Определите энергию: Определите энергию фотона, соответствующего длине волны λ = 5,0⋅ 10–7 м.

Ядерные реакции (задачи)

Ядерные реакции

1. Перечислить несколько ядерных реакций, в которых может образоваться изотоп 8Be.

2. Какую минимальную кинетическую энергию в лабораторной системе Tmin должен иметь нейтрон, чтобы стала возможной реакция 16O(n,α)13C?

3. Является ли реакция 6Li(d,α)4He эндотермической или экзотермической? Даны удельные энергии связи ядер в МэВ: ε(d) = 1.11; ε() = 7.08; ε(6Li) = 5.33.

4. Определить пороги Tпор реакций фоторасщепления 12С.

  1. γ + 12С → 11С + n
  2. γ + 12С → 11В + р
  3. γ + 14С → 12С + n + n

5. Определить пороги реакций: 7Li(p,α)4He и 7Li(p,γ)8Be.

6. Определить, какую минимальную энергию должен иметь протон, чтобы стала возможной реакция p + d → p + p + n. Даны избытки масс. Δ(1H) = 7.289 МэВ, Δ(2H) = 13.136 МэВ,
Δ(n) = 8.071 МэВ. 

7. Возможны ли реакции:

  1. α + 7Li → 10B + n;
  2. α + 12C → 14N + d

под действием α-частиц с кинетической энергией T = 10 МэВ?

8. Идентифицировать частицу X и рассчитать энергии реакции Q в следующих случаях:

1. 35Сl + X→ 32S + α;4. 23Na + p→ 20Ne + X;
2. 10B + X→ 7Li + α;5. 23Na + d→ 24Mg + X;
3. 7Li + X →7Be + n;6. 23Na + d→ 24
Na + X.

9. Какую минимальную энергию Tmin должен иметь дейтрон, чтобы в результате неупругого рассеяния на ядре 10B возбудить состояние с энергией Eвозб = 1.75 МэВ?

10. Вычислить порог реакции: 14N + α→17О + p, в двух случаях, если налетающей частицей является:
1) α-частица,
2) ядро 14N. Энергия реакции Q = 1.18 МэВ. Объяснить результат.

11. Рассчитать энергии и пороги следующих реакций:

1. d( p,γ)3He;5. 32S(γ,p )31P;
2. d( d,3He )n;  6. 32 (γ,n )31S;
3. 7Li( p,n )7Be;7. 32S(γ,α)28Si;
4. 3He(α,γ)7Be;8. 4He(α,p)7Li;

 

12. Какие ядра могут образовываться в результате реакций под действием: 1) протонов с энергией 10 МэВ на мишени из 7Li; 2) ядер 7Li с энергией 10 МэВ на водородной мишени?

13. Ядро 7LI захватывает медленный нейтрон и испускает γ-квант. Чему равна энергия γ-кванта?

14. Определить в лабораторной системе кинетическую энергию ядра 9Ве, образующегося при пороговом значении энергии нейтрона в реакции 12C(n,α)9Be.

15. При облучении мишени из натурального бора наблюдалось появление радиоактивных изотопов с периодами полураспада 20.4 мин и 0.024 с. Какие образовались изотопы? Какие реакции привели к образованию этих изотопов?

16. Мишень из натурального бора бомбардируется протонами. После окончания облучения детектор -частиц зарегистрировал активность 100 Бк. Через 40 мин активность образца снизилась до ~25 Бк. Каков источник активности? Какая ядерная реакция происходит?

17. α-Частица с кинетической энергией T = 10 МэВ испытывает упругое лобовое столкновение с ядром 12С. Определить кинетическую энергию в л.с. ядра 12C TC после столкновения.

18. Определить максимальную и минимальную энергии ядер 7Ве, образующихся в реакции


7Li(p,n)7Be (Q = -1,65 МэВ) под действием ускоренных протонов с энергией Tp = 5 МэВ.

19. -Частицы, вылетающие под углом θнеупр = 300 в результате реакции неупругого рассеяния с возбуждением состояния ядра 12C с энергией Eвозб = 4.44 МэВ, имеют такую же энергию в л.с., что и упруго рассеянные на том же ядре α-частицы под углом θупр = 450. Определить энергию α-частиц, падающих на мишень .

20. α-Частицы с энергией T = 5 МэВ взаимодействуют с неподвижным ядром 7Li. Определить величины импульсов в с.ц.и., образующихся в результате реакции 7Li(α,n)10B нейтрона pα и ядра 10B pBe.

21. С помощью реакции 32S(α,p)35Cl исследуются низколежащие возбужденные состояния 35Cl (1.219; 1.763; 2.646; 2.694; 3.003; 3.163 МэВ). Какие из этих состояний будут возбуждаться на пучке α-частиц с энергией 5.0 МэВ? Определить энергии протонов, наблюдаемых в этой реакции под углами 00 и 900 при Е =5.0 МэВ.

22. Используя импульсную диаграмму получить связь между углами в л.с. и с.ц.и.

23. Протон с кинетической энергией Тa= 5 МэВ налетает на ядро 1Н и упруго рассеивается на нем. Определить энергию TB и угол рассеяния θB ядра отдачи 1Н, если угол рассеяния протона θb = 300.

24. Для получения нейтронов широко используется реакция t(d,n)α. Определить энергию нейтронов T

n, вылетающих под углом 900 в нейтронном генераторе, использующем дейтроны, ускоренные до энергии Тd = 0.2 МэВ.

25. Для получения нейтронов используется реакция 7Li(p,n)7Be. Энергия протонов Tp = 5 МэВ. Для эксперимента необходимы нейтроны с энергией Tn = 1.75 МэВ. Под каким углом θn относительно направления протонного пучка будут вылетать нейтроны с такой энергией? Какой будет разброс энергий нейтронов ΔT, если их выделять с помощью коллиматора размером 1 см, расположенного на расстоянии 10 см от мишени.

26. Определить орбитальный момент трития lt, образующегося в реакции 27Al(,t)28Si, если орбитальный момент налетающей α-частицы lα = 0.

27.

При каких относительных орбитальных моментах количества движения протона возможна ядерная реакция p + 7Li → 8Be* α + α?

28. С какими орбитальными моментами lp могут вылетать протоны в реакции 12C(,p)11B, если: 1) конечное ядро образуется в основном состоянии, а поглотился Е2- фотон; 2) конечное ядро образуется в состоянии 1/2+, а поглотился М1- фотон; 3) конечное ядро образуется в основном состоянии, а поглотился Е1- фотон?

29. В результате поглощения ядром -кванта вылетает нейтрон с орбитальным моментом ln = 2. Определить мультипольность -кванта, если конечное ядро образуется в основном состоянии.

30. Ядро 12C поглощает γ-квант, в результате чего вылетает протон с орбитальным моментом l = 1. Определить мультипольность поглощенного γ-кванта, если конечное ядро образуется в основном состоянии?

31. Определить орбитальный момент дейтрона ld в реакции подхвата 15N(n,d)14C, если орбитальный момент нейтрона ln = 0.

33. Ядро 40Cа поглощает Е1 γ-квант. Какие одночастичные переходы возможны?

34. Ядро 12C поглощает Е1 γ-квант. Какие одночастичные переходы возможны ?

35. Можно ли в реакции неупругого рассеяния дейтронов на ядре 10В возбудить состояние с характеристиками JP = 2+ , I = 1?

36. Вычислить сечение рассеяния -частицы с энергией 3 МэВ в кулоновском поле ядра

238U в интервале углов от 1500 до 1700.

37. Золотая пластинка толщиной d = 0.1 мм облучается пучком α-частиц с интенсивностью N0 = 10частиц/c. Кинетическая энергия -частиц T = 5 МэВ. Сколько α-частиц на единицу телесного угла падает в секунду на детектор, расположенный под углом = 1700? Плотность золота ρ = 19.3 г/см3.

38. Коллимированный пучок α-частиц с энергией T = 10 МэВ падает перпендикулярно на медную фольгу толщиной δ = 1 мг/см2. Частицы, рассеянные под углом = 30, регистрируются детектором площадью S = 1см2, расположенным на расстоянии l = 20 см от мишени. Какая доля от полного числа рассеянных α-частиц будет зарегистрирована детектором?

39. При исследовании реакции 27Al(p,d)26Al под действием протонов с энергией Tp = 62 МэВ в спектре дейтронов, измеренном под углом θd = 90 с помощью детектора с телесным углом
dΩ = 2·10-4 ср, наблюдались пики с энергиями Td = 45,3; 44,32; 40.91 МэВ. При суммарном заряде протонов q = 2.19 мКл, упавших на мишень толщиной δ = 5 мг/см2, количество отсчетов в этих пиках N составило 5180, 1100 и 4570 соответственно. Определить энергии уровней ядра 26Al, возбуждение которых наблюдалось в этой реакции. Рассчитать дифференциальные сечения dσ/dΩ этих процессов.

40. Интегральное сечение реакции 32S(γ,p)31P с образованием конечного ядра 31P в основном состоянии при энергии падающих γ-квантов, равной 18 МэВ, составляет 4 мб. Оценить величину интегрального сечения обратной реакции 31P(p,γ)32S, отвечающей той же энергии возбуждения ядра 32S, что и в реакции 32S(γ,p)31P. Учесть, что это возбуждение снимается за счет γ-перехода в основное состояние.

41. Рассчитать интенсивность пучка нейтронов J, которым облучали пластинку 55Mn толщиной d = 0.1 см в течении tакт = 15 мин, если спустя tохл = 150 мин после окончания облучения ее активность I составила 2100 Бк. Период полураспада 56Mn 2. 58 ч, сечение активации σ = 0.48 б, плотность вещества пластины ρ = 7.42 г/см3.

42. Дифференциальное сечение реакции dσ/dΩ под углом 900 составляет 10 мб/ср. Рассчитать величину интегрального сечения, если угловая зависимость дифференциального сечения имеет вид 1+2sinθ.

43. Рассеяние медленных (Tn1 кэВ) нейтронов на ядре изотропно. Как можно объяснить этот факт?

44. Определить энергию возбуждения составного ядра, образующегося при захвате α-частицы с энергией T = 7 МэВ неподвижным ядром 10В.

45. В сечении реакции 27Аl (α,р) 30Si наблюдаются максимумы при энергиях α-частиц T 3.95; 4.84 и 6.57 МэВ. Определить энергии возбуждения составного ядра, соответствующие максимумам в сечении.

46. С каким орбитальным моментом могут рассеиваться протоны с Тр = 2 МэВ на ядре 112Sn?

47. Оценить сечение образования составного ядра при взаимодействии нейтронов с кинетической энергией Tn = 1 эВ с ядрами золота 197Au.

48. Оценить сечение образования составного ядра при взаимодействии нейтронов с кинетической энергией Tn = 30 МэВ с ядрами золота 197Au.

49. Сравнить полные сечения реакции для α-частиц с энергией 20 Мэв на ядрах 56Fe и 197Au.

50. Оценить сечение реакции 63Cu(p,n)63Zn, если известны сечения реакций, идущих с образованием того же составного ядра с той же энергией возбуждения:
60Ni(α,p)63Zn — 0.7 б; 63Cu(p,pn)62Cu — 0.87 б; 60Ni(α,pn)62Cu — 0.97 б.

51. Оценить нейтронную ширину Гn изолированного уровня 0+ ядра 108Rh (энергия уровня E= 1. 21 эВ, полная ширина Г = 0.21 эВ), если при резонансном поглощении нейтронов с образованием этого уровня составного ядра сечение поглощения для энергии нейтронов Tn = 1 эВ  σ = 2700 б. Спин ядра-мишени I(107Rh) = 1/2.

52. Получить, исходя из модели оболочек, отношение сечений реакций подхвата 16O(p,d)15O, с образованием конечного ядра 15Oв основном состоянии (JP =1/2) и в состоянии (JP =3/2).

53. Для реакции срыва 35Cl(d,p)36Cl найти возможные значения орбитального момента ln захваченного ядром нейтрона. Указать, исходя из простейшей оболочечной модели, какое из значений ln реализуется, если ядро 36Cl образуется в основном состоянии.

54. Оценить спин и четность состояния ядра 24Mg с энергией 1. 37 МэВ, если при возбуждении этого состоянии в реакции неупругого рассеяния α-частиц с энергией T = 40 Мэв, первый максимум в угловом распределении α-частиц наблюдается под углом 100.

55. Найти угол , под которым должен быть максимум углового распределения протонов в реакции (d,p) на ядре 58Ni, вызванной дейтронами с энергией T=15 МэВ, с образованием ядра 59Ni в основном состоянии.

56. Показать, что в реакции неупругого рассеяния дейтронов на ядре 10B, идущей за счёт сильного взаимодействия, невозможно возбуждение уровней этого ядра с изоспином I = 1.


Спектр нижних уровней ядра

57. Какие состояния из приведенного на рисунке спектра ядра могут возбуждаться в реакциях неупругого рассеяния (α,α’), (d,d’) и (p,p’)?

 

 

 

 

 

58. Оценить отношение сечений двух каналов реакции фоторасщепления ядра 16O:

γ + 16O → 15Ngs + p,                   (а)
γ + 16O → 15N*(JP = 3/2) + p.    (б)

59. При изучении дифракционного рассеяния протонов с кинетической энергией Т = 20 ГэВ на ядрах свинца первый дифракционный минимум наблюдается при θmin = 0.3о. Оценить радиус ядра свинца.

60. Оценить радиус ядра меди, если известно, что при прохождении высокоэнергетичных нейтронов через пластинку меди толщиной 2 см поток нейтронов уменьшился в 1.1 раза. Размером нейтрона пренебречь. ρ(Cu) = 9 г/см3.

Определите энергию фотона Физика 11 класс Мякишев Г.Я. 81-3 – Рамблер/класс

Определите энергию фотона Физика 11 класс Мякишев Г.Я. 81-3 – Рамблер/класс

Интересные вопросы

Школа

Подскажите, как бороться с грубым отношением одноклассников к моему ребенку?

Новости

Поделитесь, сколько вы потратили на подготовку ребенка к учебному году?

Школа

Объясните, это правда, что родители теперь будут информироваться о снижении успеваемости в школе?

Школа

Когда в 2018 году намечено проведение основного периода ЕГЭ?

Новости

Будет ли как-то улучшаться система проверки и организации итоговых сочинений?

Вузы

Подскажите, почему закрыли прием в Московский институт телевидения и радиовещания «Останкино»?

Помогите пожайлуста ответить на вопрос:
1.        Определите энергию фотона, соответствующую длине волны λ = 5,0 ∙ 10-7 м.
 

ответы

 Считаю ответ достоверным:

ваш ответ

Можно ввести 4000 cимволов

отправить

дежурный

Нажимая кнопку «отправить», вы принимаете условия  пользовательского соглашения

похожие темы

Юмор

Олимпиады

ЕГЭ

Компьютерные игры

похожие вопросы 5

ГДЗ Тема 21 Физика 7-9 класс А.В.Перышкин Задание №476 Изобразите силы, действующие на тело.

Привет всем! Нужен ваш совет, как отвечать…
Изобразите силы, действующие на тело, когда оно плавает на поверхности жидкости. (Подробнее…)

ГДЗФизикаПерышкин А.В.Школа7 класс

Подскажите, почему закрыли прием в Московский институт телевидения и радиовещания «Останкино»?

С чем связано окончание приема учащихся в Московский институт телевидения и радиовещания «Останкино»? (Подробнее. ..)

ВузыПоступление11 классНовости

Какой был проходной балл в вузы в 2017 году?

Какой был средний балл ЕГЭ поступивших в российские вузы на бюджет в этом году? (Подробнее…)

Поступление11 классЕГЭНовости

16. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)… Цыбулько И. П. Русский язык ЕГЭ-2017 ГДЗ. Вариант 13.

16.
Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)
в предложении должна(-ы) стоять запятая(-ые). (Подробнее…)

ГДЗЕГЭРусский языкЦыбулько И.П.

ЕГЭ-2017 Цыбулько И. П. Русский язык ГДЗ. Вариант 13. 18. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)…

18.
Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)
в предложении должна(-ы) стоять запятая(-ые). (Подробнее…)

ГДЗЕГЭРусский языкЦыбулько И.П.

Какова формула энергии?

Обновлено 13 декабря 2020 г.

Автор Chris Deziel

Один из фундаментальных законов Вселенной заключается в том, что энергия не создается и не уничтожается — она только меняет форму. Следовательно, существует много формул для энергии. Чтобы понять, как эти формулы являются выражением одного и того же, важно сначала понять, что имеют в виду физики, когда говорят об энергии. Это понятие коренится в концепциях классической физики, разъясненных сэром Исааком Ньютоном. 92

где KE — кинетическая энергия в джоулях, m — масса в килограммах и v — скорость в метрах в секунду.

Сила и работа

Три закона движения Ньютона составляют основу классической физики. Первый закон определяет силу как то, что вызывает движение, а второй закон связывает силу, действующую на объект, с ускорением, которому он подвергается. Если сила (F) ускоряет тело на расстояние (d), она совершает работу (W), равную произведению силы на расстояние, умноженное на коэффициент, учитывающий угол между ними (θ, греческая буква тета). ). В математическом выражении это означает:

W=Fd\cos{\theta}

Единицами силы являются ньютоны, расстояния – метры, а работы – ньютон-метры или джоули. Энергия – это способность выполнять работу, и она также выражается в джоулях.

Кинетическая и потенциальная энергия

Движущийся объект обладает энергией движения, которая эквивалентна работе, необходимой для его остановки. Это называется его кинетической энергией, и она зависит от квадрата скорости объекта (v), а также от половины его массы (m). Объект, находящийся в покое в гравитационном поле Земли, обладает потенциальной энергией в силу своей высоты; если бы он упал свободно, он получил бы кинетическую энергию, равную этой потенциальной энергии. Потенциальная энергия зависит от массы объекта, его высоты (h) и ускорения свободного падения (g). Математически это:

PE=mgh

Электрическая энергия

Расчет энергии в электрических системах зависит от величины тока, протекающего через проводник (I) в амперах, а также от электрического потенциала, или напряжения (В), управляющий ток, в вольтах. Умножение этих двух параметров дает мощность электричества (P) в ваттах, а умножение P на время, в течение которого течет электричество (t) в секундах, дает количество электроэнергии в системе в джоулях. Математическое выражение для электрической энергии в проводящей цепи:

E_e=Pt=VIt

Согласно этому соотношению, если 100-ваттная лампочка горит в течение одной минуты, расходуется 6000 джоулей энергии. Это эквивалентно количеству кинетической энергии, которое имел бы 1-килограммовый камень, если бы вы уронили его с высоты 612 метров (без учета трения о воздух).

Некоторые другие формы энергии

Свет, который мы видим, представляет собой электромагнитное явление, обладающее энергией благодаря колебаниям пакетов волн, называемых фотонами. Немецкий физик Макс Планк определил, что энергия фотона пропорциональна частоте (f), с которой он колеблется, и вычислил константу пропорциональности (h), которую в его честь назвали постоянной Планка. Таким образом, выражение для энергии фотона: 92

Расчеты Эйнштейна были подтверждены разработкой атомной бомбы.

Как рассчитать энергию по длине волны

Обновлено 22 декабря 2020 г.

Автор Chris Deziel

Свет — это волна или частица? И то, и другое одновременно, и на самом деле то же самое верно для электронов, как продемонстрировал Поль Дирак, когда он представил свое релятивистское уравнение волновой функции в 1928 году. Как оказалось, свет и материя — почти все, что составляет материальную вселенную — состоит из квантов, которые представляют собой частицы с волновыми характеристиками.

Главной вехой на пути к этому неожиданному (в то время) заключению стало открытие Генрихом Герцем в 1887 году фотоэлектрического эффекта. Эйнштейн объяснил его с точки зрения квантовой теории в 1905 году, и с тех пор физики признали, что хотя свет может вести себя как частица, это частица с характерной длиной волны и частотой, и эти величины связаны с энергией света или излучения.

Макс Планк Отношение длины волны фотона к энергии

Уравнение преобразования длины волны принадлежит отцу квантовой теории, немецкому физику Максу Планку. Примерно в 1900 году он представил идею кванта при изучении излучения, испускаемого черным телом, то есть телом, поглощающим все падающее излучение.

Квант помог объяснить, почему такое тело испускает излучение в основном в средней части электромагнитного спектра, а не в ультрафиолетовом, как предсказывала классическая теория.

Объяснение Планка постулировало, что свет состоит из дискретных пакетов энергии, называемых квантами или фотонами, и что энергия может принимать только дискретные значения, кратные универсальной константе. Постоянная, называемая постоянной Планка, обозначается буквой 9.0075 ч ​, и имеет значение 6,63×10 -34 м 2 кг/с или эквивалентно 6,63×10 -34 джоулей-секунд.

Планк объяснил, что энергия фотона, E , является произведением его частоты, которая всегда обозначается греческой буквой ню ( ν ), и этой новой постоянной. В математических терминах: ​ E ​ = ​ ​.

Поскольку свет представляет собой волновое явление, уравнение Планка можно выразить в терминах длины волны, обозначаемой греческой буквой лямбда (​ λ ​), потому что для любой волны скорость распространения равна произведению ее частоты на длину волны. Поскольку скорость света является постоянной величиной, обозначаемой ​ c ​, уравнение Планка может быть выражено как:

E = \frac{hc}{λ}

уравнения Планка дает вам мгновенный калькулятор длины волны для любого излучения, предполагая, что вы знаете энергию излучения. Формула длины волны:

λ = \frac{hc}{E}

Оба h и c являются константами, поэтому уравнение преобразования длины волны в энергию в основном утверждает, что длина волны обратно пропорциональна энергии. Другими словами, длинноволновое излучение, то есть свет в красном конце спектра, имеет меньше энергии, чем коротковолновое излучение в фиолетовом конце спектра.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *