Онлайн решение уравнений матричным способом: Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.

Вопрос 15. Системы линейных алгебраических уравнений.

Система линейных уравнений с переменными имеет вид: , где — произвольные числа, называемые соответственно коэффициентами при переменных и свободными членами уравнений.

Решением системы называется такая совокупность чисел ( , , …, ), при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Система линейных уравнений с переменными называется системой линейных однородных уравнений, если все их свободные члены равны нулю. Такая система имеет вид: .

Определение. Система линейно независимых решений называется фундаментальной, если каждое решение системы является линейной комбинацией решений .

Теорема. Если ранг матрицы коэффициентов при переменных системы линейных однородных уравнении меньше числа переменных , то всякая фундаментальная система решений состоит из решений.

Вопрос 16. Решение систем методом Крамера

Теорема Крамера. Пусть — определитель матрицы системы , а — определитель матрицы, получаемой из матрицы заменой столбца столбцом свободных членов. Тогда, если , то система имеет единственное решение, определяемое по формулам: ( ).

Пример. Решить систему уравнений .

Вычислим определители: , , , .

Итак, , , .

17.Решение систем матричным методом.

Этот способ или, как его еще называеют, метод обратной матрицы называется так потому, что все решение сводится к простому матричному уравнению, для решения которого необходимо найти обратную матрицу. Для того, что бы расставить все точки над и, рассмотрим метод под микроскопом.

Алгоритм решения достаточно просто. Как и в методах Гаусса и Крамера первоначально надо проверить, имеет ли система уравнений решение по теореме Кронекера-Копелли. Затем для решения матричным методом необходимо ввести в рассмотрение матрицы-столбцы для неизвестных X и свободных членов B. Тогда систему линейных уравнений можно записать в матричной форме AX=B. Умножив это матричное уравнение на A-1, получим A-1AX= A-1B, откуда EX=X=A-1B. Следовательно, матрица-решение X легко находится как произведение A-1 и B.

Для большей ясности решим небольшой пример методом обратной матрицы:

21x1-45x2-3.5x3=10

12x1-16x

2+21x3=-16

14x1+13x2-8x3=10

Определим совместность системы уравнений. По теореме Кронекера-Копелли для того, что бы система линейных алгебраических уравнений была совместна (имела решение), необходимо и достаточно, что быранг основной матрицы

 

A=

21

-45

3. 5

12

-16

21

14

13

-8

 

и ранг расширенной матрицы

B=

21

-45

3.5

10

12

-16

21

-19

14

13

-8

10

 

были равны. Так как rang|A|=3 равен rang|B|=3 и равен количеству неизвестных n=3, то система имеет единственное решение.

Для решения методом обратной матрицы необходимо ввести матричные обозначения

 

A=

21

-45

3.5

12

-16

21

14

13

-8

X=

X1

X2

X3

C=

10

-19

10

, то X=A-1C

 

Найдем обратную матрицу A-1.

Как ее найти, показывать не будем. Воспользовавшись нашии онлайн калькулятором, вы сможете выбрать один из двух способов для ее нахождения. Она будет иметь вид.

 

A-1=

0.008

0.016

0.046

-0.02

0.011

0.021

-0.02

0.047

-0.011

 

Для нахождения матрицы X умножим обратную матрицу А-1 на матрицу С

0. 008

0.016

0.046

-0.02

0.011

0.021

-0.02

0.047

-0.011

10

-19

10

=

0.227

-0.209

-1. 194

 

Получили решение системы уравнений X1=0.227  X2=-0.209  X3=-1.194

Дифференциальное и интегральное исчисления для втузов, т.2

Дифференциальное и интегральное исчисления для втузов, т.2
  

Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, т. 2: Учебное пособие для втузов.—13-е изд.— М.: Наука, Главная редакция физико-математической литературы, 1985. — 560 с.

Хорошо известное учебное пособие по математике для втузов с достаточно широкой математической подготовкой.

Второй том включает разделы: дифференциальные уравнения, кратные и криволинейные интегралы, интегралы по поверхности, ряды, уравнения математической физики, операционное исчисление, элементы теории вероятностей и математической статистики, матрицы.

Для студентов высших технических учебных заведений.



Оглавление

ПРЕДИСЛОВИЕ К ДЕВЯТОМУ ИЗДАНИЮ
ПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ
ГЛАВА XIII. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§ 1. Постановка задачи. Уравнение движения тела при сопротивлении среды, пропорциональном скорости. Уравнение цепной линии
§ 2. Определения
§ 3. Дифференциальные уравнения первого порядка (общие понятия)
§ 4. Уравнения с разделенными и разделяющимися переменными. Задача о распаде радия
§ 5. Однородные уравнения первого порядка
§ 6. Уравнения, приводящиеся к однородным
§ 7. Линейные уравнения первого порядка
§ 8. Уравнение Бернулли
§ 9. Уравнение в полных дифференциалах
§ 10. Интегрирующий множитель
§ 11. Огибающая семейства кривых
§ 12. Особые решения дифференциального уравнения первого порядка
§ 13. Уравнение Клеро
§ 14. Уравнение Лагранжа
§ 15. Ортогональные и изогональные траектории
§ 16. (n) = f(x)
§ 18. Некоторые типы дифференциальных уравнений второго порядка, приводимых к уравнениям первого порядка. Задача о второй космической скорости
§ 19. Графический метод интегрирования дифференциального уравнения второго порядка
§ 20. Линейные однородные уравнения. Определения и общие свойства
§ 21. Линейные однородные уравнения второго порядка с постоянными коэффициентами
§ 22. Линейные однородные уравнения n-го порядка с постоянными коэффициентами
§ 23. Неоднородные линейные уравнения второго порядка
§ 24. Неоднородные линейные уравнения второго порядка с постоянными коэффициентами
§ 25. Неоднородные линейные уравнения высших порядков
§ 26. Дифференциальное уравнение механических колебаний
§ 27. Свободные колебания. Векторное и комплексное изображение гармонических колебаний
§ 28. Вынужденные колебания
§ 29. Системы обыкновенных дифференциальных уравнений
§ 30. Системы линейных дифференциальных уравнений с постоянными коэффициентами
§ 31. Понятие о теории устойчивости Ляпунова. Поведение траектории дифференциального уравнения в окрестности особой точки
§ 32. Приближенное решение дифференциальных уравнений первого порядка методом Эйлера
§ 33. Разностный метод приближенного решения дифференциальных уравнений, основанный на применении формулы Тейлора.. Метод Адамса
§ 34. Приближенный метод интегрирования систем дифференциальных уравнений первого порядка
Упражнения к главе XIII
ГЛАВА XIV. КРАТНЫЕ ИНТЕГРАЛЫ
§ 2. Вычисление двойного интеграла
§ 3. Вычисление двойного интеграла (продолжение)
§ 4. Вычисление площадей и объемов с помощью двойных интегралов
§ 5. Двойной интеграл в полярных координатах
§ 6. Замена переменных в двойном интеграле (общий случай)
§ 7. Вычисление площади поверхности
§ 9. Момент инерции площади плоской фигуры
§ 10. Координаты центра масс площади плоской фигуры
§ 11. Тройной интеграл
§ 12. Вычисление тройного интеграла
§ 13. Замена переменных в тройном интеграле
§ 14. Момент инерции и координаты центра масс тела
§ 15. Вычисление интегралов, зависящих от параметра
Упражнения к главе XIV
ГЛАВА XV. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ И ИНТЕГРАЛЫ ПО ПОВЕРХНОСТИ
§ 2. Вычисление криволинейного интеграла
§ 3. Формула Грина
§ 4. Условия независимости криволинейного интеграла от пути интегрирования
§ 5. Поверхностный интеграл
§ 6. Вычисление поверхностного интеграла
§ 7. Формула Стокса
§ 9. Оператор Гамильтона. Некоторые его применения
Упражнения к главе XV
ГЛАВА XVI. РЯДЫ
§ 1. Ряд. Сумма ряда
§ 2. Необходимый признак сходимости ряда
§ 3. Сравнение рядов с положительными членами
§ 4. Признак Даламбера
§ 5. Признак Коши
§ 6. Интегральный признак сходимости ряда
§ 7. Знакочередующиеся ряды. Теорема Лейбница
§ 8. Знакопеременные ряды. Абсолютная и условная сходимость
§ 9. Функциональные ряды
§ 10. Мажорируемые ряды
§ 11. Непрерывность суммы ряда
§ 12. Интегрирование и дифференцирование рядов
§ 13. Степенные ряды. Интервал сходимости
§ 14. Дифференцирование степенных рядов
§ 15. Ряды по степеням x-a
§ 16. Ряды Тейлора и Маклорена
§ 17. Примеры разложения функций в ряды
§ 18. Формула Эйлера
§ 19. Биномиальный ряд
§ 20. Разложение функции ln(1+x) в степенной ряд. Вычисление логарифмов
§ 21. Вычисление определенных интегралов с помощью рядов
§ 22. Интегрирование дифференциальных уравнений с помощью рядов
§ 23. Уравнение Бесселя
§ 24. Ряды с комплексными членами
§ 25. Степенные ряды с комплексной переменной
§ 26. Решение дифференциального уравнения первого порядка методом последовательных приближений (метод итераций)
§ 27. Доказательство существования решения дифференциального уравнения. Оценка погрешности при приближенном решении
§ 28. Теорема единственности решения дифференциального уравнения
Упражнения к главе XVI
ГЛАВА XVII. РЯДЫ ФУРЬЕ
§ 2. Примеры разложения функций в ряды Фурье
§ 3. Одно, замечание о разложении периодической функции в ряд Фурье
§ 4. Ряды Фурье для четных и нечетных функций
§ 5. Ряд Фурье для функции с периодом 2l
§ 6. О разложении непериодической функции в ряд Фурье
§ 7. Приближение в среднем заданной функции с помощью тригонометрического многочлена
§ 8. Интеграл Дирихле
§ 9. Сходимость ряда Фурье в данной точке
§ 10. Некоторые достаточные условия сходимости ряда Фурье
§ 11. Практический гармонический анализ
§ 12. Ряд Фурье в комплексной форме
§ 13. Интеграл Фурье
§ 14. Интеграл Фурье в комплексной форме
§ 15. Ряд Фурье по ортогональной системе функций
§ 16. Понятие о линейном функциональном пространстве. Аналогия между разложением функций в ряд Фурье и разложением векторов
Упражнения к главе XVII
ГЛАВА XVIII. УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ
§ 1. Основные типы уравнений математической физики
§ 2. Вывод уравнения колебаний струны. Формулировка краевой задачи. Вывод уравнений электрических колебаний в проводах
§ 3. Решение уравнения колебаний струны методом разделения переменных (методом Фурье)
§ 4. Уравнение распространения тепла в стержне. Формулировка краевой задачи
§ 5. Распространение тепла в пространстве
§ 6. Решение первой краевой задачи для уравнения теплопроводности методом конечных разностей
§ 7. Распространение тепла в неограниченном стержне
§ 8. Задачи, приводящие к исследованию решений уравнения Лапласа. Формулировка краевых задач
§ 9. Уравнение Лапласа в цилиндрических координатах. Решение задачи Дирихле для кольца с постоянными значениями искомой функции на внутренней и внешней окружностях
§ 10. Решение задачи Дирихле для круга
§ 11. Решение задачи Дирихле методом конечных разностей
Упражнения к главе XVIII
ГЛАВА XIX. ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ И НЕКОТОРЫЕ ЕГО ПРИЛОЖЕНИЯ
§ 1. Начальная функция и ее изображение
§ 2. Изображение функций …
§ 3. Изображение функции с измененным масштабом независимой переменной. Изображение функций sin at, cos at
§ 4. Свойство линейности изображения
§ 5. Теорема смещения
§ 6. Изображение функций …
§ 7. Дифференцирование изображения
§ 8. Изображение производных
§ 9. Таблица некоторых изображений
§ 10. Вспомогательное уравнение для данного дифференциального уравнения
§ 11. Теорема разложения
§ 12. Примеры решения дифференциальных уравнений и систем дифференциальных уравнений операционным методом
§ 13. Теорема свертывания
§ 14. Дифференциальные уравнения механических колебаний. Дифференциальные уравнения теории электрических цепей
§ 15. Решение дифференциального уравнения колебаний
§ 16. Исследование свободных колебаний
§ 17. Исследование механических и электрических колебаний в случае периодической внешней силы
§ 18. Решение уравнения колебаний в случае резонанса
§ 19. Теорема запаздывания
§ 20. Дельта-функция и ее изображение
Упражнения к главе XIX
ГЛАВА XX. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
§ 1. Случайное событие. Относительная частота случайного события. Вероятность события. Предмет теории вероятностей
§ 2. Классическое определение вероятности и непосредственный подсчет вероятностей
§ 3. Сложение вероятностей. Противоположные случайные события
§ 4. Умножение вероятностей независимых событий
§ 5. Зависимые события. Условная вероятность. Полная вероятность
§ 6. Вероятность гипотез. Формула Байеса
§ 7. Дискретная случайная величина. Закон распределения дискретной случайной величины
§ 8. Относительная частота и вероятность относительной частоты при повторных испытаниях
§ 9. Математическое ожидание дискретной случайной величины
§ 10. Дисперсия. Среднеквадратичное отклонение. Понятие о моментах
§ 11. Функции от случайных величин
§ 12. Непрерывная случайная величина. Плотность распределения непрерывной случайной величины. Вероятность попадания случайной величины в заданный интервал
§ 13. Функция распределения, или интегральный закон распределения. Закон равномерного распределения вероятностей
§ 14. Числовые характеристики непрерывной случайной величины
§ 15. Нормальный закон распределения. Математическое ожидание нормального распределения
§ 16. Дисперсия и среднеквадратичное отклонение случайной величины, подчиненной нормальному закону распределения
§ 17. Вероятность попадания значения случайной величины в заданный интервал. Функция Лапласа. Интегральная функция распределения для нормального закона
§ 18. Вероятное (срединное) отклонение или срединная ошибка
§ 19. Выражение нормального закона распределения через срединное отклонение. Приведенная функция Лапласа
§ 20. Правило трех сигм. Шкала вероятностей распределения ошибок
§ 21. Среднеарифметическая ошибка
§ 22. Мера точности. Соотношение между характеристиками распределения ошибок
§ 23. Двумерная случайная величина
§ 24. Нормальный закон распределения на плоскости
§ 25. Вероятность попадания двумерной случайной величины в прямоугольник со сторонами, параллельными главным осям рассеивания, при нормальном законе распределения
§ 26. Вероятность попадания двумерной случайной величины в эллипс рассеивания
§ 27. Задачи математической статистики. Статистический материал
§ 28. Статистический ряд. Гистограмма
§ 29. Определение подходящего значения измеряемой величины
§ 30. Определение параметров закона распределения. Теорема Ляпунова. Теорема Лапласа
Упражнения к главе XX
ГЛАВА XXI. МАТРИЦЫ. МАТРИЧНАЯ ЗАПИСЬ СИСТЕМ И РЕШЕНИЙ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Линейные преобразования. Матрица
§ 2. Общие определения, связанные с понятием матрицы
§ 3. Обратное преобразование
§ 4. Действия над матрицами. Сложение матриц
§ 5. Преобразование вектора в другой вектор с помощью матрицы
§ 6. Обратная матрица
§ 7. Нахождение матрицы, обратной данной
§ 8. Матричная запись системы линейных уравнений
§ 9. Решение системы линейных уравнений матричным методом
§ 10. Ортогональные отображения. Ортогональные матрицы
§ 11. Собственный вектор линейного преобразования
§ 12. Матрица линейного преобразования, при котором базисные векторы являются собственными векторами
§ 13. Преобразование матрицы линейного преобразования при переходе от одного базиса к другому
§ 14. Квадратичные формы и их преобразования
§ 15. Ранг матрицы. Существование решений системы линейных уравнений
§ 16. Дифференцирование и интегрирование матриц
§ 17. Матричная запись системы дифференциальных уравнений и решений системы дифференциальных уравнений с постоянными коэффициентами
§ 18. Матричная запись линейного уравнения n-го порядка
§ 19. Решение систем линейных дифференциальных уравнений с переменными коэффициентами методом последовательных приближений с использованием матричной записи
Упражнения к главе XXI
ПРИЛОЖЕНИЯ

Работа с линейными системами в Python с помощью scipy.linalg — Real Python

линейных уравнений . В Python большинство подпрограмм, связанных с этой темой, реализованы в scipy.linalg , который предлагает очень быстрые возможности линейной алгебры.

В частности, 9Линейные системы 0003 играют важную роль в моделировании множества реальных проблем, а scipy.linalg предоставляет инструменты для их изучения и эффективного решения.

В этом руководстве вы узнаете, как:

  • Применять понятия линейной алгебры к практическим задачам, используя scipy.linalg
  • Работа с векторами и матрицами с использованием Python и NumPy
  • Моделируйте практические задачи, используя линейные системы
  • Решение линейных систем с использованием scipy.linalg

Познакомившись с линейными системами, вы будете готовы к изучению матриц и метода наименьших квадратов в следующем уроке этой серии. А пока читайте дальше, чтобы начать работу с scipy.linalg .

Начало работы с

scipy.linalg

SciPy — это библиотека Python с открытым исходным кодом, используемая для научных вычислений, включающая несколько модулей для общих задач науки и техники, таких как линейная алгебра, оптимизация, интеграция, интерполяция и обработка сигналов. Это часть стека SciPy, который включает несколько других пакетов для научных вычислений, таких как NumPy, Matplotlib, SymPy, IPython и pandas.

Линейная алгебра — это раздел математики, изучающий линейные уравнения и их представления с помощью векторов и матриц. Это фундаментальный предмет в нескольких областях инженерии и необходимое условие для более глубокого понимания машинного обучения.

scipy.linalg включает в себя несколько инструментов для работы с задачами линейной алгебры, включая функции для выполнения матричных вычислений, таких как определители, обратные, собственные значения, собственные векторы и разложение по сингулярным числам.

В этом руководстве вы будете использовать некоторые функции из scipy.linalg для решения практических задач, связанных с линейными системами. Чтобы использовать scipy.linalg , вам необходимо установить и настроить библиотеку SciPy, что вы можете сделать с помощью дистрибутива Anaconda Python и пакета conda и системы управления средой.

Для начала создайте среду conda и активируйте ее:

 $ conda create --name linalg
$ conda активировать linalg
 

После того, как вы активируете среду conda , в приглашении отобразится ее имя: linalg . Затем вы можете установить необходимые пакеты внутри среды:

 (linalg) $ conda установить scipy jupyter
 

После выполнения этой команды системе потребуется некоторое время, чтобы определить зависимости и продолжить установку.

Примечание: Помимо использования SciPy, вы также собираетесь использовать Jupyter Notebook для запуска кода в интерактивной среде. Это не обязательно, но облегчает работу с числовыми и научными приложениями.

Чтобы освежить в памяти работу с Jupyter Notebook, ознакомьтесь с документом Jupyter Notebook: An Introduction.

Если вы предпочитаете следовать руководству, используя другой дистрибутив Python и диспетчер пакетов pip , разверните сворачиваемый раздел ниже, чтобы увидеть, как настроить среду:

Во-первых, вы должны создать виртуальную среду, в которой вы будете устанавливать пакеты. Предполагая, что у вас установлен Python, вы можете создать и активировать виртуальную среду с именем 9.0009 линальг :