Определение иррациональное число – , , .

Определить является ли число иррациональным онлайн

Как известно, рациональное число возможно выразить обыкновенной дробью. Это относится и к целым числам, и к конечным десятичным и к бесконечным периодическим десятичным дробям. Бесконечные непериодические десятичные дроби невозможно выразить обыкновенными дробями, это — иррациональные числа. Числа, которые не относятся к рациональным, т.е. ни целые, ни дробные вида m/n (m — целое число, n – натуральное), считаются иррациональными. Например, корень из 2 = 1,414213…; число пи = 3,14159…; пи в n-ой степени, при этом n — число целое, не равное 0, и прочие. Всякое иррациональное число возможно выразить бесконечной непериодической десятичной дробью, как и любая непериодическая дробь представляет иррациональное число. Правда, иррациональные числа больше встречаются в виде логарифмов, корней, степеней и т.д. Обозначают множество иррациональных чисел — I, которое равняется I = R/Q. В данном выражении R обозначает множество действительных чисел, Q представляет множество рациональных чисел. Над множеством иррациональных чисел можно осуществлять все главные арифметические действия, в то же время, у этого множества отсутствует свойство замкнутости, т.е. при сложении, умножении и т.д. двух иррациональных чисел в результате может выйти рациональное число. Вместе иррациональные и рациональные числа представляют действительные числа.

Иррациональными числами не могут быть:
натуральные, целые, смешанные числа; бесконечные и конечные периодические десятичные и обыкновенные дроби; произведение, сумма, разность, частное от деления (кроме 0) 2-х рациональных чисел.

Если в арифметических операциях участвует хоть одно иррациональное число, в итоге получится иррациональное число. К примеру, 1 + 3,14… = 4,14… Если же арифметические действия осуществляются лишь с иррациональными числами, в результате можем иметь как иррациональное число, так и рациональное. Например, если л корень из 2 умножить на корень из 2 (т. е. два иррациональных числа), в результате будет рациональное число 2. А вот при умножении двух иррациональных чисел: (корень из 2 умноженный на корень из 3) в результате имеем иррациональное число корень из 6. Следует запомнить, что при умножении иррационального числа на 0 в результате будем иметь рациональное число 0.

В числах, представленных в виде корней, степеней и т. д. зачастую сложно определить иррациональное число.

Онлайн калькулятор поможет быстро определить, является ли это значение иррациональным числом и вычислить его до требуемой точности.

Определить является ли число иррациональным

infofaq.ru

📌 ЧИСЛО ИРРАЦИОНАЛЬНОЕ — это… 🎓 Что такое ЧИСЛО ИРРАЦИОНАЛЬНОЕ?


ЧИСЛО ИРРАЦИОНАЛЬНОЕ

ЧИСЛО, ИРРАЦИОНАЛЬНОЕ, число, которое не может быть выражено в виде дроби. Примеры включают Ц2 и число p. Следовательно, иррациональные числа — это числа с бесконечным числом (непериодических) знаков после запятой. (Однако обратное не является правдой: некоторые рациональные дроби, например

1/3, также имеют бесконечную десятичную форму.) Иррациональные числа вместе с рациональными (см. число РАЦИОНАЛЬНОЕ) составляют множество действительных чисел (число ДЕЙСТВИТЕЛЬНОЕ).

Научно-технический энциклопедический словарь.

  • ЕХР
  • ЧИСЛО КОЛИЧЕСТВЕННОЕ

Смотреть что такое «ЧИСЛО ИРРАЦИОНАЛЬНОЕ» в других словарях:

  • ЧИСЛО ТРАНСЦЕНДЕНТНОЕ — ЧИСЛО, ТРАНСЦЕНДЕНТНОЕ, иррациональное число (см. число, ИРРАЦИОНАЛЬНОЕ), не являющееся решением никакого алгебраического уравнения с рациональными коэффициентами. Например, число и число е являются трансцендентными числами, тогда как… …   Научно-технический энциклопедический словарь

  • ИРРАЦИОНАЛЬНОЕ ЧИСЛО — ИРРАЦИОНАЛЬНОЕ ЧИСЛО, см. ЧИСЛО ИРРАЦИОНАЛЬНОЕ …   Научно-технический энциклопедический словарь

  • ЧИСЛО Е — ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590…., является пределом выражения (1/ ) при п, стремящемся к бесконечности. По сути,… …   Научно-технический энциклопедический словарь

  • ЧИСЛО ДЕЙСТВИТЕЛЬНОЕ — ЧИСЛО, ДЕЙСТВИТЕЛЬНОЕ, к действительным числам относятся как рациональные, так и иррациональные числа. Они могут быть представлены в виде десятичных дробей. Действительные числа отличают от комплексных чисел, которые имеют форму а + bi (где i = Ц …   Научно-технический энциклопедический словарь

  • ЧИСЛО РАЦИОНАЛЬНОЕ — ЧИСЛО, РАЦИОНАЛЬНОЕ, число, которое может быть выражено в форме a/b, где а и b целые числа (b не равно нулю). Рациональные числа включают все целые числа. Число, которое не может быть записано таким образом, называется иррациональным числом (см.… …   Научно-технический энциклопедический словарь

  • Число (матем.) — Число, важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие Ч. изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним… …   Большая советская энциклопедия

  • ИРРАЦИОНАЛЬНОЕ ЧИСЛО — число, не являющееся рациональным, т. е. не могущее быть точно выраженным дробью m/n, где m и n целые числа. Действительные иррациональные числа могут быть представлены бесконечными непериодическими десятичными дробями …   Большой Энциклопедический словарь

  • иррациональное число — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN irrational number …   Справочник технического переводчика

  • ЧИСЛО — абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… …   Философская энциклопедия

  • ЧИСЛО e — Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… …   Энциклопедия Кольера

dic.academic.ru

Иррациональное число — Википедия

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде дроби , где  — целое число,  — натуральное число. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Множество иррациональных чисел обычно обозначается заглавной латинской буквой в полужирном начертании без заливки. Таким образом: , то есть множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков, несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

  • Сумма двух положительных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют Дедекиндовы сечения во множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое вещественное трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим, либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя различными числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел несчётно, является множеством второй категории.[1]

Иррациональными являются:

Примеры доказательства иррациональности[править]

Корень из 2[править]

Допустим противное: рационален, то есть представляется в виде дроби , где  — целое число, а  — натуральное число.

Возведём предполагаемое равенство в квадрат:

.

В каноническое разложение левой части равенства число 2 входит в чётной степени, а в разложение 2n2 — в нечётной. Поэтому равенство m2=2n2 невозможно. Значит, исходное предположение было неверным, и  — иррациональное число.

Двоичный логарифм числа 3[править]

Допустим противное: рационален, то есть представляется в виде дроби , где и  — целые числа. Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а правая часть получившегося равенства нечётна. Получаем противоречие.

e[править]

См. раздел «Доказательство иррациональности» в статье «e».

Античность[править]

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. — ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены[источник не указан 1371 день].

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок[источник не указан 1371 день

].

Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение[источник не указан 1342 дня].

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Феодор Киренский доказал иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному

[2] предположению Жана Итара[fr], оно было основано на теореме о том, что нечётное квадратное число делится на восемь с остатком один[3].

Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. «Книга 10 Элементов» Евклида посвящена классификации иррациональных величин.

Средние века[править]

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких так 10, 15, 20 — не являющихся квадратами.

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной.

Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от неё, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней.

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге «Йуктибхаза».

Новое время[править]

В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемым) Дедекиндовым сечением множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.

Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей.

В 1761 году Ламберт показал, что π не может быть рационально, а также что eⁿ иррационально при любом ненулевом рациональном n. Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя — Клиффорда, показал, что π² иррационально, откуда иррациональность π следует тривиально (рациональное число в квадрате дало бы рациональное). Существование трансцендентных чисел было доказано Лиувиллем в 1844—1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд Линдеман в 1882 году, основываясь на этом результате, показал трансцендентность π. Доказательство Линдеманна было затем упрощено Вейерштрассом в 1885 году, ещё более упрощено Давидом Гильбертом в 1893 году и, наконец, доведено до почти элементарного Адольфом Гурвицем и Паулем Горданом.

www.wikiznanie.ru

Что такое рациональные и иррациональные числа

От абстрактности математических понятий порой настолько веет холодом и отстраненностью, что невольно возникает мысль: «Зачем это всё?». Но, несмотря на первое впечатление, все теоремы, арифметические операции, функции и т.п. – не более, чем желание удовлетворить насущные потребности. Особенно чётко это можно заметить на примере появления различных множеств.

Всё началось с появления натуральных чисел. И, хотя, вряд ли сейчас кто-то сможет ответить, как точно это было, но скорее всего, ноги у царицы наук растут откуда-то из пещеры. Здесь, анализируя количество шкур, камней и соплеменников, человек открыл множество «чисел для счёта». И этого ему было достаточно. До какого-то момента, конечно же.

Дальше потребовалось шкуры и камни делить и отнимать. Так возникла потребность в арифметических операциях, а вместе с ними и рациональных числах, которые можно определить как дробь типа m/n, где, например, m — количество шкур, n – количество соплеменников.

Казалось бы, уже открытого математического аппарата вполне достаточно, чтобы радоваться жизнью. Но вскоре оказалось, что бывают случаи, когда результат не то, что не целое число, но даже не дробь! И, действительно, квадратный корень из двух никак иначе не выразить с помощью числителя и знаменателя. Или, например, всем известное число Пи, открытое древнегреческим учёным Архимедом, так же не является рациональным. И таких открытий со временем стало настолько много, что все неподдающиеся «рационализации» числа объединили и назвали иррациональными.

Рассмотренные ранее множества принадлежат набору фундаментальных понятий математики. Это означает, что их не получится определить через более простые математические объекты. Но это можно сделать с помощью категорий (с греч. «высказывания») или постулатов. В данном случае лучше всего было обозначить свойства данных множеств.

o Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.

o Каждое трансцендентное число является иррациональным.

o Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

o Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.

o Множество иррациональных чисел несчётно, является множеством второй категории Бэра.

o Это множество упорядоченное, т. е. для каждых двух различных рациональных чисел a иb можно указать, какое из них меньше другого.
o Между каждыми двумя различными рациональными числами существует еще по крайней мере одно рациональное число, а следовательно, и бесконечное множество рациональных чисел.

o Арифметические действия (сложение, вычитание, умножение и деление) над любыми двумя рациональными числами всегда возможны и дают в результате определенное рациональное же число. Исключением является деление на нуль, которое невозможно.

o Каждое рациональное число может быть представлено в виде десятичной дроби (конечной или бесконечной периодической).

www.kakprosto.ru

Иррациональное число — WiKi

Античность

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (приблизительно 750—690 года до нашей эры) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены[источник не указан 1363 дня].

Первое доказательство существования иррациональных чисел, а точнее существование несоизмеримых отрезков, обычно приписывается пифагорейцу Гиппасу из Метапонта (приблизительно 470 год до нашей эры). Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок[источник не указан 1363 дня].

Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его, изучая длины сторон пентаграммы.[3] Поэтому разумно предположить, что это было золотое сечение так как это и есть отношение диагонали к стороне в правильном пятиугольнике.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Феодор Киренский доказал[4] иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному[5] предположению Жана Итара[fr], оно было основано на теореме о том, что нечётное квадратное число делится на восемь с остатком один[6].

Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. Десятая книга «Начал» Евклида посвящена классификации иррациональных величин.

Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

 Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких, как 10, 15, 20 — не являющихся квадратами. 

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

 результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной. 

Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

 Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от неё, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней. 

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге «Йуктибхаза».

Новое время

В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с работами Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемыми) дедекиндовыми сечениями множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.

Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей. В 1761 году Ламберт с помощю цепных дробей показал, что π{\displaystyle \pi }  не является рациональным числом, а также что ex{\displaystyle e^{x}}  и tg⁡x{\displaystyle \operatorname {tg} x}  иррациональны при любом ненулевом рациональном x{\displaystyle x} . Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя — Клиффорда, показал, что π2{\displaystyle \pi ^{2}}  иррационально, откуда иррациональность π{\displaystyle \pi }  следует тривиально (рациональное число в квадрате дало бы рациональное).

Существование трансцендентных чисел было доказано Лиувиллем в 1844—1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд Линдеман в 1882 году, основываясь на этом результате, показал трансцендентность π{\displaystyle \pi } . Доказательство Линдеманна было затем упрощено Вейерштрассом в 1885 году, ещё более упрощено Давидом Гильбертом в 1893 году и, наконец, доведено до почти элементарного Адольфом Гурвицем и Паулем Горданом.

ru-wiki.org

Иррациональное число — Викизнание… Это Вам НЕ Википедия!

Иррациональное число (лат. irrationalis — неразумный, от лат. in(ir) — отрицательная приставка и лат. ratio — счёт, отношение) — вещественное число, не являющееся рациональным (т. е. целым или дробным). Действительные иррациональные числа могут быть представлены бесконечными непериодическими десятичными дробями, напр. . Иррациональные числа разделяются на нерациональные алгебраические числа и трансцендентные числа. Существование иррациональных отношений (напр., иррациональность отношения диагонали квадрата к его стороне) было известно ещё в древности. Термин ввёл М. Штифель (1544). Иррациональность числа была установлена И. Ламбертом (1766). Строгая теория иррациональных чисел была построена только во 2-й пол. 19 в.

Иррациональное число (Брокгауз и Ефрон)[править]

Иррациональное число — так называются в математике числа, которые не могут быть точно выражены ни целыми числами, ни арифметическими дробями, а представляются бесконечными и непериодическими десятичными дробями; означаются особыми знаками (радикалами) или буквами (е, π). Полная, превосходная по своей строгости теория И. чисел, или, что одно и то же, несоизмеримых отношений, существовала уже у греков и изложена Эвклидом в V-й книге его «Начал». В настоящее время пользуются известностью взгляды гейдельбергского профессора Кантора. Для выяснения сущности И. числа рассмотрим ряд чисел

u1u2u3….. un… (1)

определяющих некоторую переменную величину u Числа u1 u2 … un пусть будут рациональны, т. е. такие, которые известны из элементарной арифметики, именно положительные или отрицательные, целые числа или рациональные дроби. Если существует такое рациональное число а, что числовое значение разности (una) может быть сделано, при достаточно большом n, меньше всякого наперед произвольно заданного малого числа ε, то а называется пределом переменной величины u. Отсюда следует, что ряд (1) обладает свойством:

числовое значение u n+m — un < ε… (2)
при всяком т (хотя бы даже зависящем от n), при достаточно большом n.

Свойство ряда (1), выражаемое неравенством (2), есть основное для переменных, имеющих пределы, но обратного предложения не существует, т. е. переменная величина может иметь ряд частных значений, обладающих свойством (2), и не существовать такого числа а (рационального), которое можно было бы назвать пределом. Так вот, если рационального предела переменной и не существует, а частные значения переменной удовлетворяют свойству, выражаемому неравенством (2), то говорят, что эта переменная имеет пределом И. число. Вычислить И. число с точностью до некоторой заданной дроби 1/р — это значит указать номер n частного значения переменной величины и, имеющей свойство (2), для которого, равно как и для всех высших номеров, удовлетворяется неравенство:

un+m — un < 1/p.

Обозначая это значение переменной через uo, можно сказать, что рациональное число u о есть приближение к И., заданному известным рядом, с точностью до 1/ p. Такое рациональное число uo и вводится затем в приближенные вычисления вместо И. числа. Пусть дана десятичная дробь

3,14159….

у которой цифры десятичных идут в некоторой определенной последовательности, т. е. существуют правила для продолжения этих цифр как угодно далеко, причем ряд цифр не кончается и сколько бы их ни было написано, всегда можно, если пожелаем, по указанным правилам, продолжать ряд далее. Отдельные числа ряда (1) в данном случае будут:

u1 = 3
u2 = 3,1
u3 = 3,14
u4 = 3,141
……………..
……………..


Возьмем разность

u п+тun = 0,000… 00 αβγ … δ


в которой после запятой будет n нулей и затем еще т десятичных цифр. Каковы бы ни были цифры β, γ,… δ, число αβγ… δ < (α + 1)000… Отсюда следует, что при достаточно большом n и совершенно независимом от числа m, дробь (α + 1)/10n может быть сделана как угодно малой, а

un+mun < (α + 1)/10n

причем это неравенство имеет место, сколько бы ни было цифр β, γ… δ, т. е. каково бы ни было конечное число т. Таким образом всякая бесконечная десятичная непериодическая дробь определяет всегда некоторое И. число, напр. π, е , √2 и пр. Поэтому вычислить И. число с точностью до 1/10 n это значит вычислить n десятичных знаков в разложении заданного И. числа в бесконечную десятичную дробь.

Д. Граве. Шаблон:БЭСБЕ

www.wikiznanie.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *