Частные производные онлайн
Примеры решенийНайти производную Найти интеграл Пределы онлайн Экстремумы функцииИнтервалы возрастания функции Точки перегиба Диф уравнения онлайн Асимптоты функцииГрадиент функции
Частные производные функции z(x,y) находятся по следующим формулам:
Вторые частные производные функции z(x,y) находятся по формулам:
Смешанные частные производные функции z(x,y) находятся по формулам:
Назначение сервиса. Сервис используется для нахождения частных производных функции (см.
Вместе с этим калькулятором также используют следующие:
- Точки разрыва функции
- Производная функции:
- Найти градиент функции gradu(M0) и du/dl(M0)
- Экстремум функции двух переменных
- Вычисление интегралов
Δxz=f(x+Δx,y)-f(x,y)
– это частное приращение функции z по аргументу x; Δyz=f(x,y+Δy)-f(x,y)
– это частное приращение функции z по аргументу у.
Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:
– это частная производная функции z по аргументу x;
– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.
Пример 1. z=2x5+3x2y+y2–4x+5y-1
Пример 2. Найти частные производные функции z = f(x;y) в точке A(x0;y0).
Находим частные производные:
Найдем частные производные в точке А(1;1)
Находим вторые частные производные:
Найдем смешанные частные производные:
Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).
1 | Trovare la Derivata — d/dx | натуральный логарифм x | |
2 | Вычислим интеграл | интеграл натурального логарифма x по x | |
3 | Trovare la Derivata — d/dx | e^x | |
4 | Вычислим интеграл | интеграл e^(2x) по x | |
5 | Trovare la Derivata — d/dx | 1/x | |
6 | Trovare la Derivata — d/dx | x^2 | |
7 | Trovare la Derivata — d/dx | 1/(x^2) | |
8 | Trovare la Derivata — d/dx | sin(x)^2 | |
9 | Trovare la Derivata — d/dx | sec(x) | |
10 | Вычислим интеграл | интеграл e^x по x | |
11 | Вычислим интеграл | интеграл x^2 по x | |
12 | Вычислим интеграл | интеграл квадратного корня из x по x | |
13 | Trovare la Derivata — d/dx | cos(x)^2 | |
14 | Вычислим интеграл | интеграл 1/x по x | |
15 | Вычислим интеграл | интеграл sin(x)^2 по x | |
16 | Trovare la Derivata — d/dx | x^3 | |
17 | Trovare la Derivata — d/dx | sec(x)^2 | |
18 | Вычислим интеграл | интеграл cos(x)^2 по x | |
19 | Вычислим интеграл | интеграл sec(x)^2 по x | |
20 | Trovare la Derivata — d/dx | e^(x^2) | |
21 | Вычислим интеграл | интеграл в пределах от 0 до 1 кубический корень из 1+7x по x | |
22 | Trovare la Derivata — d/dx | sin(2x) | |
23 | Trovare la Derivata — d/dx | tan(x)^2 | |
24 | Вычислим интеграл | интеграл 1/(x^2) по x | |
25 | Trovare la Derivata — d/dx | 2^x | |
26 | График | натуральный логарифм a | |
27 | Trovare la Derivata — d/dx | cos(2x) | |
28 | Trovare la Derivata — d/dx | xe^x | |
29 | Вычислим интеграл | интеграл 2x по x | |
30 | Trovare la Derivata — d/dx | ( натуральный логарифм от x)^2 | |
31 | Trovare la Derivata — d/dx | натуральный логарифм (x)^2 | |
32 | Trovare la Derivata — d/dx | 3x^2 | |
33 | Вычислим интеграл | интеграл xe^(2x) по x | |
34 | Trovare la Derivata — d/dx | 2e^x | |
35 | Trovare la Derivata — d/dx | натуральный логарифм 2x | |
36 | Trovare la Derivata — d/dx | -sin(x) | |
37 | Trovare la Derivata — d/dx | 4x^2-x+5 | |
38 | Trovare la Derivata — d/dx | y=16 корень четвертой степени из 4x^4+4 | |
39 | Trovare la Derivata — d/dx | 2x^2 | |
40 | Вычислим интеграл | интеграл e^(3x) по x | |
41 | Вычислим интеграл | интеграл cos(2x) по x | |
42 | Trovare la Derivata — d/dx | 1/( квадратный корень из x) | |
43 | Вычислим интеграл | интеграл e^(x^2) по x | |
44 | Вычислить | e^infinity | |
45 | Trovare la Derivata — d/dx | x/2 | |
46 | Trovare la Derivata — d/dx | -cos(x) | |
47 | Trovare la Derivata — d/dx | sin(3x) | |
48 | Trovare la Derivata — d/dx | 1/(x^3) | |
49 | Вычислим интеграл | интеграл tan(x)^2 по x | |
50 | Вычислим интеграл | интеграл 1 по x | |
51 | Trovare la Derivata — d/dx | x^x | |
52 | Trovare la Derivata — d/dx | x натуральный логарифм от x | |
53 | Trovare la Derivata — d/dx | x^4 | |
54 | Оценить предел | предел (3x-5)/(x-3), если x стремится к 3 | |
55 | Вычислим интеграл | интеграл x^2 натуральный логарифм x по x | |
56 | Trovare la Derivata — d/dx | f(x) = square root of x | |
57 | Trovare la Derivata — d/dx | x^2sin(x) | |
58 | Вычислим интеграл | интеграл sin(2x) по x | |
59 | Trovare la Derivata — d/dx | 3e^x | |
60 | Вычислим интеграл | интеграл xe^x по x | |
61 | Trovare la Derivata — d/dx | y=x^2 | |
62 | Trovare la Derivata — d/dx | квадратный корень из x^2+1 | |
63 | Trovare la Derivata — d/dx | sin(x^2) | |
64 | Вычислим интеграл | интеграл e^(-2x) по x | |
65 | Вычислим интеграл | интеграл натурального логарифма квадратного корня из x по x | |
66 | Trovare la Derivata — d/dx | e^2 | |
67 | Trovare la Derivata — d/dx | x^2+1 | |
68 | Вычислим интеграл | интеграл sin(x) по x | |
69 | Trovare la Derivata — d/dx | arcsin(x) | |
70 | Оценить предел | предел (sin(x))/x, если x стремится к 0 | |
71 | Вычислим интеграл | интеграл e^(-x) по x | |
72 | Trovare la Derivata — d/dx | x^5 | |
73 | Trovare la Derivata — d/dx | 2/x | |
74 | Trovare la Derivata — d/dx | натуральный логарифм 3x | |
75 | Trovare la Derivata — d/dx | x^(1/2) | |
76 | Trovare la Derivata — d/d@VAR | f(x) = square root of x | |
77 | Trovare la Derivata — d/dx | cos(x^2) | |
78 | Trovare la Derivata — d/dx | 1/(x^5) | |
79 | Trovare la Derivata — d/dx | кубический корень из x^2 | |
80 | Вычислим интеграл | интеграл cos(x) по x | |
81 | Вычислим интеграл | интеграл e^(-x^2) по x | |
82 | Trovare la Derivata — d/d@VAR | f(x)=x^3 | |
83 | Вычислим интеграл | интеграл 4x^2+7 в пределах от 0 до 10 по x | |
84 | Вычислим интеграл | интеграл ( натуральный логарифм x)^2 по x | |
85 | Trovare la Derivata — d/dx | логарифм x | |
86 | Trovare la Derivata — d/dx | arctan(x) | |
87 | Trovare la Derivata — d/dx | натуральный логарифм 5x | |
88 | Trovare la Derivata — d/dx | 5e^x | |
89 | Trovare la Derivata — d/dx | cos(3x) | |
90 | Вычислим интеграл | интеграл x^3 по x | |
91 | Вычислим интеграл | интеграл x^2e^x по x | |
92 | Trovare la Derivata — d/dx | 16 корень четвертой степени из 4x^4+4 | |
93 | Trovare la Derivata — d/dx | x/(e^x) | |
94 | Оценить предел | предел arctan(e^x), если x стремится к 3 | |
95 | Вычислим интеграл | интеграл (e^x-e^(-x))/(e^x+e^(-x)) по x | |
96 | Trovare la Derivata — d/dx | 3^x | |
97 | Вычислим интеграл | интеграл xe^(x^2) по x | |
98 | Trovare la Derivata — d/dx | 2sin(x) | |
99 | Вычислить | sec(0)^2 | |
100 | Trovare la Derivata — d/dx | натуральный логарифм x^2 |
• С шагами!
Поддержка
Пожертвование
Помог ли вам этот калькулятор? Тогда я был бы очень признателен за вашу поддержку. Вы можете сделать пожертвование через PayPal.
Выше введите функцию для получения. Переменная дифференциации и более может быть изменена в « Опции «. Нажмите « Go! », чтобы начать вычисление производной. Результат будет показан далее.
Как работает калькулятор производных
Для тех, кто имеет техническое образование, в следующем разделе объясняется, как работает калькулятор производных.
Сначала синтаксический анализатор анализирует математическую функцию. Он преобразует его в форму, более понятную компьютеру, а именно в дерево (см. рисунок ниже). При этом производный калькулятор должен соблюдать порядок операций. Особенностью математических выражений является то, что знак умножения иногда можно опустить, например, мы пишем «5x» вместо «5*x». Калькулятор производных должен обнаруживать эти случаи и вставлять знак умножения.
Парсер реализован на JavaScript, основан на алгоритме Shunting-yard и может работать прямо в браузере. Это позволяет быстро получать обратную связь при наборе текста путем преобразования дерева в код LaTeX. MathJax позаботится об отображении его в браузере.
Когда «Вперед!» После нажатия кнопки Калькулятор производных отправляет математическую функцию и настройки (дифференцирующую переменную и порядок) на сервер, где они снова анализируются. На этот раз функция преобразуется в форму, понятную системе компьютерной алгебры Maxima.
Maxima фактически вычисляет производную математической функции. Как и любая система компьютерной алгебры, она применяет ряд правил для упрощения функции и вычисления производных в соответствии с общеизвестными правилами дифференцирования. Вывод Maxima снова преобразуется в LaTeX и затем предоставляется пользователю.
Отображение шагов вычисления немного сложнее, потому что Калькулятор производных не может полностью зависеть от Maxima для этой задачи. Вместо этого производные должны рассчитываться вручную шаг за шагом. Правила дифференциации (правило произведения, частное правило, цепное правило и т. д.) были реализованы в коде JavaScript. Существует также таблица производных функций для тригонометрических функций и квадратного корня, логарифма и экспоненциальной функции. На каждом шаге расчета выполняется или переписывается одна операция дифференцирования. Например, из операций дифференцирования вытягиваются постоянные множители, а суммы дробятся (правило сумм). Это, а также общие упрощения, делает Maxima. Для каждой вычисляемой производной LaTeX-представления результирующих математических выражений помечаются тегами в HTML-коде, чтобы можно было выделить их.
Функция «Проверить ответ» должна решить сложную задачу определения эквивалентности двух математических выражений. Их разница рассчитывается и максимально упрощается с помощью Maxima. Например, это включает в себя запись тригонометрических/гиперболических функций в их экспоненциальной форме. Если можно показать, что разность упрощается до нуля, то задача решена. В противном случае применяется вероятностный алгоритм, который оценивает и сравнивает обе функции в случайно выбранных местах.
Графики интерактивных функций рассчитываются в браузере и отображаются в элементе холста (HTML5). Для каждой отображаемой функции калькулятор создает функцию JavaScript, которая затем вычисляется небольшими шагами, чтобы построить график. При построении графика особенности (например, полюса) обнаруживаются и обрабатываются особым образом. Управление жестами реализовано с помощью Hammer.js.
Если у вас есть какие-либо вопросы или идеи по улучшению калькулятора производных, не стесняйтесь писать мне по электронной почте.
3.2: Производная как функция
- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 2491
- Гилберт Стрэнг и Эдвин «Джед» Герман
- OpenStax
Цели обучения
- Определить производную функцию заданной функции.
- Постройте производную функцию по графику заданной функции.
- Укажите связь между производными и непрерывностью.
- Опишите три условия, при которых функция не имеет производной.
- Объясните значение производной высшего порядка.
Как мы видели, производная функции в данной точке дает нам скорость изменения или наклон касательной к функции в этой точке. Если мы продифференцируем функцию положения в данный момент времени, мы получим скорость в этот момент. Кажется разумным заключить, что знание производной функции в каждой точке даст ценную информацию о поведении функции. Однако процесс нахождения производной даже при нескольких значениях с использованием методов из предыдущего раздела быстро стал бы довольно утомительным. В этом разделе мы определяем производную функцию и изучаем процесс ее нахождения.
Производные функции
Производная функция дает производную функции в каждой точке области определения исходной функции, для которой определена производная. Мы можем формально определить производную функцию следующим образом.
Определение: производная функция
Пусть \(f\) — функция. Производная функция , обозначаемая \(f’\), является функцией, область определения которой состоит из таких значений \(x\), что существует следующий предел:
\[f'(x)=\lim_{h→0}\frac{f(x+h)−f(x)}{h}. \label{derdef} \]
Функция \(f(x)\) называется дифференцируемой в \(a\), если \(f'(a)\) существует. В более общем смысле функция называется дифференцируемой на \(S\), если она дифференцируема в каждой точке открытого множества \(S\), а дифференцируемой функцией является функция, в которой \(f'( x)\) существует в своей области определения.
В следующих нескольких примерах мы используем уравнение \ref{derdef} для нахождения производной функции.
Пример \(\PageIndex{1}\): нахождение производной функции квадратного корня
Найдите производную \(f(x)=\sqrt{x}\).
Решение
Начните непосредственно с определения производной функции.
Подставьте \(f(x+h)=\sqrt{x+h}\) и \(f(x)=\sqrt{x}\) в \(f'(x)= \displaystyle \lim_{ h→0}\frac{f(x+h)−f(x)}{h}\).
\(f'(x)=\displaystyle \lim_{h→0}\frac{\sqrt{x+h}−\sqrt{x}}{h}\) | |
\(=\displaystyle\lim_{h→0}\frac{\sqrt{x+h}−\sqrt{x}}{h}⋅\frac{\sqrt{x+h}+\sqrt{ х}}{\sqrt{х+ч}+\sqrt{х}}\) | Умножить числитель и знаменатель на \(\sqrt{x+h}+\sqrt{x}\) без распределения в знаменателе. |
\(=\displaystyle\lim_{h→0}\frac{h}{h\left(\sqrt{x+h}+\sqrt{x}\right)}\) | Умножьте числители и упростите. |
\(=\displaystyle\lim_{h→0}\frac{1}{\left(\sqrt{x+h}+\sqrt{x}\right)}\) 92}{ч}\) | Упростить |
\(=\displaystyle\lim_{h→0}\frac{h(2x−2+h)}{h}\) | Вынести \(h\) из числителя |
\(=\displaystyle\lim_{h→0}(2x−2+h)\) | Отменить общий множитель \(h\) |
\(=2x−2\) | Оценить предел |
Упражнение \(\PageIndex{1}\)
Найдите производную \(f(x)=x^2\). 92−2x\справа)=2x−2\). Таким образом, для функции \(y=f(x)\) каждое из следующих обозначений представляет собой производную от \(f(x)\):
\(f'(x), \quad \dfrac{dy }{dx}, \quad y′,\quad \dfrac{d}{dx}\big(f(x)\big)\).
Вместо \(f'(a)\) мы также можем использовать \(\dfrac{dy}{dx}\Big|_{x=a}\). Использование нотации \(\dfrac{dy}{dx}\) (называемой нотацией Лейбница) довольно распространено в технике и физике. Чтобы лучше понять эти обозначения, вспомним, что производная функции в точке — это предел наклона секущих по мере приближения секущих к касательной. Наклоны этих секущих часто выражаются в виде \(\dfrac{Δy}{Δx}\), где \(Δy\) — разность значений \(y\), соответствующая разнице в \(x \) значения, которые выражаются как \(Δx\) (рисунок \(\PageIndex{1}\)). Таким образом, производная, которую можно рассматривать как мгновенную скорость изменения \(у\) по отношению к \(х\), выражается как
\(\displaystyle \frac{dy}{dx}= \lim_{Δx→0}\frac{Δy}{Δx}\).
Рисунок \(\PageIndex{1}\): производная выражается как \(\dfrac{dy}{dx}=\displaystyle\lim_{Δx→0}\frac{Δy}{Δx}\).
Построение графика производной
Мы уже обсуждали, как построить график функции, поэтому, имея уравнение функции или уравнение функции производной, мы можем построить ее график. Учитывая оба, мы ожидаем увидеть соответствие между графиками этих двух функций, поскольку \(f'(x)\) дает скорость изменения функции \(f(x)\) (или наклон касательной строка к \(f(x)\)).
В примере \(\PageIndex{1}\) мы обнаружили, что для \(f(x)=\sqrt{x}\), \(f'(x)=\frac{1}{2\sqrt {Икс}}\). Если мы изобразим эти функции на тех же осях, как на рисунке \(\PageIndex{2}\), мы сможем использовать графики, чтобы понять связь между этими двумя функциями. Во-первых, мы замечаем, что \(f(x)\) возрастает по всей своей области, а это означает, что наклоны ее касательных во всех точках положительны. Следовательно, мы ожидаем \(f'(x)>0\) для всех значений x в его области определения. Кроме того, по мере увеличения \(x\) наклоны касательных линий к \(f(x)\) уменьшаются, и мы ожидаем увидеть соответствующее уменьшение \(f'(x)\). +}f'(x)=+∞\), что соответствует вертикальной касательной к \(f( х)\) в \(0\). 92−2x,\; f'(x)=2x−2\). Графики этих функций показаны на рисунке \(\PageIndex{3}\). Заметьте, что \(f(x)\) убывает при \(x<1\). Для этих же значений \(x\), \(f'(x)<0\). Для значений \(x>1\), \(f(x)\) возрастает и \(f'(x)>0\). Кроме того, \(f(x)\) имеет горизонтальную касательную в точках \(x=1\) и \(f'(1)=0\).
Пример \(\PageIndex{3}\): набросок производной с помощью функции
Используйте следующий график \(f(x)\) для построения графика \(f'(x)\).
Решение
Решение показано на следующем графике. Заметим, что \(f(x)\) возрастает и \(f'(x)>0\) на \((–2,3)\). Кроме того, \(f(x)\) убывает и \(f'(x)<0\) на \((−∞,−2)\) и на \((3,+∞)\). Также обратите внимание, что \(f(x)\) имеет горизонтальные касательные в точках \(-2\) и \(3\), а \(f'(-2)=0\) и \(f'(3)= 0\). 92−4\). На каком интервале находится график \(f'(x)\) над осью \(x\)?
- Подсказка
График \(f'(x)\) положителен, где \(f(x)\) возрастает.
- Ответить
\((0,+∞)\)
Производные и непрерывность
Теперь, когда мы можем изобразить производную, давайте рассмотрим поведение графиков. Сначала рассмотрим связь между дифференцируемостью и непрерывностью. Мы увидим, что если функция дифференцируема в точке, она должна быть там непрерывной; однако функция, непрерывная в точке, не обязательно должна быть дифференцируемой в этой точке. На самом деле функция может быть непрерывной в точке и не быть дифференцируемой в этой точке по одной из нескольких причин.
Дифференцируемость подразумевает непрерывность
Пусть \(f(x)\) — функция и \(a\) находится в ее области определения. Если \(f(x)\) дифференцируема в \(а\), то \(f\) непрерывна в \(а\).
Доказательство
Если \(f(x)\) дифференцируема в \(a\), то \(f'(a)\) существует и, если положить \(h = x — a\), мы имеют \( x = a + h \), и поскольку \(h=x-a\to 0\), мы можем видеть, что \(x\to a\).
Тогда
\[ f'(a) = \lim_{h\to 0}\frac{f(a+h)-f(a)}{h}\nonumber \]
можно переписать как
\(f'(a)=\displaystyle \lim_{x→a}\frac{f(x)−f(a)}{x−a}\).
Мы хотим показать, что \(f(x)\) непрерывно в \(a\), показав, что \(\displaystyle \lim_{x→a}f(x)=f(a).\) Таким образом ,
\(\begin{align*} \displaystyle \lim_{x→a}f(x) &=\lim_{x→a}\;\big(f(x)−f(a)+f( a)\big)\\[4pt]
&=\lim_{x→a}\left(\frac{f(x)−f(a)}{x−a}⋅(x−a)+f( a)\right) & & \text{Умножить и разделить}(f(x)−f(a))\text{ на }x−a.\\[4pt]
&=\left(\lim_{x→ a}\frac{f(x)−f(a)}{x−a}\right)⋅\left( \lim_{x→a}\;(x−a)\right)+\lim_{x→ а}ж(а)\\[4pt]
&=f'(a)⋅0+f(a)\\[4pt]
&=f(a). \end{align*}\)
Следовательно, поскольку \(f(a)\) определено и \(\displaystyle \lim_{x→a}f(x)=f(a)\), мы заключаем, что \(f\) непрерывна в \(a\).
□
Мы только что доказали, что дифференцируемость влечет непрерывность, но теперь мы рассмотрим, влечет ли непрерывность дифференцируемость. Чтобы определить ответ на этот вопрос, мы исследуем функцию \(f(x)=|x|\). Эта функция всюду непрерывна; однако \(f'(0)\) не определено. Это наблюдение приводит нас к мысли, что непрерывность не влечет дифференцируемости. Давайте исследовать дальше. Для \(f(x)=|x|\), 92}}=+∞\).
Таким образом, \(f'(0)\) не существует. Беглый взгляд на график \(f(x)=\sqrt[3]{x}\) проясняет ситуацию. Функция имеет вертикальную касательную в точке \(0\) (рисунок \(\PageIndex{5}\)).
Рисунок \(\PageIndex{5}\): функция \(f(x)=\sqrt[3]{x}\) имеет вертикальную касательную в точке \(x=0\). Он непрерывен в точке \(0\), но не дифференцируем в точке \(0\). Функция \(f(x)=\begin{cases} x\sin\left(\frac{1}{x}\right), & & \text{ if } x≠0\\0, & & \ text{ if } x=0\end{cases}\) также имеет производную, которая демонстрирует интересное поведение при \(0\).
Мы видим, что
\(f'(0)=\displaystyle \lim_{x→0}\frac{x\sin\left(1/x\right)−0}{x−0}= \lim_ {x→0}\sin\left(\frac{1}{x}\right)\).
Этого предела не существует, в основном потому, что наклон секущих постоянно меняет направление по мере приближения к нулю (рис. \(\PageIndex{6}\)).
Рисунок \(\PageIndex{6}\): функция \(f(x)=\begin{cases} x\sin\left(\frac{1}{x}\right), & & \text{ если } x≠0\\0, & & \text{ если } x=0\end{cases}\) не дифференцируемо в \(0\).Итого:
- Заметим, что если функция не непрерывна, то она не может быть дифференцируемой, поскольку каждая дифференцируемая функция должна быть непрерывной. Однако, если функция непрерывна, она может не быть дифференцируемой.
- Мы видели, что \(f(x)=|x|\) не может быть дифференцируемым в \(0\), потому что предел наклона касательных линий слева и справа не одинаков. Визуально это привело к острому углу на графике функции в точке \(0.\). Отсюда заключаем, что для того, чтобы быть дифференцируемой в точке, функция должна быть в этой точке «гладкой».
- Как мы видели на примере \(f(x)=\sqrt[3]{x}\), функция не может быть дифференцируемой в точке, где есть вертикальная касательная.
- Как мы видели с \(f(x)=\begin{cases}x\sin\left(\frac{1}{x}\right), & & \text{ if } x≠0\\0, & &\text{ if } x=0\end{cases}\) функция может не быть дифференцируемой в точке и более сложными способами.
Пример \(\PageIndex{4}\): кусочная функция, которая является непрерывной и дифференцируемой 92+bx+c, & & \text{, если }x
<−10\\−\frac{1}{4}x+\frac{5}{2}, & & \text{, если } x≥−10\ end{cases}\), где \(x\) и \(f(x)\) указаны в дюймах. Для плавного движения автомобиля по трассе функция \(f(x)\) должна быть одновременно непрерывной и дифференцируемой в точке \(−10\). Найдите значения \(b\) и \(c\), которые делают \(f(x)\) одновременно непрерывным и дифференцируемым. Рисунок \(\PageIndex{7}\): Чтобы автомобиль двигался плавно по трассе, функция должна быть одновременно непрерывной и дифференцируемой.92−10b+c=10−10b+c\)
и \(f(−10)=5\), мы должны иметь \(10−10b+c=5\). 2+bx+c−5}{x+10}\\[4pt] 92, & & \text{ если } x≥3\end{cases}\) как непрерывны, так и дифференцируемы в \(3\).
- Подсказка
Используйте пример \(\PageIndex{4}\) в качестве руководства.
- Ответить
\(a=6\) и \(b=−9\)
Производные высшего порядка
Производная функции сама по себе является функцией, поэтому мы можем найти производную производной. Например, производная функции положения — это скорость изменения положения или скорость. Производная скорости — это скорость изменения скорости, то есть ускорение. Новая функция, полученная дифференцированием производной, называется второй производной. Кроме того, мы можем продолжать брать производные, чтобы получить третью производную, четвертую производную и так далее. В совокупности они обозначаются как 92−3ч}{ч}\)

Затем найдите \(f»(x)\), взяв производную от \(f'(x)=4x−3.\)
\(f»(x)= \displaystyle \lim_{h→0}\frac{f'(x+h)−f'(x)}{h}\) | Используйте \(f'(x)=\displaystyle \lim_{h→0}\frac{f(x+h)−f(x)}{h}\) с \(f ‘(x)\) в место \(f(x).\) |
\(=\displaystyle \lim_{h→0}\frac{(4(x+h)−3)−(4x−3)}{h}\) | Замените \(f'(x+h)=4(x+h)−3\) и \(f'(x)=4x−3.\) |
\(=\displaystyle \lim_{h→0}4\) | Упрощение. |
\(=4\) | Возьмите предел. |