Первообразная sinx cosx: Mathway | Популярные задачи

2

Внеклассный урок — Первообразная. Интегрирование

Первообразная. Интегрирование.

 

Первообразная.

Первообразную легко понять на примере.

Возьмем функцию у = х3. Как мы знаем из предыдущих разделов, производной от х3 является 3х2:

(х3)’ = 3х2.

Следовательно, из функции у = х3 мы получаем новую функцию: у = 3х2.
Образно говоря, функция у = х3 произвела функцию у = 3х2 и является ее «родителем». В математике нет слова «родитель», а есть родственное ему понятие: первообразная.

То есть: функция у = х3 является первообразной для функции у = 3х2.

Определение первообразной:

Если F‘(x) = f(x), то функцию у = F(x) называют первообразной для функции у =  f(x).

В нашем примере (х3)’ = 3х2, следовательно у = х3 – первообразная для у = 3х2.

 

Интегрирование.

Как вы знаете, процесс нахождения производной по заданной функции называется дифференцированием. А обратная операция называется интегрированием.

Интегрирование – это процесс нахождения функции по заданной производной.

 
Приведенный выше пример как раз является примером интегрирования: по производной (

х3)’ мы вычислили функцию у = 3х2.

 

Правила и формулы для первообразной.

(1)

Первообразная суммы равна сумме первообразных.

 

Пример-пояснение:

Найдем первообразную для функции у = 3х2 + sin x.

Решение:

Мы знаем, что первообразной для 3х2 является х3.

Первообразной для sin x является –cos x.

Складываем два первообразных и получаем первообразную для заданной функции:

у = х3 + (–cos x),

у = х3 – cos x.

Ответ:

для функции у = 3х2 + sin x первообразной является функция у = х3 – cos x.

 

(2)

kF(x) является первообразной для kf(x), если F(x) является первообразной для f(x).

 

Пример-пояснение:

Найдем первообразную для функции у = 2 sin x.

Решение:

Замечаем, что k = 2. Первообразной для sin x является –cos x.

Следовательно, для функции у = 2 sin x первообразной является функция

у = –2 cos x.
Коэффициент 2 в функции у = 2 sin x соответствует коэффициенту первообразной, от которой эта функция образовалась.

 

(3)

Если  у = F(x) является первообразной для функции y = f(x), то для функции y = f(kx + m) первообразной является функция:

                                                                             1
                                                                      y = — F (kx + m)
                                                                             k

 

Пример-пояснение:

Найдем первообразную для функции y = sin 2x.

Решение:

Замечаем, что k = 2. Первообразной для sin x является –cos x.

Применяем нашу формулу при нахождении первообразной для функции y = cos 2x:

       1
y = — · (–cos 2x),
       2

            cos 2x
y = – ————
               2

                                                                                                                       cos 2x
Ответ: для функции y = sin 2x первообразной является функция y = – ————
                                                                                                                           2


(4)

Если у = F(x) является первообразной для функции y = f(x), то функция y = f(x) имеет бесконечное множество первообразных, имеющих вид:

y = F(x) + C

 

Пример-пояснение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *