й строк

1 2 2 3
3 2 1 4
2 1 3 9
1 2 2 3
0 8 7 5
0 3 1 3

13. Разделим 2-ю строку на 8, полученные результаты умножим на 3 и вычтем из 3-й строки

1 2 2 3
3 2 1 4
2 1 3 9
1 2 2 3
0 1 7 5
8 8
0 3 1 3
1 2 2 3
0 8 7 5
0 3 1 3
1 2 2 3
0 3 21 15
8
8
0 3 1 3
1 2 2
3
21
15
0
3
8
8
39
0 0 13
8
8

14. Запишем новую эквивалентную систему с учетом расширенной матрицы

x 2 y 2z 3
7
5
y z
8
8
13
39
z
8
8
x 2 y 2z 3
7
5
y z
8
8
13
39
z
8
8
Выполняем обратный ход, с помощью
последовательных подстановок находим
неизвестные
13
39
z
z 3
8
8
7
5
5 21 16
y 3
y
2
8
8
8 8
8
x 2 2 2 3 3 x 3 4 6 1
Ответ: (1; 2; 3)

Решающих систем с исключением Гаусса

У нас есть система трех уравнений с тремя переменными. Пусть [latex] \, x \, [/ latex] будет сумма, инвестированная под 5% годовых, пусть [latex] \, y \, [/ latex] будет суммой, инвестированной под 8%, и пусть [latex] \ , z \, [/ latex] — сумма, вложенная под 9% годовых. Таким образом,

[латекс] \ begin {массив} {l} \ text {} x + y + z = 10 000 \ hfill \\ 0,05x + 0,08y + 0,09z = 770 \ hfill \\ \ text {} 2x-z = 0 \ hfill \ end {array} [/ latex]

В качестве матрицы имеем

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill 1 & \ hfill 1 \\ \ hfill 0.05 & \ hfill 0,08 & \ hfill 0,09 \\ \ hfill 2 & \ hfill 0 & \ hfill -1 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 10,000 \\ \ hfill 770 \\ \ hfill 0 \ end {array} \ right] [/ latex]

Теперь мы выполняем исключение Гаусса, чтобы получить форму строки-эшелон.

[латекс] \ begin {array} {l} \ begin {array} {l} \ hfill \\ -0.05 {R} _ {1} + {R} _ {2} = {R} _ {2} \ в \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0.03 & \ hfill & \ hfill 0.04 & \ hfill \\ \ hfill 2 & \ hfill & \ hfill 0 & \ hfill & \ hfill -1 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 270 \\ \ hfill & \ hfill 0 \ end {array} \ right] \ hfill \ end {array} \ hfill \\ \, \, \, \, \, \, — 2 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0.03 & \ hfill & \ hfill 0.04 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -2 & \ hfill & \ hfill -3 & \ hfill \ end {array} | \ begin {array} {rr } \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 270 \\ \ hfill & \ hfill -20,000 \ end {array} \ right] \ hfill \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \ frac {1} {0.03} {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrrrrr} \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill \ frac {4} {3} & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -2 & \ hfill & \ hfill -3 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 9,000 \\ \ hfill & \ hfill -20,000 \ end {array} \ right] \ hfill \\ \, \, \, \, \, \, \, \, \, \, \, \, 2 {R} _ {2} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin { array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill \ frac {4} {3} & \ hfill \ \ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill — \ frac {1} {3} & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 9,000 \\ \ hfill & \ hfill -2,000 \ end {array} \ right] \ hfill \ end {array} [/ latex]

Третья строка сообщает нам [латекс] \, — \ frac {1} {3} z = -2,000; \, [/ latex], таким образом [латекс] \, z = 6,000.[/ латекс]

Вторая строка сообщает нам [latex] \, y + \ frac {4} {3} z = 9000. \, [/ Latex] Подставляя [latex] \, z = 6000, [/ latex], мы получаем

[латекс] \ begin {array} {r} \ hfill y + \ frac {4} {3} \ left (6000 \ right) = 9000 \\ \ hfill y + 8000 = 9000 \\ \ hfill y = 1000 \ end {array} [/ latex]

Первая строка сообщает нам [латекс] \, x + y + z = 10,000. \, [/ Latex] Замена [latex] \, y = 1,000 \, [/ latex] и [latex] \, z = 6,000, [/ latex] получаем

[латекс] \ begin {array} {l} x + 1 000 + 6 000 = 10 000 \ hfill \\ \ text {} x = 3 000 \ text {} \ hfill \ end {array} [/ latex]

Ответ: 3000 долларов вложены под 5%, 1000 долларов вложены под 8% и 6000 долларов вложены под 9%.

2.2: Системы линейных уравнений и метод Гаусса-Жордана

Цели обучения

В этом разделе вы узнаете о

  1. Представьте систему линейных уравнений в виде расширенной матрицы
  2. Решите систему, используя элементарные операции со строками.

В этом разделе мы учимся решать системы линейных уравнений, используя процесс, называемый методом Гаусса-Жордана. Процесс начинается с того, что сначала система выражается в виде матрицы, а затем сводится к эквивалентной системе с помощью простых операций со строками.Процесс продолжается до тех пор, пока решение не станет очевидным из матрицы. Матрица, которая представляет систему, называется расширенной матрицей , а арифметические операции, которые используются для перехода от системы к сокращенной эквивалентной системе, называются операцией строки .

Пример \ (\ PageIndex {1} \)

Запишите следующую систему в виде расширенной матрицы.

\ [\ begin {array} {l}
2 x + 3 y-4 z = 5 \\
3 x + 4 y-5 z = -6 \\
4 x + 5 y-6 z ​​= 7
\ конец {массив} \ nonumber \]

Решение

Мы выражаем вышеуказанную информацию в матричной форме.Поскольку система полностью определяется своей матрицей коэффициентов и матрицей постоянных членов, расширенная матрица будет включать только матрицу коэффициентов и постоянную матрицу. Таким образом, мы получаем расширенную матрицу:

\ [\ left [\ begin {array} {ccc | c}
2 & 3 & -4 & 5 \\
3 & 4 & -5 & -6 \\
4 & 5 & -6 & 7
\ конец {массив} \ nonumber \ right] \ nonumber \]

В последнем разделе мы выразили систему уравнений как \ (AX = B \), где \ (A \) представляет матрицу коэффициентов, а \ (B \) — матрицу постоянных членов.В качестве расширенной матрицы мы записываем матрицу как \ (\ left [\ begin {array} {l | l} A & B \ end {array} \ right] \). Ясно, что вся информация сохраняется в этой матричной форме, и отсутствуют только буквы \ (x \), \ (y \) и \ (z \). Учащийся может написать \ (x \), \ (y \) и \ (z \) поверх первых трех столбцов, чтобы облегчить переход.

Пример \ (\ PageIndex {2} \)

Для следующей расширенной матрицы запишите систему уравнений, которую она представляет.

\ [\ left [\ begin {array} {ccccc}
1 & 3 & -5 & | & 2 \\
2 & 0 & -3 & | & -5 \\
3 & 2 & -3 & | & -1
\ end {array} \ right] \ nonumber \]

Решение

Легко получить систему, как показано ниже.

\ [\ begin {array} {l}
x + 3 y-5 z = 2 \\
2 x-3 z = -5 \\
3 x + 2 y-3 z = -1
\ end { массив} \ nonumber \]

После того, как система выражена как расширенная матрица, метод Гаусса-Жордана сокращает систему до ряда эквивалентных систем с помощью строковых операций. Это сокращение строк продолжается до тех пор, пока система не будет выражена в так называемой сокращенной форме эшелона строк . Уменьшенная ступенчатая форма матрицы коэффициентов имеет единицы по главной диагонали и нули в других местах.Решение легко получить из этой формы.

Этот метод не сильно отличается от алгебраических операций, которые мы использовали в методе исключения в первой главе. Основное отличие состоит в том, что он носит алгоритмический характер и, следовательно, может быть легко запрограммирован на компьютере.

Далее мы решим систему двух уравнений с двумя неизвестными, используя метод исключения, а затем покажем, что этот метод аналогичен методу Гаусса-Жордана.

Пример \ (\ PageIndex {3} \)

Решите следующую систему методом исключения.

\ [\ begin {array} {l}
x + 3 y = 7 \\
3 x + 4 y = 11
\ end {array} \ nonumber \]

Решение

Умножаем первое уравнение на — 3 и добавляем его ко второму уравнению.

\ begin {align}
-3 x-9 y & = — 21 \\
3 x + 4 y & = 11 \\ \ hline
-5y & = — 10
\ end {align}

Таким образом мы преобразовали нашу исходную систему в эквивалентную систему:

\ begin {выравнивается}
x + 3 y & = 7 \\
-5 y & = — 10
\ end {выравнивается}

Разделим второе уравнение на — 5, и мы получим следующую эквивалентную систему.

\ начало {выровнено}
x + 3 y & = 7 \\
y & = 2
\ end {выровнено}

Теперь мы умножаем второе уравнение на — 3 и прибавляем к первому, получаем

\ [\ begin {array} {l}
x = 1 \\
y = 2
\ end {array} \ nonumber \]

Пример \ (\ PageIndex {4} \)

Решите следующую систему из примера 3 методом Гаусса-Жордана и покажите сходство в обоих методах, написав уравнения рядом с матрицами.

\ begin {array} {l}
x + 3 y = 7 \\
3 x + 4 y = 11
\ end {array}

Решение

Расширенная матрица для системы выглядит следующим образом.

\ [\ left [\ begin {array} {cccc}
1 & 3 & | & 7 \\
3 & 4 & | & 11
\ end {array} \ right] \ quad \ left [\ begin {array} {c}
x + 3 y = 7 \\
3 x + 4 y = 11
\ end {array} \ right] \ nonumber \]

Умножаем первую строку на — 3, и прибавляем ко второй строке.

\ [\ left [\ begin {array} {cccc}
1 & 3 & | & 7 \\
0 & -5 & | & -10
\ end {array} \ right] \ quad \ left [\ begin {array} {c}
x + 3 y & = 7 \\
-5 y & = — 10
\ end {array} \ right] \ nonumber \]

Делим вторую строку на — 5, получаем,

\ [\ left [\ begin {array} {llll}
1 & 3 & | & 7 \\
0 & 1 & | & 2
\ end {array} \ right] \ quad \ left [\ begin {array} {rl}
x + 3 y & = 7 \\
y & = 2
\ end {array} \ right] \ nonumber \]

Наконец, мы умножаем вторую строку на — 3 и прибавляем к первой строке, и мы получаем

\ [\ left [\ begin {array} {llll}
1 & 0 & | & 1 \\
0 & 1 & | & 2
\ end {array} \ right] \ quad \ left [\ begin {array} {l}
x = 1 \\
y = 2
\ end {array} \ right] \ nonumber \]

Теперь мы перечислим три операции со строками, которые использует метод Гаусса-Жордана.

Операции со строками

  1. Любые две строки в расширенной матрице можно поменять местами.
  2. Любая строка может быть умножена на ненулевую константу.
  3. Постоянное кратное одной строке может быть добавлено к другой строке.

Легко видеть, что эти операции с тремя строками могут изменить внешний вид системы, но они не меняют решения системы.

Операция первой строки утверждает, что если любые две строки системы меняются местами, полученная новая система имеет то же решение, что и старая.Давайте посмотрим на пример в двух уравнениях с двумя неизвестными. Рассмотрим систему

\ begin {выравнивается}
x + 3 y & = 7 \\
3 x + 4 y & = 11
\ end {выравнивается}

Меняем ряды местами, и получаем,

\ begin {выравнивается}
3 x + 4 y & = 11 \\
x + 3 y & = 7
\ end {выравнивается}

Очевидно, что эта система имеет то же решение, что и предыдущая.

Вторая операция утверждает, что если строка умножается на любую ненулевую константу, полученная новая система имеет то же решение, что и старая.Снова рассмотрим указанную выше систему,

\ begin {выравнивается}
x + 3 y & = 7 \\
3 x + 4 y & = 11
\ end {выравнивается}

Умножаем первую строку на –3, получаем

\ begin {выравнивается}
-3 x-9 y & = — 21 \\
3 x + 4 y & = 11
\ end {выравнивается}

Опять же, очевидно, что эта новая система имеет то же решение, что и исходная.

Операция третьей строки утверждает, что любое постоянное кратное одной строки, добавленной к другой, сохраняет решение.Рассмотрим нашу систему,

\ begin {выравнивается}
x + 3 y & = 7 \\
3 x + 4 y & = 11
\ end {выравнивается}

Если мы умножим первую строку на –3 и прибавим ее ко второй строке, мы получим

\ begin {выравнивается}
x + 3 y & = 7 \\
-5 y & = — 10
\ end {выравнивается}

И снова сохраняется то же самое решение.

Теперь, когда мы понимаем, как работают операции с тремя строками, пора ввести метод Гаусса-Жордана для решения систем линейных уравнений.Как упоминалось ранее, метод Гаусса-Жордана начинается с расширенной матрицы и с помощью ряда операций со строками заканчивается матрицей, которая находится в сокращенном эшелоне строк формы .

Матрица находится в сокращенном эшелоне строк формирует , если первая ненулевая запись в каждой строке равна 1, а столбцы, содержащие эти единицы, имеют все остальные записи как нули. Форма сокращенного эшелона строк также требует, чтобы ведущая запись в каждой строке была справа от ведущей записи в строке над ней, а строки, содержащие все нули, были перемещены вниз.Сформулируем метод Гаусса-Жордана следующим образом.

Метод Гаусса-Джордана

  1. Запишите расширенную матрицу.
  2. Поменяйте местами строки, если необходимо, чтобы получить ненулевое число в первой строке, первом столбце.
  3. Используйте строковую операцию, чтобы получить 1 в качестве записи в первой строке и первом столбце.
  4. Используйте операции со строками, чтобы сделать все остальные записи нулями в первом столбце.
  5. Поменяйте местами строки, если необходимо, чтобы получить ненулевое число во второй строке, втором столбце.Используйте строковую операцию, чтобы сделать эту запись 1. Используйте строковую операцию, чтобы сделать все остальные записи нулями во втором столбце.
  6. Повторите шаг 5 для строки 3, столбца 3. Продолжайте двигаться по главной диагонали, пока не дойдете до последней строки или пока число не станет равным нулю.

Итоговая матрица называется сокращенной формой «строка-эшелон».

Пример \ (\ PageIndex {5} \)

Решите следующую систему методом Гаусса-Жордана.

\ begin {выравнивается}
2 x + y + 2 z & = 10 \\
x + 2 y + z & = 8 \\
3 x + y-z & = 2
\ end {выравнивается}

Решение

Пишем расширенную матрицу.

\ [\ left [\ begin {array} {ccccc}
2 & 1 & 2 & | & 10 \\
1 & 2 & 1 & | & 8 \\
3 & 1 & -1 & | & 2
\ end {array} \ right] \ nonumber \]

Нам нужна 1 в первой строке, первом столбце. Этого можно добиться, разделив первую строку на 2 или поменяв местами вторую строку с первой. Перестановка строк — лучший выбор, потому что таким образом мы избегаем дробей.

\ [\ left [\ begin {array} {ccccc}
1 & 2 & 1 & | & 8 \\
2 & 1 & 2 & | & 10 \\
3 & 1 & -1 & | & 2
\ end {array} \ right] \ quad \ text {мы поменяли местами строку 1 (R1) и строку 2 (R2)} \ nonumber \]

Нам нужно обнулить все остальные записи в столбце 1.Чтобы сделать запись (2) нулем в строке 2, столбце 1, мы умножаем строку 1 на — 2 и добавляем ее ко второй строке. Получаем,

\ [\ left [\ begin {array} {ccccc}
1 & 2 & 1 & | & 8 \\
0 & -3 & 0 & | & -6 \\
3 & 1 & -1 & | & 2
\ end {array} \ right] \ quad-2 R 1 + R 2 \ nonumber \]

Чтобы сделать запись (3) нулем в строке 3, столбце 1, мы умножаем строку 1 на — 3 и добавляем ее в третью строку. Получаем,

\ [\ left [\ begin {array} {ccccc}
1 & 2 & 1 & | & 8 \\
0 & -3 & 0 & | & -6 \\
0 & -5 & -4 & | & -22
\ end {array} \ right] \ quad-3 R 1 + R 3 \ nonumber \]

Пока что мы поставили 1 в левом углу, а все остальные записи в этом столбце — нули.Теперь мы переходим к следующей диагональной записи, строке 2, столбцу 2. Нам нужно сделать эту запись (–3) равной 1 и обнулить все остальные записи в этом столбце. Чтобы сделать запись строки 2, столбца 2 равной 1, мы делим всю вторую строку на –3.

\ [\ left [\ begin {array} {ccccc}
1 & 2 & 1 & | & 8 \\
0 & 1 & 0 & | & 2 \\
0 & -5 & -4 & | & -22
\ end {array} \ right] \ quad \ mathrm {R} 2 \ div (-3) \ nonumber \]

Затем мы обнуляем все остальные записи во втором столбце.

\ [\ left [\ begin {array} {ccccc}
1 & 0 & 1 & | & 4 \\
0 & 1 & 0 & | & 2 \\
0 & 0 & -4 & | & -12
\ end {array} \ right] \ quad-2 R 2 + R 1 \ text {и} 5 R 2 + R 3 \ nonumber \]

Сделаем последнюю диагональную запись равной 1, разделив строку 3 на — 4.

\ [\ left [\ begin {array} {ccccc}
1 & 0 & 1 & | & 4 \\
0 & 1 & 0 & | & 2 \\
0 & 0 & 1 & | & 3
\ end {array} \ right] \ quad \ quad R 3 \ div (-4) \ nonumber \]

Наконец, мы обнуляем все остальные записи в столбце 3.

\ [\ left [\ begin {array} {ccccc}
1 & 0 & 0 & | & 1 \\
0 & 1 & 0 & | & 2 \\
0 & 0 & 1 & | & 3
\ end {array} \ right] \ quad- \ mathrm {R} 3+ \ mathrm {R} 1 \ nonumber \]

Ясно, что решение читается как \ (x = 1 \), \ (y = 2 \) и \ (z = 3 \).

Прежде чем мы закончим этот раздел, мы упомянем некоторые термины, которые могут нам понадобиться в четвертой главе.

Процесс получения 1 в местоположении с последующим обнулением всех остальных записей в этом столбце называется поворотом .

Число, равное 1, называется поворотным элементом , , , а строка, которая содержит поворотный элемент, называется поворотной строкой .

Мы часто умножаем сводную строку на число и добавляем ее к другой строке, чтобы получить в последней ноль. Строка, к которой добавляется кратная сводная строка, называется целевой строкой .

Метод исключения Гаусса


Далее: рядов сокращенной формы эшелона Up: операций со строками и аналог Предыдущая: Операции со строками и аналог Содержание D EFINITION 2.2.10 (Метод прямого / исключения Гаусса) Исключение Гаусса — это метод решения линейной системы (состоящий из уравнения в неизвестные) за счет приведения дополненной матрицы к верхнетреугольной форме Этот процесс исключения также называется методом прямого исключения.

Следующие примеры иллюстрируют процедуру исключения Гаусса.

E XAMPLE 2.2,11 Решите линейную систему по Гауссу метод устранения.

Решение: В этом случае расширенная матрица Метод продолжается по следующие шаги.
  1. Развязка и уравнение (или ).
  2. Разделите уравнение (или ).
  3. Добавить раз уравнение уравнение (или ).
  4. Добавить раз уравнение уравнение (или ).
  5. Умножить уравнение (или ).

Последнее уравнение дает второе уравнение теперь дает Наконец, первое уравнение дает Следовательно, множество решения УНИКАЛЬНЫЙ РЕШЕНИЕ .

E XAMPLE 2.2.12 Решите линейную систему по Гауссу метод устранения.

Решение: В этом случае расширенная матрица и метод работает следующим образом:
  1. Добавить умножить первое уравнение на второе уравнение.
  2. Добавить умножить первое уравнение на третье уравнение.
  3. Добавить умножить второе уравнение на третье уравнение
Таким образом, множество решений есть с произвольный. Другими словами, в системе БЕСКОНЕЧНЫЙ НОМЕР РЕШЕНИЙ . E XAMPLE 2.2.13 Решите линейную систему по Гауссу метод устранения.

Решение: В этом случае расширенная матрица и метод работает следующим образом:
  1. Добавить умножить первое уравнение на второе уравнение.
  2. Добавить умножить первое уравнение на третье уравнение.
  3. Добавить умножить второе уравнение на третье уравнение
Третье уравнение на последнем шаге: Это никогда не применимо ни к какому значению Следовательно В системе НЕТ РЕШЕНИЯ . Замечание 2.2.14 Обратите внимание, что для решения линейной системы нужно применять только элементарные строковые операции с расширенной матрицей

Далее: рядов сокращенной формы эшелона Up: операций со строками и аналог Предыдущая: Операции со строками и аналог Содержание
А К Лал 2007-09-12

Исключение по Гауссу — Предварительное вычисление | Сократик

ПРИМЕР:

Используйте метод исключения Гаусса для решения следующей системы уравнений.

# x + 2y + 3z = -7 #
# 2x-3y-5z = 9 #
# -6z-8y + z = -22 #

Решение:

Настроить расширенную матрицу формы.

# ((1,2,3, |, -7), (2,3, -5, |, 9), (- 6, -8,1, |, 22)) #

Цель 1. Получите 1 в верхнем левом углу.

Уже сделано.

Цель 2a: Получите ноль под 1 в первом столбце.

Умножьте строку 1 на # -2 #, чтобы получить

# ((- 2, -4, -6, |, 14)) #

Добавьте результат в строку 2 и поместите результат в строку 2.

Обозначим операции как # -2R_2 + R_1 → R_2 #.

# ((1,2,3, |, -7), (2,3, -5, |, 9), (- 6, -8,1, |, 22)) stackrel (-2R_1 + R_2 → R_2) (→) ((1,2,3, |, -7), (0, -7, -11, |, 23), (- 6, -8,1, |, 22)) #

Цель 2b: Получите еще один ноль в первом столбце.

Для этого нам понадобится операция # 6R_1 + R_3 → R_3 #.

# ((1,2,3, |, -7), (0, -7, -11, |, 23), (- 6, -8,1, |, 22)) stackrel (6R_2 + R_3 → R_3) (→) ((1,2,3, |, -7), (0, -7, -11, |, 23), (0,4,19, |, -64)) #

Цель 2c. Получите оставшийся ноль.

Умножьте строку 2 на # -1 / 7 #.

# ((1,2,3, |, -7), (0, -7, -11, |, 23), (0,4,19, |, -64)) stackrel (- (1/7 ) R_2 → R_2) (→) ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,4,19, |, -64 )) #

Теперь используйте операцию # -4R_2 + R_3 → R_3 #.

# ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,4,19, |, -64)) stackrel (-4R_2 + R_3 → R_3) (→) ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,0,89 / 7, |, -356/7)) #

Умножьте третью строку на # 7/89 #.

# ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,0,89 / 7, |, -356 / 7)) stackrel (7 / 89R_3 → R_3) (→) ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,0,1, | , -4)) #

Цель 3. Используйте обратную подстановку, чтобы получить значения # x #, # y # и # z #.

Цель 3а. Рассчитайте # z #.

#z = -4 #

Цель 3b. Рассчитайте # y #.

# y + 11 / 7z = -23 / 7 #
# y-44/7 = -23 / 7 #
# y = 44 / 7-23 / 7 = 21/7 #

# у = 3 #

Цель 3c. Вычислить x.

# x + 2y + 3z = -7 #
# x + 6-12 = -7 #
# x-6 = -7 #

# х = 1 #

Решение: # x = 1, y = 3, z = -4 #

Матрицы

и исключение Гаусса

Назад Замена

Напомним, что линейная система уравнений состоит из двух или более линейных уравнений с одинаковыми переменными.Линейная система, состоящая из трех уравнений стандартной формы, расположенных таким образом, что переменная x не появляется ни в одном уравнении после первого, а переменная y не появляется ни в одном уравнении после второго, называется верхнетреугольной формой. линейная система, состоящая из уравнений с тремя переменными в стандартной форме, расположенная так, что переменная x не появляется после первого уравнения, а переменная y не появляется после второго уравнения.. Например,

Обратите внимание, что система образует треугольник, в котором каждое последующее уравнение содержит на одну переменную меньше. В целом

Линейные системы в верхней треугольной форме {a1x + b1y = c1b2y = c2 {a1x + b1y + c1z = d1b2y + c2z = d2c3z = d3

Если линейная система находится в этой форме, мы можем легко найти одну из переменных, а затем произвести обратную замену, чтобы найти оставшиеся переменные.

Пример 1

Решить: {3x − y = 72y = −2.

Решение:

Напомним, что решения линейных систем с двумя переменными, если они существуют, представляют собой упорядоченные пары ( x , y ). Мы можем легко определить значение y , используя второе уравнение.

2у = −2у = −1

Затем используйте первое уравнение 3x − y = 7 и тот факт, что y = −1, чтобы найти x .

3x − y = 73x — (- 1) = 73x + 1 = 73x = 6x = 2

Ответ: (2, −1)

Пример 2

Решите: {x − 6y + 2z = 163y − 9z = 5z = −1.

Решение:

Напомним, что решения линейных систем с тремя переменными, если они существуют, являются упорядоченными тройками ( x , y , z ). Воспользуйтесь вторым уравнением 3y − 9z = 5 и тем фактом, что z = −1, чтобы найти y .

3y − 9z = 53y − 9 (−1) = 53y + 9 = 53y = −4y = −43

Затем подставьте y и z в первое уравнение.

x − 6y + 2z = 16x − 6 (−43) +2 (−1) = 16x + 8−2 = 16x + 6 = 16x = 10

Ответ: (10, −43, −1)

Попробуй! Решите: {4x − y + 3z = 12y − 9z = −23z = 2.

Ответ: (14, 2, 23)

Матрицы и исключение Гаусса

В этом разделе цель — разработать метод, упрощающий процесс решения линейных систем. Мы начинаем с определения матрицы — прямоугольного массива чисел, состоящего из строк и столбцов., Который представляет собой прямоугольный массив чисел, состоящий из строк и столбцов. Для данной линейной системы в стандартной форме мы создаем матрицу коэффициентов Матрицу коэффициентов линейной системы в стандартной форме, записанную так, как они выглядят выстроенной, без переменных или операций.записывая коэффициенты в том виде, в каком они кажутся выстроенными, без переменных или операций, как показано ниже.

Матрица коэффициентов линейной системы {a1x + b1y + c1z = d1a2x + b2y + c2z = d2a3x + b3y + c3z = d3 ⇒ [a1b1c1a2b2c2a3b3c3]

Строки представляют коэффициенты в уравнениях, а столбцы представляют коэффициенты каждой переменной. Кроме того, если мы включим столбец, представляющий константы, мы получим так называемую расширенную матрицу — матрицу коэффициентов с включенным столбцом констант.. Для линейной системы с двумя переменными

Расширенная матрица линейной системы {a1x + b1y = c1a2x + b2y = c2 ⇔ [a1b1 | c1a2b2 | c2]

А для линейной системы с тремя переменными имеем

Расширенная матрица линейной системы {a1x + b1y + c1z = d1a2x + b2y + c2z = d2a3x + b3y + c3z = d3 ⇔ [a1b1c1 | d1a2b2c2 | d2a3b3c3 | d3]

Примечание : Пунктирная вертикальная линия обеспечивает визуальное разделение между матрицей коэффициентов и столбцом констант.В других ресурсах по алгебре, с которыми вы можете столкнуться, это иногда опускается.

Пример 3

Постройте расширенную матрицу, которая соответствует: {9x − 6y = 0 − x + 2y = 1.

Решение:

Эта система состоит из двух линейных уравнений стандартной формы; следовательно, коэффициенты в матрице отображаются так же, как и в системе.

{9x − 6y = 0 − x + 2y = 1 ⇔ [9−6 | 0−12 | 1]

Пример 4

Постройте расширенную матрицу, которая соответствует: {x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13.

Решение:

Поскольку уравнения даны в стандартной форме, коэффициенты появляются в матрице так же, как и в системе.

{x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13 ⇔ [12−4 | 521−6 | 84−1−12 | 13]

Матрица имеет верхнюю треугольную форму, если все элементы ниже ведущего ненулевого элемента в каждой последующей строке равны нулю. Например,

Обратите внимание, что элементы ниже главной диагонали равны нулю, а коэффициенты выше образуют треугольную форму.В целом

Верхняя треугольная форма [a1b10b2] [a1b1c10b2c200c3]

Это важно, потому что в этом разделе мы очерчиваем процесс, с помощью которого можно выполнить определенные операции для создания эквивалентной линейной системы в верхней треугольной форме, чтобы ее можно было решить с помощью обратной подстановки. Обзор процесса представлен ниже:

Когда система принимает форму верхнего треугольника, мы можем использовать обратную замену, чтобы легко ее решить.Важно отметить, что представленные здесь расширенные матрицы представляют собой линейные системы уравнений в стандартной форме.

Следующие элементарные операции со строками Операции, которые могут быть выполнены для получения эквивалентных линейных систем. приводят к расширенным матрицам, которые представляют эквивалентные линейные системы:

  1. Любые две строки можно поменять местами.
  2. Каждый элемент в строке можно умножить на ненулевую константу.
  3. Любая строка может быть заменена суммой этой строки и кратной другой.

Примечание: Эти операции согласуются со свойствами, используемыми в методе исключения.

Чтобы эффективно решить систему линейных уравнений, сначала постройте расширенную матрицу. Затем примените соответствующие элементарные операции со строками, чтобы получить расширенную матрицу в форме верхнего треугольника. В этой форме эквивалентная линейная система может быть легко решена с помощью обратной подстановки. Этот процесс называется гауссовским устранением. Шаги, используемые для получения эквивалентной линейной системы в верхней треугольной форме, чтобы ее можно было решить с помощью обратной подстановки., названный в честь Карла Фридриха Гаусса (1777–1855).

Рисунок 3.1

Карл Фридрих Гаусс (Википедия)

Шаги решения линейного уравнения с двумя переменными с использованием исключения Гаусса перечислены в следующем примере.

Пример 5

Решить, используя матрицы и метод исключения Гаусса: {9x − 6y = 0 − x + 2y = 1.

Решение:

Перед началом этого процесса убедитесь, что уравнения в системе имеют стандартную форму.

Шаг 1 : Постройте соответствующую расширенную матрицу.

{9x − 6y = 0 − x + 2y = 1 ⇔ [9−6 | 0−12 | 1]

Шаг 2 : Примените операции элементарной строки, чтобы получить верхнюю треугольную форму. В этом случае нам нужно только удалить первый элемент второй строки, −1. Для этого умножьте вторую строку на 9 и прибавьте ее к первой строке.

Теперь используйте это, чтобы заменить вторую строку.

[9−6 | 0012 | 9]

В результате получается расширенная матрица в форме верхнего треугольника.

Шаг 3 : Преобразуйте обратно к линейной системе и решите, используя обратную подстановку. В этом примере у нас

[9−6 | 0012 | 9] ⇒ {9x − 6y = 012y = 9

Решите второе уравнение относительно y ,

12y = 9y = 912y = 34

Подставьте это значение вместо y в первое уравнение, чтобы найти x ,

9x − 6y = 09x − 6 (34) = 09x − 92 = 09x = 92x = 12

Ответ: (12, 34)

Шаги по использованию исключения Гаусса для решения линейного уравнения с тремя переменными перечислены в следующем примере.

Пример 6

Решить, используя матрицы и метод исключения Гаусса: {x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13.

Решение:

Перед началом этого процесса убедитесь, что уравнения в системе имеют стандартную форму.

Шаг 1 : Постройте соответствующую расширенную матрицу.

{x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13 ⇒ [12−4 | 521−6 | 84−1−12 | 13]

Шаг 2 : Примените операции элементарной строки, чтобы получить верхнюю треугольную форму.Начнем с исключения первого элемента второй строки, в данном случае 2. Для этого умножьте первую строку на −2, а затем добавьте ее во вторую строку.

[12−4 | 521−6 | 84−1−12 | 13] ⇒ × (−2) −2−48−10 + 21−680−32−2

Используйте это, чтобы заменить вторую строку.

[12−4 | 50−32 | −24−1−12 | 13]

Затем удалите первый элемент третьей строки, в данном случае 4, умножив первую строку на −4 и прибавив ее к третьей строке.

[12−4 | 50−32 | −24−1−12 | 13] ⇒ × (−4) −4−816−20 + 4−1−12130−94−7

Используйте это для замены третьей строки.

[12−4 | 50−32 | −20−94 | −7]

Это приводит к расширенной матрице, в которой элементы под первым элементом первой строки равны нулю. Затем удалите второй элемент в третьей строке, в данном случае −9. Умножьте вторую строку на −3 и прибавьте ее к третьей строке.

Используйте это, чтобы заменить третью строку, и мы видим, что мы получили матрицу в форме верхнего треугольника.

[12−4 | 50−32 | −200−2 | −1]

Шаг 3 : Преобразуйте обратно к линейной системе и решите, используя обратную подстановку. В этом примере у нас

[12−4 | 50−32 | −200−2 | −1] ⇒ {x + 2y − 4z = 5−3y + 2z = −2−2z = −1

Ответ: Читателю остается убедиться, что решение (5,1,12).

Примечание: Обычно работа по замене строки путем умножения и сложения выполняется сбоку с помощью бумаги для заметок.

Пример 7

Решить, используя матрицы и метод исключения Гаусса: {2x − 9y + 3z = −18x − 2y − 3z = −8−4x + 23y + 12z = 47.

Решение:

Начнем с преобразования системы в расширенную матрицу коэффициентов.

{2x − 9y + 3z = −18x − 2y − 3z = −8−4x + 23y + 12z = 47 ⇒ [2−93 | −181−2−3 | −8−42312 | 47]

Операции с элементарными строками упрощаются, если ведущий ненулевой элемент в строке равен 1.По этой причине начните с того, что поменяйте местами первый и второй ряды.

Заменить вторую строку суммой −2, умноженной на первую и вторую строку.

Заменить третью строку суммой четырех строк первой и третьей.

Далее разделите 3-ю строку на 15.

Поменяйте местами третий ряд со вторым.

Затем замените строку 3 суммой, умноженной на 5 строк второй и третьей.

В результате получается матрица в форме верхнего треугольника. Матрица находится в виде эшелона строк Матрица в треугольной форме, где ведущий ненулевой элемент каждой строки равен 1. результат деления на 9.

Преобразуйте в систему линейных уравнений и решите обратной подстановкой.

[1−2−3 | −8010 | 1001 | 13] ⇒ {x − 2y − 3z = −8y = 1z = 13

Здесь y = 1 и z = 13. Подставляем в первое уравнение, чтобы найти x .

x − 2y − 3y = −8x − 2 (1) −3 (13) = — 8x − 2−1 = −8x − 3 = −8x = −5

Ответ: Следовательно, решение — (−5, 1, 13).

Технологическое примечание : Многие современные калькуляторы и системы компьютерной алгебры могут выполнять метод исключения Гаусса. Сначала вам нужно узнать, как войти в матрицу.Затем используйте функции калькулятора, чтобы найти форму эшелона строки. Предлагаем вам провести исследование по этой теме для вашей конкретной модели калькулятора.

Попробуй! Решите, используя метод исключения Гаусса: {x − 3y + 2z = 164x − 11y − z = 692x − 5y − 4z = 36.

Ответ: (6, −4, −1)

Напомним, что некоторые непротиворечивые линейные системы зависимы, то есть у них бесконечно много решений.А некоторые линейные системы не имеют одновременного решения; это несовместимые системы.

Пример 8

Решить, используя матрицы и метод исключения Гаусса: {x − 2y + z = 42x − 3y + 4z = 74x − 7y + 6z = 15.

Решение:

Начнем с преобразования системы в расширенную матрицу коэффициентов.

{x − 2y + z = 42x − 3y + 4z = 74x − 7y + 6z = 15 ⇒ [1−21 | 42−34 | 74−76 | 15]

Заменить строку два на −2 (строка 1) + (строка 2) и заменить строку три на −4 (строка 1) + (строка 3).

[1−21 | 4012 | −1012 | −1]

Заменить третью строку на −1 (строка 2) + (строка 3).

[1-21 | 4012 | -1000 | 0]

Последняя строка указывает, что это зависимая система, потому что преобразование расширенной матрицы обратно в уравнения, которые у нас есть,

{x − 2y + z = 4y + 2z = −10x + 0y + 0z = 0

Обратите внимание, что строка нулей соответствует следующему тождеству,

0x + 0y + 0z = 00 = 0 ✓

В этом случае мы можем выразить бесконечно много решений через z .Из второго ряда имеем:

y + 2z = −1y = −2z − 1

И из первого уравнения,

x − 2y + z = 4x − 2 (−2z − 1) + z = 4x + 5z + 2 = 4x = −5z + 2

Решения имеют вид (x, y, z) = (- 5z + 2, −2z − 1, z), где z — любое действительное число.

Ответ: (−5z + 2, −2z − 1, z)

Зависимые и несовместимые системы могут быть идентифицированы в расширенной матрице коэффициентов, когда все коэффициенты в одной строке равны нулю.

Если строка нулей имеет соответствующую константу, равную нулю, тогда матрица представляет зависимую систему. Если константа отлична от нуля, матрица представляет собой несовместимую систему.

Попробуй! Решите, используя матрицы и метод исключения Гаусса: {5x − 2y + z = −310x − y + 3z = 0−15x + 9y − 2z = 17.

Ответ: Ø

Основные выводы

  • Линейная система в верхней треугольной форме может быть легко решена с помощью обратной подстановки.
  • Расширенная матрица коэффициентов и метод исключения Гаусса могут использоваться для упрощения процесса решения линейных систем.
  • Чтобы решить систему с использованием матриц и исключения Гаусса, сначала используйте коэффициенты для создания расширенной матрицы. Примените операции с элементарными строками как средство для получения матрицы в форме верхнего треугольника. Преобразуйте матрицу обратно в эквивалентную линейную систему и решите ее, используя обратную подстановку.

Тематические упражнения

    Часть A: Обратная замена

      Решите, используя обратную замену.

    1. {5x − 3y = 2y = −1

    2. {3x + 2y = 1y = 3

    3. {x − 4y = 12y = −3

    4. {x − 5y = 310y = −6

    5. {4x − 3y = −167y = 0

    6. {3x − 5y = −104y = 8

    7. {2x + 3y = −13y = 2

    8. {6x − y = −34y = 3

    9. {х-у = 02у = 0

    10. {2x + y = 23y = 0

    11. {x + 3y − 4z = 1y − 3z = −2z = 3

    12. {x − 5y + 4z = −1y − 7z = 10z = −2

    13. {x − 6y + 8z = 23y − 4z = −42z = −1

    14. {2x − y + 3z = −92y + 6z = −23z = 2

    15. {10x − 3y + z = 1311y − 3z = 92z = −6

    16. {3x − 2y + 5z = −244y + 5z = 34z = −12

    17. {x − y + 2z = 12y + z = 13z = −1

    18. {x + 2y − z = 2y − 3z = 16z = 1

    19. {x − 9y + 5z = −32y = 103z = 27

    20. {4x — z = 33y − 2z = −12z = −8

    Часть B: Матрицы и исключение Гаусса

      Построить соответствующую расширенную матрицу (не решать).

    1. {х + 2у = 34х + 5у = ​​6

    2. {6x + 5y = 43x + 2y = 1

    3. {x − 2y = 12x − y = 1

    4. {х-у = 2-х + у = -1

    5. {−x + 8y = 32y = 2

    6. {3x − 2y = 4 − y = 5

    7. {3x − 2y + 7z = 84x − 5y − 10z = 6 − x − 3y + 2z = −1

    8. {x − y − z = 02x − y + 3z = −1 − x + 4y − 3z = −2

    9. {x − 9y + 5z = −32y = 103z = 27

    10. {4x − z = 33y − 2z = −12z = −8

    11. {8x + 2y = −13−2y + z = 112x − 5z = −18

    12. {x − 3z = 2y + 6z = 42x + 3y = 12

      Решите, используя матрицы и метод исключения Гаусса.

    1. {x − 5y = 22x − y = 1

    2. {x − 2y = −1x + y = 1

    3. {10x − 7y = 15−2x + 3y = −3

    4. {9x − 10y = 23x + 5y = −1

    5. {3x + 5y = 82x − 3y = 18

    6. {5x − 3y = −147x + 2y = −1

    7. {9x + 15y = 53x + 5y = 7

    8. {6x − 8y = 1−3x + 4y = −1

    9. {х + у = 0х-у = 0

    10. {7x − 3y = 03x − 7y = 0

    11. {2x − 3y = 4−10x + 15y = −20

    12. {6x − 10y = 20−3x + 5y = −10

    13. {x + y − 2z = −1 − x + 2y − z = 1x − y + z = 2

    14. {x − y + z = −2x + 2y − z = 6 − x + y − 2z = 3

    15. {2x − y + z = 2x − y + z = 2−2x + 2y − z = −1

    16. {3x − y + 2z = 7 − x + 2y + z = 6x + 3y − 2z = 1

    17. {x − 3y + z = 6 − x − y + 2z = 42x + y + z = 3

    18. {4x − y + 2z = 12x − 3y + 2z = 7−2x + 3y + 4z = −16

    19. {2x − 4y + 6z = −43x − 2y + 5z = −25x − y + 2z = 1

    20. {3x + 6y + 9z = 62x − 2y + 3z = 0−3x + 18y − 12z = 5

    21. {−x + y − z = −23x − 2y + 5z = 13x − 5y − z = 3

    22. {x + 2y + 3z = 43x + 8y + 13z = 212x + 5y + 8z = 16

    23. {2x − 4y − 5z = 3 − x + y + z = 13x − 4y − 5z = −4

    24. {5x − 3y − 2z = 43x − 6y + 4z = −6 − x + 2y − z = 2

    25. {−2x − 3y + 12z = 44x − 5y − 10z = −1 − x − 3y + 2z = 0

    26. {3x − 2y + 5z = 104x + 3y − 3z = −6x + y + z = 2

    27. {x + 2y + z = −3x + 6y + 3z = 7x + 4y + 2z = 2

    28. {2x − y + z = 14x − y + 3z = 52x + y + 3z = 7

    29. {2x + 3y − 4z = 03x − 5y + 3z = −105x − 2y + 5z = −4

    30. {3x − 2y + 9z = 2−2x − 5y − 4z = 35x − 3y + 3z = 15

    31. {8x + 2y = −13−2y + z = 112x − 5z = −18

    32. {x − 3z = 2y + 6z = 42x + 3y = 12

    33. {9x + 3y − 11z = 62x + y − 3z = 17x + 2y − 8z = 3

    34. {3x − y − z = 4−5x + y + 2z = −36x − 2y − 2z = 8

    35. {2x − 4y + 3z = 153x − 5y + 2z = 185x + 2y − 6z = 0

    36. {3x − 4y − 3z = −144x + 2y + 5z = 12−5x + 8y − 4z = −3

    Часть C: Обсуждение

    1. Изучите и обсудите историю метода исключения Гаусса.Кто первым разработал этот процесс? Опубликуйте что-нибудь, что вам показалось интересным из этой истории.

    2. Изучите и обсудите историю современной матричной записи. Кому засчитывается разработка? В каких сферах они используются сегодня? Разместите свои выводы на доске обсуждений.

ответы

  1. (-15, -1)

  2. (-5, -32)

  3. (-32,23)

  4. (−6, −2, −12)

  5. (85,0, −3)

  6. (73,23, −13)

  1. [12 | 345 | 6]

  2. [1-2 | 12-1 | 1]

  3. [−18 | 302 | 2]

  4. [3−27 | 84−5−10 | 6−1−32 | −1]

  5. [1−95 | −3020 | 10003 | 27]

  6. [820 | −130−21 | 1120−5 | −18]

  7. (13, −13)

  8. (32,0)

  9. (х, 23x − 43)

  10. (12,12, −12)

  11. (1,0,12)

  12. (−8, −12z + 52, z)

  13. (-32, -12, 0)

Методы исключения Гаусса и матричные методы

Методы исключения Гаусса и матричные методы





Система линейных уравнений может быть помещены в матричную форму.Каждый уравнение становится строкой, и каждое переменная становится столбцом. An добавлен дополнительный столбец для справа. Система показаны линейные уравнения и результирующая матрица.

Система линейных уравнений …

 3x + 2y - 4z = 3
2х + 3у + 3z = 15
5x - 3y + z = 14 

становится расширенной матрицей …

х л z справа
3 2 -4 3
2 3 3 15
5 -3 1 14

Цель при решении системы уравнений состоит в том, чтобы по возможности преобразовать расширенную матрицу в сокращенную форму строки-эшелона.

Есть три элементарные операции со строками, которые вы можете использовать для размещения матрицы в приведенная строчно-эшелонированная форма.

Каждое из требований сокращенной матрицы строка-эшелон может быть удовлетворено с использованием элементарной строки операции.

  • Если есть строка со всеми нулями, то она находится внизу матрицы.
    Поменяйте местами две строки матрицы, чтобы переместить строку со всеми нулями вниз.
  • Первый ненулевой элемент любой строки — это единица.Этот элемент называется ведущим.
    Умножьте (разделите) строку на ненулевую константу, чтобы превратить первый ненулевой элемент в один.
  • Первая строка любой строки находится справа от первой строки предыдущей строки.
    Умножьте строку на ненулевую константу и добавьте ее в другую строку, заменив эту строку. В Смысл этой элементарной операции со строками — преобразовать числа в нули. Сделав числа под ведущими в ноль, это заставляет первый ненулевой элемент любой строки быть справа от ведущей предыдущей строки.
  • Все элементы выше и ниже ведущего равны нулю.
    Умножьте строку на ненулевую константу и добавьте ее в другую строку, заменив эту строку. В Смысл этой элементарной операции со строками состоит в том, чтобы преобразовать числа в ноль. Разница здесь в что вы очищаете (обнуляете) элементы выше ведущего, а не чуть ниже ведущий.

Что такое поворот?

Цель поворота — сделать элемент выше или ниже ведущего. в ноль.

«Поворотный элемент» или «сводный элемент» — это элемент в левой части матрицы. что вы хотите элементы сверху и снизу равны нулю.

Обычно это единица. Если вы найдете книгу, в которой упоминается поворот, они обычно сказать вам, что вы должны повернуться на один. Если ограничиться тремя элементарными рядами операций, то это верное утверждение.

Однако, если вы хотите объединить вторую и третью элементарные операции со строками, вы придумать другую строковую операцию (не элементарную, но все еще действующую).

  • Вы можете умножить строку на ненулевую константу и добавить ее к ненулевому кратному другому. row, заменив эту строку.

И что? Если вам нужно повернуться на одном, то вам иногда придется использовать второй. элементарная операция со строкой и разделите строку на ведущий элемент, чтобы превратить ее в единицу. Деление приводит к дробям. Хотя дроби — ваши друзья, у вас меньше шансов ошибиться если вы их не используете.

В чем прикол? Если вы не остановитесь на одном, вы, вероятно, столкнетесь с большими числами. Наиболее люди готовы работать с большими числами, чтобы избежать дробей.

Процесс поворота

Pivoting работает, потому что общее кратное (не обязательно наименьшее общее кратное) двух чисел всегда можно найти, умножив два числа вместе. Давайте возьмем предыдущий пример и очистить первый столбец.

х л z справа
3 2 -4 3
2 3 3 15
5 -3 1 14

Полезные советы

  • Хотя вам не нужно поворачиваться на одном, это очень желательно.Переход на единицу означает, что вы умножаете на 1 (что легко сделать).
  • Поворот по главной диагонали — это хорошо, но не обязательно. Некоторым людям нравится начинать с левого верхнего угла и продвигаться вниз к Нижний правый.
  • Если вы поворачиваете только один раз для каждой строки и столбца, столбцы, которые были очищены, останутся очищенными.
  • Поскольку точка поворота — очистить столбец поворота, выбор столбец, в котором уже есть нули, экономит время, потому что у вас нет чтобы изменить строку, содержащую ноль.

Выбор оси

  • Выберите столбец с наибольшим количеством нулей.
  • Использовать строку или столбец только один раз
  • Поверните на единицу, если возможно
  • Ось по главной диагонали
  • Никогда не поворачивайтесь на ноль
  • Никогда не поворачивайте вправо

Так как в первом ряду никого нет, у нас есть два варианта: либо мы первую строку делим на три и работаем дробями, либо делаем поворот на три и получите большие числа.Это вариант, который я собираюсь использовать. Я поверну на трех в R 1 C 1 . Обведите его как стержневой элемент. В зависимости от вашего браузера вы элементы поворота могут быть обведены красным кружком или просто отмечены знаком * перед ним.

х л z справа
* 3 2 -4 3
2 3 3 15
5 -3 1 14

Идея состоит в том, чтобы превратить числа в рамке (желтые) в ноль.Использование комбинированного рядная операция (это не элементарная операция), это может сделать 3R 2 — 2R 1 → R 2 и 3R 3 — 5R 1 → R 3 .

Единственная строка, которая не изменяется, — это строка, содержащая элемент поворота ( 3). Весь смысл процесса поворота состоит в том, чтобы обнулить значения в рамке. Перепишите сводную строку и очистите (сделайте ноль) сводный столбец.

х л z справа
* 3 2 -4 3
0
0

Для замены значений в строке 2 каждый новый элемент получается путем умножения элемент, заменяемый во второй строке на 3 и вычитающий в 2 раза элемент в первой строка из того же столбца, что и заменяемый элемент.

Чтобы выполнить поворот, приложите один палец к оси поворота (обведено кружком). номер) и один палец на заменяемом элементе. Умножьте эти два числа вместе. Теперь поместите один палец на номере в рамке в той же строке, что и элемент, который вы заменяя и другой палец в поворотном ряду и такой же столбец как номер, который вы заменяете. Умножьте эти два числа вместе. Возьмите продукт за шарнир и вычесть произведение без оси.

х л z справа
* 3 2 -4 3
2 3 3 15
5 -3 1 14

Чтобы заменить 3 в R 2 C 2 , вы должны взять 3 (3) — 2 (2) = 9-4 = 5.

Чтобы заменить 3 в R 2 C 3 , вы должны взять 3 (3) — 2 (-4) = 9 +8 = 17.

Чтобы заменить 15 в R 2 C 4 , вы должны взять 3 (15) — 2 (3) = 45 — 6 = 39.

Чтобы заменить -3 в R 3 C 2 , вы должны взять 3 (-3) — 5 (2) = -9-10 = -19.

Чтобы заменить 1 в R 3 C 3 , вы должны взять 3 (1) — 5 (-4) = 3 + 20 = 23

Чтобы заменить 14 в R 3 C 4 , вы должны взять 3 (14) — 5 (3) = 42-15 = 27.

Вот как выглядит процесс.

х л z справа
поворотный ряд, копия
3
поворотный ряд, копия
2
поворотный ряд, копия
-4
поворотный ряд, копия
3
поворотная стойка, прозрачная
0
3 (3) — 2 (2)
5
3 (3) — 2 (-4)
17
3 (15) — 2 (3)
39
поворотная стойка, прозрачная
0
3 (-3) — 5 (2)
-19
3 (1) — 5 (-4)
23
3 (14) — 5 (3)
27

Или, если убрать комментарии, матрица после первого поворота будет выглядеть так.

х л z справа
3 2 -4 3
0 5 17 39
0 -19 23 27

Пришло время повторить весь процесс.Мы проходим и выбираем другое место для поворота. Мы хотел бы, чтобы он был на главной диагонали, с единицей или с нулями в столбце. К сожалению, у нас нет ни одного из них. Но так как мы должны все умножить другие числа у оси, мы хотим, чтобы она была маленькой, поэтому мы перейдем к 5 в R 2 C 2 и очистите 2 и -19.

х л z справа
3 2 -4 3
0 * 5 17 39
0 -19 23 27

Начните с копирования вниз сводной строки (2-я строка) и очистки сводного столбца (2-я строка). столбец).Ранее очищенные столбцы останутся очищенными.

х л z справа
0
0 * 5 17 39
0 0

Вот вычисления, чтобы найти следующее взаимодействие.Обратите особое внимание в 3-ю строку, где мы вычитаем значение -19 раз. Поскольку мы вычитаем отрицательный, я записал его как плюс 19.

х л z справа
5 (3) — 2 (0)
15
поворотная стойка, прозрачная
0
5 (-4) — 2 (17)
-54
5 (3) — 2 (39)
-63
поворотный ряд, копия
0
поворотный ряд, копия
5
поворотный ряд, копия
17
поворотный ряд, копия
39
ранее погашено
0
поворотная стойка, прозрачная
0
5 (23) + 19 (17)
438
5 (27) + 19 (39)
876

И получившаяся матрица.

х л z справа
15 0 -54-63
0 5 17 39
0 0 438 876

Обратите внимание, что все элементы в первой строке кратны 3 и все элементы в последней строке кратны 438.Разделим, чтобы сократить ряды.

х л z справа
5 0 -18 -21
0 5 17 39
0 0 1 2

Это имело дополнительное преимущество, давая нам 1, именно там, где мы хотим, чтобы это было вращаться.Итак, мы переместимся на 1 в R 3 C 3 и уберем -18 и 17. Обведите свою точку поворота и заключите в рамку другие числа. этот столбец очистить.

х л z справа
5 0 -18 -21
0 5 17 39
0 0 * 1 2

Скопируйте сводную строку и очистите сводный столбец.Ранее очищенные столбцы останется очищенным до тех пор, пока вы не повернете строку или столбец дважды.

х л z справа
0 0
0 0
0 0 * 1 2

Обратите внимание, что каждый раз приходится выполнять меньше вычислений.Вот расчеты для этой оси. Опять же, поскольку значение в сводном столбце в первая строка -18, и мы вычитаем, я записал это как + 18.

х л z справа
1 (5) +18 (0)
5
ранее погашено
0
поворотная стойка, прозрачная
0
1 (-21) + 18 (2)
15
ранее погашено
0
1 (5) — 17 (0)
5
поворотная стойка, прозрачная
0
1 (39) — 17 (2)
5
поворотный ряд, копия
0
поворотный ряд, копия
0
поворотный ряд, копия
1
поворотный ряд, копия
2

И получившаяся матрица.

х л z справа
5 0 0 15
0 5 0 5
0 0 1 2

Обратите внимание, что первая и вторая строки кратны 5, поэтому мы можем уменьшить их ряды.

х л z справа
1 0 0 3
0 1 0 1
0 0 1 2

И окончательный ответ: x = 3, y = 1 и z = 2.Вы также можете написать это как упорядоченный триплет {(3,1,2)}.

Надеюсь, вы заметили, что когда я работал над этим примером, я не следовал подсказкам Я дал. Это потому, что я хотел, чтобы вы увидели, что произойдет, если вы не повернетесь на один. В исходной матрице был один на главной диагонали, и Лучше было бы начать с этого.

Сводка

  • Подбирайте поворотный элемент с умом.
  • Выбор столбца с нулями означает меньший поворот.
  • Выбор единицы в качестве оси поворота уменьшает числа, упрощает умножение и оставляет ненулевые элементы в очищенном столбце такие же (без поворота)
  • Поворот по главной диагонали означает, что вам не придется переключать строки, чтобы поместить матрицу в приведенная строчно-эшелонированная форма.
  • Не поворачивайтесь на ноль.
  • Не поворачивайте вправо.
  • Используйте строку или столбец только один раз
  • Возьмите продукт с шарниром за вычетом продукта без шарнира

Особые случаи

Если вы получите строку из всех нулей, кроме правой части, значит, у системы нет решения.

Если вы получаете строку со всеми нулями, а количество ненулевых строк меньше, чем количество переменных, то система зависима, у вас будет много ответов, и вам нужно написать свой ответ в параметрической форме.


Содержание: Примечания по алгебре колледжа


Сайт Расс Фрит

15.5 Важные наблюдения относительно исключения Гаусса

15.5 Важные наблюдения относительно исключения Гаусса

15.5 важных замечаний по поводу исключения Гаусса

1. При выполнении элементарных строковых операций исключения Гаусса сделать матрицу коэффициентов в единичную матрицу, вы должны выполнить те же операции одновременно в правой части уравнения, на примере r .
При этом вы можете записать v как I 3 v , оставить v исправлено и выполняйте операции со строками на I 3 , как вы их делаете на C .
Когда вы закончите, вы преобразуете I 3 в какую-то новую матрицу, назовите его D .

r = I 3 r = D v

, а у нас еще

C r = v

D , следовательно, является инверсией C :

D = C -1

Метод исключения Гаусса обеспечивает относительно эффективный способ построения обратная матрице .

2. Точно такие же результаты справедливы для любого количества переменных и уравнений. Метод исключения Гаусса практичен в большинстве случаев для нахождения обратный к матрицам, включающим тысячи уравнений и переменных.
Однако исключение Гаусса — чрезвычайно скучная повторяющаяся процедура, не очень подходит для людей. К счастью, компьютеры никогда не скучают с выполнением элементарных операций со строками, и их можно легко обучить сделать гауссовское исключение.

3. Исключение Гаусса обеспечивает простой способ вычисления определителя матрицы : произведение всех количеств, деленное на уменьшение в строке — величина определителя матрицы. Это сам по себе определитель если в процессе сокращения рядов нет перестановок рядов; иначе каждая простая перестановка двух строк меняет знак.
Таким образом, в приведенном выше примере шаги 1, 3 и 5 включали деление на 2, -5/2 и 1/5 соответственно.Их произведение равно -1, что является определителем этой матрицы.
Это один из самых простых способов вычисления детерминантов в целом.
Пожалуйста, поймите, что способ, которым вы научились оценивать детерминанты: умножать по диагоналям с соответствующими знаками, работает только для массивов 2 на 2 или 3 на 3. Это совершенно неверно для более крупных детерминант.
Интересный вопрос: как быстрее всего вычислить детерминанты? и инверсии и произведения матриц.Исключение Гаусса принимает порядок из n 3 операций для матрицы n на n; брать продукты в очевидном путь занимает в таком же порядке времени. Есть и другие умные способы сделать это вещи, которые занимают порядка n 5/2 шагов для очень больших n, но они не очень полезны на практике, так как им не хватает числовой стабильности, так что маленькие ошибки могут ужасно разрастаться; также они не поддаются параллельные вычисления, а также стандартные.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *