Обратная функция y x 4: Mathway | Популярные задачи

Содержание

Mathway | Популярные задачи

Mathway | Популярные задачи

Популярные задачи

Элементарная математика Основы алгебры Алгебра Тригонометрия Основы мат. анализа Математический анализ Конечная математика Линейная алгебра Химия

Для функционирования Mathway необходим javascript и современный браузер.

Этот веб-сайт использует cookie файлы, чтобы сделать использование нашего ресурса максимально удобным для вас.

Убедитесь, что ваш пароль содержит не менее 8 символов и как минимум один из следующих символов:

  • число
  • буква
  • специальный символ: @$#!%*?&

Обратная функция — подготовка к ЕГЭ по Математике

Функция — это действие над переменной. Но что будет, если сделать действие — и обратное действие? Открыть дверь и закрыть дверь. Включить свет и выключить свет. Будет то же, что и было раньше, верно? Так и с функциями.

Функции f(x) и g(x) называются взаимно-обратными, если f(g(x)) = x.

Например, при

Сделали действие (возвели в квадрат). Сделали обратное действие (извлекли квадратный корень). И получили то, что и было раньше, то есть переменную .

А вот . Подумайте, почему это так.

Другой пример взаимно-обратных функций: показательная и логарифмическая. Помните основное логарифмическое тождество: для . Для положительных х функции и являются взаимно-обратными.

Еще один пример взаимно-обратных функций:

и при

Вспомним определение функции. Числовая функция y = f(x) — это такое соответствие между двумя числовыми множествами A и B, при котором каждому числу x ∈ A отвечает одно-единственное число y ∈ B. Множество A называется при этом областью определения функции, множество B — областью значений.

Пусть соответствие f является взаимно-однозначным:

x\in \left [-\frac{ \pi }{2};\frac{ \pi }{2}\right] .
Тогда существует функция g, которая действует в обратную сторону: каждому числу y ∈ B она ставит в соответствие одно-единственное число x ∈ A, такое, что f(x) = y:

x\in \left [-\frac{ \pi }{2};\frac{ \pi }{2}\right] .


Функция g называется обратной к функции f. Точно так же и функция f будет обратной к функции g.

Если мы возьмём какое-либо число x ∈ A и подействуем на него функцией f, то получим число y = f(x) ∈ B. Теперь на полученное число y подействуем функцией g. Куда попадём? Правильно, вернёмся к исходному числу x. Это можно записать так:

x\in \left [-\frac{ \pi }{2};\frac{ \pi }{2}\right] .(1)

 
Последовательное применение двух взаимно-обратных действий возвращает нас в исходную точку. Как и в жизни: сначала открыли дверь, а потом совершили обратное действие — закрыли дверь; в итоге вернулись к начальной ситуации.

Так, если возвести число 3 в степень x, а затем совершить обратное действие — взять от полученного числа 3x логарифм по основанию 3 — мы вернёмся к исходному числу x:

x\in \left [-\frac{ \pi }{2};\frac{ \pi }{2}\right] .

Графики взаимно-обратных функций симметричны относительно прямой у = x.

То, что для функции является областью определения, для обратной функции будет областью значений.

x\in \left [-\frac{ \pi }{2};\frac{ \pi }{2}\right] .

Как вывести формулу обратной функции?

Если вы учитесь в математическом классе или на первом курсе вуза, вам может встретиться такое задание.

Например, у вас есть линейная функция Какая же функция будет к ней обратной?

Действуем следующим образом:

1) Выражаем из формулы функции x через у.

Получаем:

2) В формуле меняем x и у местами. Получаем формулу обратной функции:

Другой пример. Найдем обратную функцию для функции .

1) Выражаем из формулы функции x через у. Получаем:

2) В формуле меняем x и у местами. Получаем формулу обратной функции:

 

Mathway | Популярные задачи

Mathway | Популярные задачи

Популярные задачи

Элементарная математика Основы алгебры Алгебра Тригонометрия Основы мат. анализа Математический анализ Конечная математика Линейная алгебра Химия

Для функционирования Mathway необходим javascript и современный браузер.

Этот веб-сайт использует cookie файлы, чтобы сделать использование нашего ресурса максимально удобным для вас.

Убедитесь, что ваш пароль содержит не менее 8 символов и как минимум один из следующих символов:

  • число
  • буква
  • специальный символ: @$#!%*?&

Обратная функция | Алгебра

Что такое обратная функция? Как найти функцию, обратную данной?

Определение.

Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

Чтобы найти функцию, обратную данной функции y=f(x), надо:

1) В формулу функции вместо y подставить x, вместо x — y:

x=f(y).

2) Из полученного равенства выразить y через x:

y=g(x).

Пример.

Найти функцию, обратную функции y=2x-6.

1) x=2y-6

2) -2y=-x-6

y=0,5x+3.

Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

Графики прямой и обратной функций симметричны относительно прямой y=x

(биссектрисы I и III координатных четвертей).

y=2x-6 и y=0,5x+3 — линейные функции. Графиком линейной функции является прямая.  Для построения прямой берём две точки.

   

   

Однозначно выразить y через x можно в том случае, когда уравнение  x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой).

Теорема (необходимое и достаточное  условие обратимости функции)

Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.

Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.

Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.

Классический пример — функция y=x². На промежутке [0;∞) функция возрастает. Условие обратимости выполнено, следовательно, можем искать обратную функцию.

Так как область определения функции y=x² — промежуток [0;∞), область значений на этом промежутке — также [0;∞), то область определения и область значений обратной функции — также [0;∞).

1) x=y².

2)

   

Так как y≥0, то

   

то есть на промежутке [0;∞) y=√x — функция, обратная к функции y=x². Их графики симметричны относительно биссектрисы I и III координатных четвертей:

В алгебре наиболее известными примерами взаимно обратных функций являются показательная и логарифмическая функция, а также тригонометрические и обратные тригонометрические функции.

Mathway | Популярные задачи

1 Найти число возможных исходов 7 выберем 3
2 Найти число возможных исходов 8 выберем 3
3 Найти число возможных исходов 5 выберем 2
4 Найти число возможных исходов 10 выберем 2
5 Найти число возможных исходов 4 выберем 2
6 Найти число возможных исходов 8 выберем 4
7 Найти число возможных исходов 6 выберем 2
8 Найти число возможных исходов 5 выберем 2
9 Найти число возможных исходов 10 выберем 3
10 Найти число возможных исходов 7 выберем 4
11 Найти число возможных исходов 6 выберем 3
12 Найти число возможных исходов 9 выберем 3
13 Найти число возможных исходов 9 выберем 3
14 Найти число возможных исходов 3 выберем 2
15 Найти число возможных исходов 6 выберем 4
16 Найти число возможных исходов 5 выберем 4
17 Найти число возможных исходов 7 меняем порядок 3
18 Найти число возможных исходов 7 выберем 2
19 Найти число возможных исходов 6 выберем 2
20 Найти число возможных исходов 10 выберем 5
21 Найти число возможных исходов 10 выберем 6
22 Найти число возможных исходов 13 выберем 5
23 Найти число возможных исходов 3 выберем 3
24 Найти число возможных исходов 4 выберем 1
25 Найти число возможных исходов 4 выберем 4
26 Найти число возможных исходов 5 выберем 1
27 Найти число возможных исходов 6 меняем порядок 3
28 Найти число возможных исходов 8 выберем 5
29 Найти число возможных исходов 9 меняем порядок 4
30 Найти число возможных исходов 13 выберем 3
31 Найти число возможных исходов 12 выберем 2
32 Найти число возможных исходов 12 выберем 4
33 Найти число возможных исходов 12 выберем 3
34 Найти число возможных исходов 9 выберем 5
35 Найти число возможных исходов 9 выберем 2
36 Найти число возможных исходов 7 выберем 5
37 Вычислить 6!
38 Вычислить pi
39 Найти число возможных исходов 6 меняем порядок 6
40 Найти число возможных исходов 8 меняем порядок 5
41 Найти число возможных исходов 8 меняем порядок 3
42 Найти число возможных исходов 7 меняем порядок 5
43 Найти число возможных исходов 52 выберем 5
44 Найти число возможных исходов 5 меняем порядок 3
45 Найти число возможных исходов 12 выберем 5
46 Найти число возможных исходов 3 выберем 1
47 Найти число возможных исходов 11 выберем 5
48 Найти число возможных исходов 10 выберем 2
49 Найти число возможных исходов 15 выберем 3
50 Найти число возможных исходов 52 выберем 4
51 Найти число возможных исходов 9 выберем 4
52 Найти число возможных исходов 9 меняем порядок 3
53 Найти число возможных исходов 7 меняем порядок 4
54 Найти число возможных исходов 7 меняем порядок 2
55 Найти число возможных исходов 11 выберем 4
56 Найти число возможных исходов 11 выберем 2
57 Найти число возможных исходов 11 выберем 3
58 Вычислить 7!
59 Вычислить 3!
60 Вычислить 2+2
61 Вычислить 5!
62 Найти число возможных исходов 10 меняем порядок 5
63 Найти число возможных исходов 5 выберем 5
64 Найти число возможных исходов 6 выберем 1
65 Найти число возможных исходов 8 меняем порядок 4
66 Найти число возможных исходов 8 выберем 6
67 Найти число возможных исходов 13 выберем 4
68 Вычислить e
69 Найти уравнение, перпендикулярное прямой -7x-5y=7
70 Вычислить 9!
71 Вычислить 4!
72 Найти число возможных исходов 13 выберем 2
73 Найти число возможных исходов 10 меняем порядок 2
74 Найти число возможных исходов 10 меняем порядок 3
75 Найти число возможных исходов 10 выберем 7
76 Найти число возможных исходов 20 выберем 4
77 Найти число возможных исходов 6 меняем порядок 4
78 Найти число возможных исходов 5 меняем порядок 4
79 Найти число возможных исходов 6 выберем 5
80 Найти число возможных исходов 52 выберем 3
81 Найти число возможных исходов 4 выберем 0
82 Найти число возможных исходов 9 меняем порядок 7
83 Найти число возможных исходов 6 выберем 2
84 Найти число возможных исходов 5 меняем порядок 5
85 Найти число возможных исходов 5 меняем порядок 2
86 Найти число возможных исходов 6 выберем 6
87 Найти число возможных исходов 7 выберем 6
88 Найти число возможных исходов 8 меняем порядок 6
89 Найти число возможных исходов 7 меняем порядок 7
90 Найти число возможных исходов 9 меняем порядок 5
91 Найти число возможных исходов 2 меняем порядок 2
92 Найти число возможных исходов 10 выберем 8
93 Найти число возможных исходов 12 выберем 7
94 Найти число возможных исходов 15 выберем 5
95 Найти обратный элемент [[1,0,1],[2,-2,-1],[3,0,0]]
96 Вычислить 3^4
97 Вычислить 4/52
98 Определить область значений 1/4x-7
99 Risolvere per x x+2y=8
100 Вычислить 8!

Mathway | Популярные задачи

Mathway | Популярные задачи

Популярные задачи

Элементарная математика Основы алгебры Алгебра Тригонометрия Основы мат. анализа Математический анализ Конечная математика Линейная алгебра Химия

Для функционирования Mathway необходим javascript и современный браузер.

Этот веб-сайт использует cookie файлы, чтобы сделать использование нашего ресурса максимально удобным для вас.

Убедитесь, что ваш пароль содержит не менее 8 символов и как минимум один из следующих символов:

  • число
  • буква
  • специальный символ: @$#!%*?&

Обратные функции (определение и свойства)

Определение и свойства

Определение обратной функции
Пусть функция имеет область определения X и множество значений Y. И пусть она обладает свойством:
для всех .
Тогда для любого элемента из множества Y можно поставить в соответствие только один элемент множества X, для которого . Такое соответствие определяет функцию, которая называется обратной функцией к . Обратная функция обозначается так:
.

Из определения следует, что
;
  для всех  ;
  для всех  .

Лемма о взаимной монотонности прямой и обратной функций
Если функция строго возрастает (убывает), то существует обратная функция , которая также строго возрастает (убывает).
Доказательство ⇓

Свойство о симметрии графиков прямой и обратной функций
Графики прямой и обратной функций симметричны относительно прямой .
Доказательство ⇓

Теорема о существовании и непрерывности обратной функции на отрезке
Пусть функция непрерывна и строго возрастает (убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (убывает).
Доказательство ⇓

Для возрастающей функции . Для убывающей – .

Теорема о существовании и непрерывности обратной функции на интервале
Пусть функция непрерывна и строго возрастает (убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (убывает).
Доказательство ⇓

Для возрастающей функции .
Для убывающей: .

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Если функция непрерывна и строго возрастает (убывает) на полуинтервале или , то на полуинтервале или определена обратная функция , которая строго возрастает (убывает). Здесь .

Если строго возрастает, то интервалам и соответствуют интервалы и . Если строго убывает, то интервалам и соответствуют интервалы и .
Эта теорема доказывается тем же способом, что и теорема о существовании и непрерывности обратной функции на интервале.

Примеры обратных функций

Арксинус

Графики sin(x) и arcsin(x)

Графики y = sin x и обратной функции y = arcsin x.

Рассмотрим тригонометрическую функцию синус: . Она определена и непрерывна для всех значений аргумента , но не является монотонной. Однако, если сузить область определения, то можно выделить монотонные участки. Так, на отрезке , функция определена, непрерывна, строго возрастает и принимает значения от –1 до +1. Поэтому имеет на нем обратную функцию, которую называют арксинусом. Арксинус имеет область определения и множество значений .

Логарифм

Графики 2 в степени x и логарифм по основанию 2

Графики y = 2x и обратной функции y = log2 x.

Показательная функция определена, непрерывна и строго возрастает при всех значений аргумента . Множеством ее значений является открытый интервал . Обратной функцией является логарифм по основанию два. Он имеет область определения и множество значений .

Квадратный корень

Графики x в квадрате и корень из x

Графики y = x2 и обратной функции .

Степенная функция определена и непрерывна для всех . Множеством ее значений является полуинтервал . Но она не является монотонной при всех значений аргумента. Однако, на полуинтервале она непрерывна и строго монотонно возрастает. Поэтому если, в качестве области определения, взять множество , то существует обратная функция, которая называется квадратным корнем. Обратная функция имеет область определения и множество значений .

Пример. Доказательство существования и единственности корня степени n

Докажите, что уравнение , где n – натуральное, – действительное неотрицательное число, имеет единственное решение на множестве действительных чисел, . Это решение называется корнем степени n из числа a. То есть нужно показать, что любое неотрицательное число имеет единственный корень степени n.

Решение

Рассмотрим функцию от переменной x:
(П1)   .

Докажем, что она непрерывна.
Используя определение непрерывности, покажем, что
.
Применяем формулу бинома Ньютона:
(П2)  
.
Применим арифметические свойства пределов функции. Поскольку , то отлично от нуля только первое слагаемое:
.
Непрерывность доказана.

Докажем, что функция (П1) строго возрастает при .
Возьмем произвольные числа , связанные неравенствами:
, , .
Нам нужно показать, что . Введем переменные . Тогда . Поскольку , то из (П2) видно, что . Или
.
Строгое возрастание доказано.

Найдем множество значений функции при .
В точке , .
Найдем предел .
Для этого применим неравенство Бернулли. При имеем:
.
Поскольку , то и .
Применяя свойство неравенств бесконечно больших функций находим, что .
Таким образом, , .

Согласно теореме об обратной функции, на интервале определена и непрерывна обратная функция . То есть для любого существует единственное , удовлетворяющее уравнению . Поскольку у нас , то это означает, что для любого , уравнение имеет единственное решение, которое называют корнем степени n из числа x:
.

Доказательства свойств и теорем

Доказательство леммы о взаимной монотонности прямой и обратной функций

Формулировка ⇑

Пусть функция имеет область определения X и множество значений Y. Докажем, что она имеет обратную функцию. Исходя из определения ⇑, нам нужно доказать, что
для всех .

Допустим противное. Пусть существуют числа , так что . Пусть при этом . Иначе, поменяем обозначения, чтобы было . Тогда, в силу строгой монотонности  f, должно выполняться одно из неравенств:
если  f  строго возрастает;
если  f  строго убывает.
То есть . Возникло противоречие. Следовательно, имеет обратную функцию .

Пусть функция строго возрастает. Докажем, что и обратная функция также строго возрастает. Введем обозначения:
. То есть нам нужно доказать, что если , то .

Допустим противное. Пусть , но .

Если , то . Этот случай отпадает.

Пусть . Тогда, в силу строгого возрастания функции , , или . Возникло противоречие. Поэтому возможен только случай .

Для строго возрастающей функции лемма доказана. Аналогичным образом можно доказать эту лемму и для строго убывающей функции.

Доказательство свойства о симметрии графиков прямой и обратной функций

Формулировка ⇑

Пусть – произвольная точка графика прямой функции :
(2.1)   .
Покажем, что точка , симметричная точке A относительно прямой , принадлежит графику обратной функции :
.
Из определения обратной функции следует, что
(2.2)   .
Таким образом, нам нужно показать (2.2).

Симметрия графиков прямой и обратной функций

График обратной функции y = f  –1(x) симметричен графику прямой функции y = f(x) относительно прямой y = x.

Из точек A и S опустим перпендикуляры на оси координат. Тогда
,   .

Через точку A проводим прямую, перпендикулярную прямой . Пусть прямые пересекаются в точке C. На прямой строим точку S так, чтобы . Тогда точка S будет симметрична точке A относительно прямой .

Рассмотрим треугольники и . Они имеют две равные по длине стороны: и , и равные углы между ними: . Поэтому они конгруэнтны. Тогда
.

Рассмотрим треугольник . Поскольку , то
.
Тоже самое относится к треугольнику :
.
Тогда
.

Теперь находим и :
;
.

Итак, уравнение (2.2):
(2.2)  
выполняется, поскольку , и выполняется (2.1):
(2.1)   .

Так как мы выбрали точку A произвольно, то это относится ко всем точкам графика :
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику обратной функции .
Далее мы можем поменять и местами. В результате получим, что
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику функции .
Отсюда следует, что графики функций и симметричны относительно прямой .

Свойство доказано.

Доказательство теоремы о существовании и непрерывности обратной функции на отрезке

Формулировка ⇑

Пусть обозначает область определения функции – отрезок .

1. Покажем, что множеством значений функции является отрезок :
,
где .

Действительно, поскольку функция непрерывна на отрезке , то по теореме Вейерштрасса она достигает на нем минимума и максимума . Тогда по теореме Больцано – Коши функция принимает все значения из отрезка . То есть для любого существует , для которого . Поскольку и есть минимум и максимум, то функция принимает на отрезке только значения из множества .

2. Поскольку функция строго монотонна, то согласно вышеприведенной лемме ⇑, существует обратная функция , которая также строго монотонна (возрастает, если возрастает ; и убывает, если убывает ). Областью определения обратной функции является множество , а множеством значений – множество .

3. Теперь докажем, что обратная функция непрерывна.

3.1. Пусть есть произвольная внутренняя точка отрезка : . Докажем, что обратная функция непрерывна в этой точке.

Пусть ей соответствует точка . Поскольку обратная функция строго монотонна, то есть внутренняя точка отрезка :
.
Согласно определению непрерывности нам нужно доказать, что для любого имеется такая функция , при которой
(3.1)   для всех .

Заметим, что мы можем взять сколь угодно малым. Действительно, если мы нашли такую функцию , при которой неравенства (3.1) выполняются при достаточно малых значениях , то они будут автоматически выполняться и при любых больших значениях , если положить при .

Возьмем настолько малым, чтобы точки и принадлежали отрезку :
.
Введем и упорядочим обозначения:



.

Преобразуем первое неравенство (3.1):
(3.1)   для всех .
;
;
;
(3.2)   .
Поскольку строго монотонна, то отсюда следует, что
(3.3.1)   , если возрастает;
(3.3.2)   , если убывает.
Поскольку обратная функция также строго монотонна, то из неравенств (3.3) следуют неравенства (3.2).

Теорема о непрерывности обратной функции

Для любого ε > 0 существует δ, так что |f  -1(y) – f  -1(y0)| < ε для всех |y – y0| < δ.

Неравенства (3.3) определяют открытый интервал, концы которого удалены от точки на расстояния и . Пусть есть наименьшее из этих расстояний:
.
В силу строгой монотонности , , . Поэтому и . Тогда интервал будет лежать в интервале, определяемом неравенствами (3.3). И для всех значений , принадлежащих ему будут выполняться неравенства (3.2).

Итак, мы нашли, что для достаточно малого , существует , так что
при .
Теперь изменим обозначения.
Для достаточно малого , существует такое , так что
при .
Это означает, что обратная функция непрерывна во внутренних точках .

3.2. Теперь рассмотрим концы области определения. Здесь все рассуждения остаются теми же самыми. Только нужно рассматривать односторонние окрестности этих точек. Вместо точки будет или , а вместо точки – или .

Так, для возрастающей функции , . Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Для убывающей функции , .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Теорема доказана.

Доказательство теоремы о существовании и непрерывности обратной функции на интервале

Формулировка ⇑

Пусть обозначает область определения функции – открытый интервал . Пусть – множество ее значений. Согласно приведенной выше лемме ⇑, существует обратная функция , которая имеет область определения , множество значений и является строго монотонной (возрастает если возрастает и убывает если убывает ). Нам осталось доказать, что
1) множеством является открытый интервал , и что
2) обратная функция непрерывна на нем.
Здесь .

1. Покажем, что множеством значений функции является открытый интервал :
.

Как и всякое непустое множество, элементы которого имеют операцию сравнения, множество значений функции имеет нижнюю и верхнюю грани:
.
Здесь и могут быть конечными числами или символами и .

1.1. Покажем, что точки и не принадлежат множеству значений функции. То есть множество значений не может быть отрезком .

Если или является бесконечно удаленной точкой: или , то такая точка не является элементом множества. Поэтому она не может принадлежать множеству значений.

Пусть (или ) является конечным числом. Допустим противное. Пусть точка (или ) принадлежит множеству значений функции . То есть существует такое , для которого (или ). Возьмем точки и , удовлетворяющие неравенствам:
.
Поскольку функция строго монотонна, то
, если f возрастает;
, если f убывает.
То есть мы нашли точку, значение функции в которой меньше (больше ). Но это противоречит определению нижней (верхней) грани, согласно которому
для всех .
Поэтому точки и не могут принадлежать множеству значений функции .

1.2. Теперь покажем, что множество значений является интервалом , а не объединением интервалов и точек. То есть для любой точки существует , для которого .

Согласно определениям нижней и верхней граней, в любой окрестности точек и содержится хотя бы один элемент множества . Пусть – произвольное число, принадлежащее интервалу : . Тогда для окрестности существует , для которого
.
Для окрестности существует , для которого
.

Поскольку и , то . Тогда
(4.1.1)   если возрастает;
(4.1.2)   если убывает.
Неравенства (4.1) легко доказать от противного. Но можно воспользоваться леммой ⇑, согласно которой на множестве существует обратная функция , которая строго возрастает, если возрастает и строго убывает, если убывает . Тогда сразу получаем неравенства (4.1).

Итак, мы имеем отрезок , где если возрастает;
если убывает.
На концах отрезка функция принимает значения и . Поскольку , то по теореме Больцано – Коши, существует точка , для которой .

Поскольку , то тем самым мы показали, что для любого существует , для которого . Это означает, что множеством значений функции является открытый интервал .

2. Теперь покажем, что обратная функция непрерывна в произвольной точке интервала :  . Для этого применим предыдущую теорему ⇑ к отрезку . Поскольку , то обратная функция непрерывна на отрезке , в том числе и в точке .

Теорема доказана.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

Обратные функции

Обратная функция — наоборот!

Начнем с примера:

Здесь у нас есть функция f (x) = 2x + 3 , записанная в виде блок-схемы:

Обратная функция идет другим путем:

Таким образом, обратное: 2x + 3: (y-3) / 2

Обратное значение обычно отображается путем добавления небольшого «-1» после имени функции, например:

ф -1 (у)

Мы говорим « f инверсия

Итак, обратное к f (x) = 2x + 3 записывается:

f -1 (y) = (y-3) / 2

(я также использовал y вместо x , чтобы показать, что мы используем другое значение.)

Вернуться туда, где мы начали

Самое замечательное в обратном преобразовании состоит в том, что он должен вернуть нам исходное значение:

.


Когда функция f превращает яблоко в банан,
Затем обратная функция f -1 превращает банан обратно в яблоко


Пример:

Используя приведенные выше формулы, мы можем начать с x = 4:

f (4) = 2 × 4 + 3 = 11

Затем мы можем использовать обратное для 11:

f -1 (11) = (11-3) / 2 = 4

И мы волшебным образом снова получаем 4 !

Мы можем написать это одной строкой:

f -1 (f (4)) = 4

«f, обратное f 4, равно 4»

Таким образом, применение функции f, а затем ее обратной f -1 возвращает нам исходное значение снова:

f -1 (f (x)) = x

Мы также могли бы расположить функции в другом порядке, и он все еще работает:

f (f -1 (x)) = x

Пример:

Начать с:

f -1 (11) = (11-3) / 2 = 4

А потом:

f (4) = 2 × 4 + 3 = 11

Итак, мы можем сказать:

f (f -1 (11)) = 11

«f f, обратное 11, равно 11»

Решить с помощью алгебры

Мы можем вычислить обратное, используя алгебру. Положите y вместо f (x) и решите относительно x:

Функция: f (x) = 2x + 3
Вместо f (x) подставьте «y»: y = 2x + 3
Вычтем 3 с обеих сторон: г-3 = 2x
Разделите обе стороны на 2: (у-3) / 2 = x
Поменять местами: х = (у-3) / 2
Решение (вместо «x» подставьте «f -1 (y)»): ж -1 (г) = (у-3) / 2

Этот метод хорошо подходит для более сложных инверсий.

Фаренгейта в Цельсия

Полезный пример — преобразование между градусами Фаренгейта и Цельсия:

Для преобразования Фаренгейта в Цельсия: f (F) = (F — 32) × 5 9

Обратная функция (Цельсия обратно к Фаренгейту): f -1 (C) = (C × 9 5 ) + 32

Для вас: посмотрите, сможете ли вы сделать шаги, чтобы создать инверсию!

Инверсия общих функций

До сих пор это было легко, потому что мы знаем, что обратное к умножению — это деление, а обратное к сложению — вычитание, но как насчет других функций?

Вот список, который вам поможет:

(Примечание: вы можете узнать больше об обратном синусе, косинусе и касательной.)

Осторожно!

Вы видели «Осторожно!» столбец выше? Это потому, что некоторые инверсии работают только с определенными значениями .

Пример: квадрат и квадратный корень

Когда мы возводим в квадрат отрицательное число , а затем делаем обратное, происходит следующее:

Квадрат: (- 2) 2 = 4

Обратная величина (квадратный корень): √ (4) = 2

Но мы не вернули исходное значение! Мы получили 2 вместо −2 .Наша вина в том, что мы не были осторожны!

Таким образом, квадратная функция (как она есть) не имеет обратной

Но мы можем это исправить!

Ограничить домен (значения, которые могут входить в функцию).

Пример: (продолжение)

Только убедитесь, что мы не используем отрицательные числа.

Другими словами, ограничьте его до x ≥ 0 , и тогда мы сможем получить обратное.

Итак, мы имеем такую ​​ситуацию:

  • x 2 имеет ли инверсию, а не ?
  • но {x 2 | x ≥ 0} (в котором говорится, что «x возведен в квадрат, такой, что x больше или равен нулю» с использованием нотации создателя множеств) имеет обратное значение.

Нет обратного?

Давайте посмотрим наглядно, что здесь происходит:

Чтобы иметь возможность иметь инверсию, нам нужно уникальных значений .

Просто подумайте … если есть два или более значений x для одного значения y , как мы узнаем, какое из них выбрать, когда вернемся?

Общие функции
Нет обратного

Представьте, что мы перешли от x до 1 к определенному значению y, куда мы вернемся? x 1 или x 2 ?

В этом случае у нас не может быть обратного.

Но если мы можем иметь ровно один x для каждого y, мы можем получить обратное.

Это называется «однозначным соответствием» или биективным, например

Биективная функция
имеет инверсию

Функция должна быть «биективной», чтобы иметь инверсию.

Таким образом, биективная функция подчиняется более строгим правилам, чем общая функция, что позволяет нам иметь обратную функцию.

Домен

и диапазон

Так что же все эти разговоры о «, ограничивающем домен »?

В простейшей форме область — это все значения, входящие в функцию (а диапазон , — это все значения, которые выходят).

В его нынешнем виде функция не имеет обратного значения для функции , потому что некоторые значения y будут иметь более одного значения x.

Но мы могли бы ограничить домен так, чтобы было уникальных x для каждого y

… и теперь у нас может быть обратное:

Также примечание:

  • Функция f (x) переходит из домена в диапазон,
  • Обратная функция f -1 (y) переходит из диапазона обратно в домен.

Давайте изобразим их оба в терминах x … так что теперь это f -1 (x) , а не f -1 (y) :

f (x) и f -1 (x) похожи на зеркальные изображения
(перевернут по диагонали).

Другими словами:

График f (x) и f -1 (x) симметричен по линии y = x

Пример: квадрат и квадратный корень (продолжение)

Первый , мы ограничиваем Домен до x ≥ 0 :

  • {x 2 | x ≥ 0} «x в квадрате, так что x больше или равно нулю»
  • {√x | x ≥ 0} «квадратный корень из x такой, что x больше или равен нулю»


И вы можете видеть, что это «зеркальные отражения»
друг друга по диагонали y = x.

Примечание: когда мы ограничиваем область до x ≤ 0 (меньше или равно 0), обратное значение будет f -1 (x) = −√x :

  • {x 2 | х ≤ 0}
  • {−√x | x ≥ 0}

Которые тоже обратные.

.

Mathway | Популярные задачи

Mathway | Популярные проблемы

Популярные задачи

Основы математики Предалгебра Алгебра Тригонометрия Precalculus Исчисление Конечная математика Линейная алгебра Химия

Mathway требует javascript и современного браузера.

Этот веб-сайт использует файлы cookie, чтобы обеспечить вам максимальное удобство работы с ним.

Убедитесь, что ваш пароль состоит не менее чем из 8 символов и содержит каждое из следующих значений:

  • номер
  • письмо
  • специальный символ: @ $ #!% *? &
.

Нахождение обратной функции: примеры

Находка Обратная функция (стр. 4 из 7)

Разделы: Определение / Обращение графика, является ли обратным функция ?, Нахождение обратных, Доказательство обратных


  • Найти обратное от до = x 2 + 1, x > 0, и определим является ли обратное функцией.

  • Вы обратите внимание, что единственная разница между этим и предыдущим пример в том, что домен был ограничен положительными x — ось в это время. Вот график:

    Так как это проходит Тест горизонтальной линии, я знаю, что его инверсия будет функцией.И поскольку этот график отличается от графика предыдущей функции, я знайте, что обратное должно быть другим. Опять же, очень полезно сначала найдите домены и диапазоны. Область функции:
    x > 0; в диапазон (по графику) y > 1. Тогда домен инверсии будет x > 1 и диапазон будет y > 0.Вот алгебра: Авторское право Элизабет Стапель 2000-2011 Все права защищены

      исходная функция:

      Я решить для « x = «:

      С Я уже разобрался с доменом и диапазоном, знаю, что нужно выбрать положительный квадратный корень:

      Сейчас Я заменю x и и ;
      новый » г знак равно обратное:

    Вот график:

    Тогда обратный y = sqrt ( x 1), x > 1, и обратное тоже функция.

Если вы изучали функцию обозначение, вы можете начинаться с « f ( x )» вместо « y «. В этом случае запустите процесс инверсии, переименовав f ( x ) как « л »; найдите обратное и переименуйте полученный «y» как « f 1 ( x )». Обычно с y работать проще.Предупреждение: это обозначение вводит в заблуждение; степень «минус один» в обозначении функции означает «обратная функция», а не «обратная функция». Не путайте их.

  • Найти обратное от до = 2 / ( x 5) , и определить, является ли обратное также функцией.
  • Поскольку переменная в знаменателе это рациональная функция.Вот алгебра:

      исходная функция:

      I умножим знаменатель в левую часть уравнения:

      I возьмите y в скобках:

      I получить x -материал сам по себе по одну сторону от знака «равно»:

      Тогда Я решаю для x :

      А затем переключите x и и ‘s:

    Это просто еще один рациональная функция. обратная функция: y = (5 x 2) / x

  • Найти обратное из f ( x ) = sqrt ( x 2), x > 2. Определите, обратное также является функцией, и найти домен и диапазон обратный.

  • The ограничение домена связано с тем, что x находится внутри квадрата корень. Обычно я бы не стал записывать « x > 2 «, потому что я знаю, что x -значения менее 2 дал бы мне негатив внутри квадратного корня.Но ограничение полезно в этом случай, потому что вместе с графиком он поможет мне определить домен и диапазон на инверсе:

    Домен х > 2; диапазон (от график) составляет y < 0.затем домен обратного будет
    x < 0; в Диапазон будет y > 2. Вот алгебра:

      исходная функция:

      Переименовать « f ( x )» как « y «:

      Решить для « x = «:

      Переключатель х и и :

      Переименовать « л » как « f — обратный». Поскольку я уже выяснил домен и диапазон, я знаю, какие половину квадратичной мне осталось выбрать:

    Затем обратная y = x 2 + 2 равно функция с доменом x < 0 и диапазон л > 2.

Вот график:

<< Предыдущая Вверх | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Вернуться к указателю Далее >>

Цитируйте эту статью как:

Стапель, Елизавета.«Нахождение обратной функции». Фиолетовый . Доступно по номеру
https://www.purplemath.com/modules/invrsfcn4.htm . Доступ [Дата] [Месяц] 2016 г.

.

Нахождение обратной функции

Находка Обратная функция (стр. 3 из 7)

Разделы: Определение / Инвертирование графика, обратная функция — это функция ?, Нахождение обратного, доказательство обратного


Обычный метод поиск обратного — это один из вариантов метода, который я собираюсь использовать ниже.Какой бы метод вы ни использовали, убедитесь, что вы выполняете точно такие же шаги в точно такой же порядок каждый раз, поэтому вы запомните эти шаги, когда получите к тесту.

  • Найти обратное от до = 3 x 2.
  • Вот как процесс работ:

      Вот моя первоначальная функция:

      Сейчас Я попробую решить для « x = «:

      Однажды У меня « x знак равно Переключу х и и ; « y » = «- это обратный.

    Если вам нужно найти домен и диапазон, посмотрите на исходную функцию и ее график. Домен оригинала функция — это набор всех допустимых значений x ; в этом случае функция была простым полиномом, поэтому область определения «все реальные числа».Диапазон исходной функции — весь и -значения вы передадите график; в этом случае прямая линия продолжается всегда в любом направлении, поэтому диапазон также представляет собой «все действительные числа». Чтобы найти домен и диапазон обратного, просто поменяйте местами домен и диапазон от исходной функции.

      По графику, легко увидеть, что эта функция не может иметь обратного, так как он нарушает тест горизонтальной линии:

    Обычно считается приемлемо для построения приведенного выше графика, проведите по нему горизонтальную линию, дважды пересекает график, а затем произносит что-то вроде «Обратный этой функции не является функцией из-за горизонтальной линии Тест».Но некоторые учителя все равно хотят изучать алгебру. Быть уверенным чтобы уточнить у учителя, какой ответ будет приемлемым — и сделайте это перед тестом! авторское право Элизабет Стапель 2000-2011 Все права защищены

      Как это будет выглядеть когда я пытаюсь найти обратное алгебраически? Вертикаль Line Test говорит что у меня не может быть двух и которые имеют общее значение x .То есть каждый x должен иметь УНИКАЛЬНЫЙ соответствующий л стоимость. Но посмотрите, что происходит, когда я пытаюсь найти « x = «:

        Мой исходная функция:

        Решение для « x = «:

      Ну я решил для « x знак равно но я не получил УНИКАЛЬНЫЙ « x знак равноВместо этого я показал, что любое заданное значение x фактически будет соответствовать двум различным значениям и , один от «плюса» от квадратного корня, а другой от «минус».

    Каждый раз, когда вы придумываете знак «», вы можете быть уверены, что обратное не функция.

      Единственная разница между этой функцией и предыдущей заключается в том, что домен был ограничен только отрицательной половиной x — ось.Это ограничение делает график таким:

      Эта функция будет иметь обратное, что тоже функция. Почти каждый раз, когда они задают вам проблему, где они постарались ограничить домен, вы должны позаботиться с алгеброй и нарисуйте красивую картинку, потому что, вероятно, обратное — это функция, но, вероятно, потребуются дополнительные усилия, чтобы показать это.В данном случае, поскольку размер домена x < 0 и диапазон (из графика) равен 1 < и , то обратный будет иметь область 1 < x и диапазон y < 0. Вот как выглядит алгебра:

        г. исходная функция:

        Решить для « x = «:

        Автор выясняя область и диапазон обратного, я знаю, что Я должен выбрать знак минуса для квадратного корня:

        Сейчас Я заменю x и и ;
        новый » г = «- это обратный:

      x > 1 «ограничение исходит из того, что x находится внутри квадратного корня.)

      Так обратное — y = sqrt ( x 1), x > 1, и эта инверсия также является функцией.

      Вот график:

    << Предыдущая Вверх | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Вернуться к указателю Далее >>

    Цитируйте эту статью как:

    Стапель, Елизавета.«Нахождение обратной функции». Purplemath . Доступно по номеру
    https://www.purplemath.com/modules/invrsfcn3.htm . Доступ [Дата] [Месяц] 2016 г.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *