Приближенное вычисление определенного интеграла
Онлайн калькуляторыНа нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.
СправочникОсновные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!
Заказать решениеНе можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!
Главная Справочник Интегралы Приближенное вычисление определенного интеграла
Пусть требуется найти определенный интеграл , причем функция считается непрерывной на отрезке . Если от подынтегральной функции первообразная находится легко, то значение рассматриваемого интеграла находится по формуле Ньютона-Лейбница:
Но не в каждом случае отыскание первообразной для подынтегральной функции является достаточно простым, а также не для всякой непрерывной функции существует первообразная, выражающаяся через элементарные функции. В подобных случаях применяют приближенные формулы, которые позволяют вычислить определенный интеграл с любой степенью точности.
Наиболее часто используются три формулы приближенного вычисления определенного интеграла – формула прямоугольников, формула трапеций и формулу парабол или формула Симпсона, основанные на геометрическом смысле определенного интеграла: если функция непрерывна и положительна на отрезке , то определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной линиями , , и (рис. 1).
1. Формула прямоугольников
Пусть на отрезке задана непрерывная функция . Вычислим численно определенный интеграл , который равен площади криволинейной трапеции.
Разобьем основание этой трапеции (отрезок ) на равных частей-отрезков длины
Величину будем называть шагом разбиения. В результате получим точки
Можно записать, что
В середине каждого такого элементарного отрезка отметим точку . Приняв ординату этой точки за высоту, построим прямоугольник с площадью (рис. 2).
Тогда сумма площадей всех прямоугольников равна площади ступенчатой фигуры, которая представляет собой приближенное значение искомого определенного интеграла :
Полученная формула называется формулой прямоугольников.
Абсолютная погрешность последнего приближенного равенства удовлетворяет следующей оценке:
где – наибольшее значение на рассматриваемом отрезке .
2. Формула трапеций
Эту формулу получают аналогично формуле прямоугольников: на каждом частичном отрезке криволинейная трапеция заменяется обычной.
Пусть необходимо вычислить определенный интеграл . Разобьем отрезок интегрирования на равных частей длины . В результате получим точки (рис. 3). Пусть – соответствующие им ординаты функции. Тогда можно записать, что
Заменим кривую ломаной линией, звенья которой соединяют концы ординат и . Тогда площадь криволинейной трапеции приближенно равна сумме площадей обычных трапеций с основаниями , и высотой , то есть
Записанная формула называется формулой трапеций.
Абсолютная погрешность
где .
3. Формула парабол (Симпсона)
Если заменить график функции на каждом отрезке , которые получены после разбиения отрезка интегрирования на равных частей, не отрезками прямых, как в методах трапеций и прямоугольников, а дугами парабол, то получим более точную формулу приближенного вычисления определенного интеграла .
Как было сказано выше, разобьем отрезок на равных частей (отрезков) длиной точками
причем , . В точках разбиения находим значения подынтегральной функции
то есть (рис. 4).
Заменяем каждую пару соседних элементарных криволинейных трапеций с основаниями одной элементарной параболической трапецией с основанием . Тогда, например, на частичном отрезке парабола проходит через три точки , , и так далее.
Расчетная формула парабол (или Симпсона) для этого метода имеет вид:
Абсолютная погрешность вычисления по этой формуле оценивается соотношением
где . 3 — возведение в степень x + 7 — сложение x — 6 — вычитание
Другие функции: floor(x) Функция — округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция — округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция — Знак
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл… Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Изучаем понятие « интеграл»
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x) .
Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции.
Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
« Интеграл»
Кстати! Для наших читателей сейчас действует скидка 10% на
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
- Производная от интеграла равна подынтегральной функции:
- Константу можно выносить из-под знака интеграла:
- Интеграл от суммы равен сумме интегралов. Верно также для разности:
Свойства определенного интеграла
- Линейность:
- Знак интеграла изменяется, если поменять местами пределы интегрирования:
- При любых точках a , b и с :
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Данный калькулятор позволяет решить определенный интеграл онлайн. По сути, вычисление определенного интеграла — это нахождение числа, которое равно площади под графиком функции. Для решения необходимо задать границы интегрирования и интегрируемую функцию. После интегрирования система найдет первообразную для заданной функции, вычислит её значения в точках границах интегрирования, найдет их разность, что и будет являться решением определенного интеграла. Чтобы решить неопределенный интеграл вам необходимо воспользоваться похожим онлайн калькулятором, который находится на нашем сайте по ссылке — Решить неопределенный интеграл .
Мы позволяем вычислить определенный интеграл онлайн быстро и надежно. Вы получите всегда верное решение. Причем для табличных интегралов ответ будет представляться в классическом виде, то есть выражаться через известные константы, такие как число «пи», «экспонента» и т.д. Все вычисления полностью бесплатны и не требуют регистрации. Решая определенный интеграл у нас, вы избавите себя от трудоемких и сложных вычислений, либо решив интеграл самостоятельно — вы сможете проверить полученное вами решение.
В каждой главе будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.
Понятие определённого интеграла и формула Ньютона-Лейбница
Определённым интегралом от непрерывной функции f (x ) на конечном отрезке [a , b ] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись
Как видно на графиках внизу (приращение первообразной функции обозначено ), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F (b ) — F (a )).
Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a , b ] – отрезком интегрирования.
Таким образом, если F (x ) – какая-нибудь первообразная функция для f (x ), то, согласно определению,
(38)
Равенство (38) называется формулой Ньютона-Лейбница . Разность F (b ) – F (a ) кратко записывают так:
Поэтому формулу Ньютона-Лейбница будем записывать и так:
(39)
Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F (x ) и Ф(х ) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(
Тем самым установлено, что на отрезке [a , b ] приращения всех первообразных функции f (x ) совпадают.
Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается. Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b , далее — значение нижнего предела a и вычисляется разность F(b) — F(a) . Полученное число и будет определённым интегралом. .
При a = b по определению принимается
Пример 1.
Решение. Сначала найдём неопределённый интеграл:
Применяя формулу Ньютона-Лейбница к первообразной
(при С = 0), получим
Однако при вычислении определённого интеграла лучше не находить отдельно первообразную, а сразу записывать интеграл в виде (39).
Пример 2. Вычислить определённый интеграл
Решение. Используя формулу
Найти определённый интеграл самостоятельно, а затем посмотреть решение
Свойства определённого интеграла
Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования , т.е.
(40)
Пусть F (x ) – первообразная для f (x ). Для f (t ) первообразной служит та же функция F (t ), в которой лишь иначе обозначена независимая переменная. Следовательно,
На основании формулы (39) последнее равенство означает равенство интегралов
Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла , т.е.
(41)
Теорема 4. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций , т.е.
(42)
Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям , т. е. если
(43)
Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак , т.е.
(44)
Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его , т.е.
(45)
Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если
Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство
можно почленно интегрировать , т.е.
(46)
Свойства определённого интеграла позволяют упрощать непосредственное вычисление интегралов.
Пример 5. Вычислить определённый интеграл
Используя теоремы 4 и 3, а при нахождении первообразных – табличные интегралы (7) и (6), получим
Определённый интеграл с переменным верхним пределом
Пусть f (x ) – непрерывная на отрезке [a , b ] функция, а F (x ) – её первообразная. Рассмотрим определённый интеграл
(47)
а через t обозначена переменная интегрирования, чтобы не путать её с верхней границей. При изменении х меняется и опредёленный интеграл (47), т.е. он является функцией верхнего предела интегрирования х , которую обозначим через Ф (х ), т.е.
(48)
Докажем, что функция Ф (х ) является первообразной для f (x ) = f (t ). Действительно, дифференцируя Ф (х ), получим
так как F (x ) – первообразная для f (x ), а F (a ) – постояная величина.
Функция Ф (х ) – одна из бесконечного множества первообразных для f (x ), а именно та, которая при x = a обращается в нуль. Это утверждение получается, если в равенстве (48) положить x = a и воспользоваться теоремой 1 предыдущего параграфа.
Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной
где, по определению, F (x ) – первообразная для f (x ). Если в подынтегральном выражении произвести замену переменной
то в соответствии с формулой (16) можно записать
В этом выражении
первообразная функция для
В самом деле, её производная, согласно правилу дифференцирования сложной функции , равна
Пусть α и β – значения переменной t , при которых функция
принимает соответственно значения a и b , т.е.
Но, согласно формуле Ньютона-Лейбница, разность F (b ) – F (a ) есть
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл… Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Изучаем понятие « интеграл»
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных , необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x) .
Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
« Интеграл»
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
- Производная от интеграла равна подынтегральной функции:
- Константу можно выносить из-под знака интеграла:
- Интеграл от суммы равен сумме интегралов. Верно также для разности:
Свойства определенного интеграла
- Линейность:
- Знак интеграла изменяется, если поменять местами пределы интегрирования:
- При любых точках a , b и с :
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Калькулятор и решатель определенных интегралов
Получите подробные решения ваших математических задач с помощью нашего пошагового калькулятора определенных интегралов
. Практикуйте свои математические навыки и учитесь шаг за шагом с помощью нашего математического решателя. Ознакомьтесь со всеми нашими онлайн-калькуляторами здесь.1
2
3
4
5
6
7
8
900 06 9
а
б
в
d
f
g
m
n
u
v
w
x
90 006 гг
.
(◻)
+
—
×
◻/◻
/
÷
◻ 90 073 2
◻ ◻
√◻
√
◻ √ ◻
◻ √
∞
e
π
ln
лог
лог ◻
lim
d/dx
D □ x
∫
∫ ◻
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
кроватка
sec
csc
asin
acos
atan
acot
асек
акск
sinh
кош
tanh
coth
sech
csch
asinh
acosh
a tanh
acoth
asech
acsch
Пример Решенные проблемы Сложные задачи 1Пример решения определенных интегралов
9{2}-5dx$ приводит к: $-10$$-10$
6Собрать результаты всех интегралов
$\frac{32}{5}+\frac{16}{3}-10$
7Вычесть значения $\frac{32}{5}$ и $-10$
$-\frac{18}{5}+\frac{16}{3}$
8Добавьте значения $-\frac{18}{5}$ и $\frac{16}{3}$
$\frac{26}{15}$
Окончательный ответ$\frac{26}{15}$
Проблемы с математикой?
Доступ к подробным пошаговым решениям тысяч проблем, число которых растет с каждым днем!
Калькулятор интегралов — Примеры, Калькулятор интегралов онлайн
30-DAY PROMIS | ПОЛУЧИТЕ 100% ВОЗВРАТ ДЕНЕГ*
*T&C ApplyКалькулятор интегралов используется для интегрирования функции, которая может быть в виде определенного или неопределенного интеграла. Интегрирование — одна из самых фундаментальных операций исчисления. Это процесс объединения бесконечно малых данных для нахождения целого.
Что такое интегральный калькулятор?
Интегральный калькулятор — это онлайн-инструмент, который помогает найти значение заданного определенного или неопределенного интеграла. Интеграция есть обратный процесс дифференциации. Таким образом, интегрируя функцию, мы существенно определяем ее первообразную. Чтобы использовать интегральный калькулятор , введите значения в соответствующие поля ввода.
Калькулятор интегралов
Как пользоваться калькулятором интегралов?
Чтобы найти значение интеграла с помощью онлайн-калькулятора интегралов, выполните следующие действия:
- Шаг 1: Перейдите к онлайн-калькулятору интегралов Cuemath.
- Шаг 2: Выберите определенный или неопределенный интеграл из раскрывающегося списка и введите значения в поля ввода.
- Шаг 3: Нажмите кнопку «Вычислить» , чтобы найти значение интеграла для заданной функции.
- Шаг 4: Нажмите кнопку «Сброс», чтобы очистить поля и ввести другие значения.
Как работает интегральный калькулятор?
Интегрирование можно определить как процесс определения площади под кривой. Есть два типа интегралов, а именно, определенные интегралы и неопределенные интегралы. Ниже приведены различные методы, которые можно использовать для интегрирования данной функции:
- Метод декомпозиции . Используя этот метод, мы можем разбить данную функцию на сумму и разность меньших функций, интегральное значение которых известно. Данная функция может быть алгебраической, тригонометрической, экспоненциальной или их комбинацией.
- Интегрирование путем подстановки — В этом методе мы заменяем переменную интегрирования другой переменной. Это помогает упростить процесс решения интеграла.
- Интегрирование неполными дробями — Предположим, что наше подынтегральное выражение выражено в виде неправильной рациональной функции. Мы можем использовать концепцию частичных дробей, чтобы преобразовать наше подынтегральное выражение в правильную рациональную функцию. Наконец, мы можем интегрировать это, чтобы получить наш ответ.
- Интегрирование по частям . Предположим, что наше подынтегральное выражение представлено в виде ∫f(x)g(x)dx. Для решения этой задачи с помощью интегрирования по частям применим формулу: ∫f(x).g(x) dx = f(x) ∫g(x)dx − ∫ [f′(x) ∫ g(x)dx ] дх.
Существует множество формул для решения специальных интегралов.
Хотите найти сложные математические решения за считанные секунды?
Воспользуйтесь нашим бесплатным онлайн-калькулятором, чтобы решить сложные вопросы. С Cuemath находите решения простыми и легкими шагами.