Плотность металлов примеры: Плотность металлов: расчет и примеры использования

Содержание

Плотность металлов

Тип прокатаВид металлаРазмеры

Лист, Плита, Лента (полоса), Шина

Круг, проволока

Шестигранник

Квадрат

Труба круглая, втулка

Труба профильная

Уголок

Швеллер

Тавр

Двутавр

-Выберите-АлюминийМедьЛатуньБронзаОловоСвинецЦинкНикелевые сплавыМедно-никелевые сплавыНихромНержавеющие сталиСталь

АМг2

АМг3

АМг5

АМг6

АД1

АД31

АМц, АМцС, ММ

Д16

1105, А5, А5Е, А6, А7, АД0, АД00

М1, М2, М3

Л63

Л68

ЛС59-1

Л70

Л80

Л85

Л90

БрАЖ9-4

БрОЦС5-5-5

БрАЖМц10-3-1,5

БрАМц9-2

БрКМц3-1

БрБ2

БрХ1

БрАЖН10-4-4

БрОФ6,5-0,15

БрОФ7-0,2

БрОЦ4-3

С0, С1, С2

Ц0, Ц1

НМц2,5

НМц5

НК0,2

Алюмель НМцАК2-2-1

Монель НМЖМц28-2,5-1,5

Хромель Т НХ9,5

МНЖ5-1

Манганин МНМц3-12

Мельхиор МН19

Копель МНМц43-0,5

Константан МНМц40-1,5

Куниаль А МНА6-1,5

Куниаль Б МНА6-1,5

Нейзильбер МНЦ15-20

Х15Н60

Х20Н80

04Х18Н10Т, 08Х18Н12Б

08Х13, 08Х17Т, 08Х20Н14С2

08Х22Н6Т, 15Х25Т

08Х18Н10, 08Х18Н10Т

08Х18Н12Т

10Х17Н13М2Т

10Х23Н18

12Х13, 12Х17

12Х18Н10Т, 12Х18Н12Т, 12Х18Н9

Ст3, Ст5, Ст10, Ст20

Длина (м)


b — Ширина (мм)

c — Толщина (мм)

Длина (м)

b — Диаметр (мм)

Длина (м)

b — Сечение (мм)

Длина (м)

b — Сечение (мм)

Длина (м)

b — Толщина стенки (мм)

c — Диаметр (мм)



Длина (м)

b — Толщина стенки (мм)

c — Ширина (мм)

d — Высота (мм)

Длина (м)

b — Толщина стенки (мм)

c — Высота полки1 (мм)

d — Высота полки2 (мм)

Длина (м)

b — Толщина стенки (мм)

c —

Ширина (мм)

d — Высота (мм)

Длина (м)

b — Толщина стенки (мм)

c — Ширина (мм)

d — Высота (мм)

e — Толщина перемычки (мм)

Длина (м)

b — Толщина стенки (мм)

c — Ширина (мм)

d — Высота (мм)

e — Толщина перемычки (мм)


Плотность металлов и сплавов: таблица плотности при температуре 0

В таблице представлена плотность металлов и сплавов, а также коэффициент К отношения их плотности к плотности стали. Плотность металлов и сплавов в таблице указана в размерности г/см3 для интервала температуры от 0 до 50°С.

Дана плотность металлов, таких как: бериллий Be, ванадий V, висмут Bi, вольфрам W, галлий Ga, гафний Hf, германий Ge, золото Au, индий In, кадмий Cd, кобальт Co, литий Li, марганец Mn, магний Mg, медь Cu, молибден Mo, натрий Na, никель Ni, олово Sn, палладий Pd, платина Pt, рений Re, родий Rh, ртуть Hg, рубидий Rb, рутений Ru, свинец Pb, серебро Ag, стронций Sr, сурьма Sb, таллий Tl, тантал Ta, теллур Te, титан Ti, хром Cr, цинк Zn, цирконий Zr.

Плотность алюминиевых сплавов и металлической стружки: алюминиевые сплавы: АЛ1, АЛ2, АЛ3, АЛ4, АЛ5, АЛ7, АЛ8, АЛ9, АЛ11, АЛ13, АЛ21, АЛ22, АЛ24, АЛ25. Насыпная плотность стружки: стружка алюминиевая мелкая дробленая, стальная мелкая, стальная крупная, чугунная. Примечание: плотность стружки в таблице дана в размерности т/м3.

Плотность сплавов магния и меди: магниевые сплавы деформируемые: МА1, МА2, МА2-1, МА8, МА14; магниевые сплавы литейные: МЛ3, МЛ4, МЛ6, МЛ10, МЛ11, МЛ12; медно-цинковые сплавы (латуни) литейные: ЛЦ16К4, ЛЦ23А6Ж3Мц2, ЛЦ30А3, ЛЦ38Мц2С2, ЛЦ40Сд, ЛЦ40С, ЛЦ40 Мц3Ж, ЛЦ25С2; медно-цинковые сплавы, обрабатываемые давлением: Л96, Л90, Л85, Л80, Л70, Л68, Л63, Л60, ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2, ЛЖМц59-1-1, ЛН65-5, ЛМ-58-2, ЛМ-А57-3-1.

Плотность бронзы различных марок: бронзы безоловянные, обрабатываемые давлением: БрА5, 7, БрАМц9-2, БрАЖ9-4, БрАЖМц10-3-1,5, БрАЖН10-4-4, БрКМц3,1, БрКН1-3, БрМц5; бронзы бериллиевые: БрБ2, БрБНТ1,9, БрБНТ1,7; бронзы оловянные деформируемые: Бр0Ф8,0-0,3, Бр0Ф7-0,2, Бр0Ф6,5-0,4, Бр0Ф6,5-0,15, Бр0Ф4-0,25, Бр0Ц4-3, Бр0ЦС4-4-2,5, Бр0ЦС4-4-4; бронзы оловянные литейные: Бр03Ц12С5, Бр03Ц7С5Н1, Бр05Ц5С5; бронзы безоловянные литейные: БрА9Мц2Л, БрА9Ж3Л, БрА10Ж4Н4Л, БрС30.

Плотность сплавов никеля и цинка: никелевые и медно-никелевые сплавы, обрабатываемые давлением: НК0,2, НМц2,5, НМц5, НМцАК2-2-1, НХ9,5, МНМц43-0,5, НМЦ-40-1,5, МНЖМц30-1-1, МНЖ5-1, МН19, 16, МНЦ15-20, МНА 13-3, МНА6-1,5, МНМц3-12; цинковые сплавы антифрикционные: ЦАМ9-1,5Л, ЦАМ9-1,5, ЦАМ10-5Л, ЦАМ10-5.

Плотность стали, чугуна и баббитов: сталь конструкционная, стальное литье, сталь быстрорежущая с содержанием вольфрама 5…18%; чугун антифрикционный, ковкий и высокопрочный, чугун серый; баббиты оловянные и свинцовые: Б88, 83, 83С, Б16, БН, БС6.

Приведем показательные примеры плотности различных металлов и сплавов. По данным таблицы видно, что наименьшую плотность имеет металл литий, он считается самым легким металлом, плотность которого даже меньше плотности воды — плотность этого металла равна 0,53 г/см3 или 530 кг/м3. А у какого металла наибольшая плотность? Металл, обладающий наибольшей плотностью — это осмий. Плотность этого редкого металла равна 22,59 г/см3 или 22590 кг/м3.

Следует также отметить достаточно высокую плотность драгоценных металлов. Например, плотность таких тяжелых металлов, как платина и золото, соответственно равна 21,5 и 19,3 г/см3. Дополнительная информация по плотности и температуре плавления металлов представлена в этой таблице.

Сплавы также обладают широким диапазоном значений плотности. К легким сплавам относятся магниевые сплавы и сплавы алюминия. Плотность алюминиевых сплавов выше. К сплавам с высокой плотностью можно отнести медные сплавы такие, как латуни и бронзы, а также баббиты.

Источник:
Цветные металлы и сплавы. Справочник. Издательство «Вента-2». НН., 2001 — 279 с.

Как определить плотность металла – Примечания Канадского института охраны природы (CCI) 9/10

  • Введение
  • Процедура: определение плотности металла
  • Наука, стоящая за измерением плотности
  • Благодарности
  • Ссылки

Введение

Плотность объекта равна массе объекта, деленной на его объем. Плотность характеризует материал, из которого сделан объект, и ее значение может помочь идентифицировать материал.

За исключением объектов простой формы, трудно определить объем напрямую. Простой способ определить плотность металлического предмета — взвесить его в воздухе, а затем снова взвесить, когда он будет погружен в жидкость, как описано в разделе Наука об измерении плотности. Вода является наиболее удобной жидкостью для использования, но если предмет нельзя погружать в воду, можно использовать органические растворители, такие как этанол или ацетон.

Плотность объекта можно рассчитать по двум измерениям веса и плотности жидкости.

При правильном балансе и подходящем контейнере этот метод можно использовать для самых разных объектов: больших или малых, металлических и неметаллических. Этот метод работает для сложных форм, даже для объектов с отверстиями, если жидкость может проникнуть в отверстия и заполнить их. После того, как плотность определена, ее можно сравнить с плотностью известных материалов, чтобы сузить круг вопросов, из которых может быть сделан объект.

В этом примечании описывается процедура и необходимые материалы для определения плотности металлического предмета. Первым шагом является проведение процедуры на одном или нескольких металлических объектах известного состава, будь то чистый металл или сплав, чтобы получить опыт использования метода и убедиться, что он используется правильно. Затем можно определить плотность неизвестных металлов.

Процедура: определение плотности металла

Оборудование и материалы, необходимые для определения плотности

  • Небольшие металлические предметы, которые можно погружать в воду
  • Весы с возможностью взвешивания ниже баланса (то есть могут взвешивать предметы, подвешенные под ним) и которые могут измерять с разрешением не менее 0,01 грамма (см. раздел Весы без возможности взвешивания ниже баланса, чтобы узнать, как адаптировать процедуру взвешивания ниже баланс)
  • Металлическая проволока для крепления к крючку внутри баланса (хорошо подойдет изогнутая скрепка)
  • Подставка или платформа для удержания баланса, чтобы предметы можно было подвешивать под ней с помощью крючка
  • Стаканы достаточно большие, чтобы предметы могли быть полностью погружены в воду без перелива жидкости
  • Опоры для удержания стаканов на нужной высоте под весами
  • Водопроводная вода
  • Калькулятор     
  • Нейлоновая нить (например, леска или аналогичный легкий материал) для подвешивания предметов под весами
  • Одноразовые нитриловые перчатки
  • Дополнительно: зажимы для крепления опоры весов к краю стойки

Процедура определения плотности с возможностью взвешивания ниже баланса

  1. Снимите крышку с нижней стороны весов, чтобы открыть внутренний крючок.
  2. Поместите весы на опору с отверстием для доступа к внутреннему крюку.
  3. Прикрепите проволочный крюк к внутреннему крюку, а затем тарируйте весы (установите их на ноль).
  4. Подвесьте предмет на крючок под весами с помощью нейлоновой нити или аналогичного материала и взвесьте его в воздухе. Надевайте перчатки при работе с металлическими предметами, особенно с подозрениями на содержание свинца.
  5. Наполните стакан водой и поставьте его под весы.
  6. Поднимите стакан, пока объект полностью не погрузится в него. Поместите подставку под стакан, чтобы удерживать его на нужной высоте. Убедитесь, что под объектом или в пустотах внутри объекта нет пузырьков.
  7. Взвесьте погруженный объект.
  8. Рассчитайте плотность, используя приведенное ниже уравнение.
  9. Сравните расчетную плотность с известной плотностью металлов и сплавов, используя приведенную ниже таблицу или более подробные списки, доступные в справочных материалах.
  10. Повторите шаги 4–9 с остальными объектами.

Расчет плотности

Плотность ρ объекта или материала определяется как масса m, деленная на объем V; в символах ρ = m/V. Если предмет взвешивают в воздухе, чтобы определить его фактическую массу, и взвешивают в жидкости, чтобы определить его (кажущуюся) массу в жидкости, то плотность предмета определяется как:0017

Плотность воды 0,998 г/см 3 при 20°С и 0,997 г/см 3 при 25°С.

Результаты этой процедуры

Примеры объектов

На рис. 1 показаны примеры восьми различных металлических образцов, использованных для демонстрации этой процедуры.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0358
Рисунок 1. Металлические предметы, используемые для демонстрации процедуры.

Ниже приведены измеренные значения плотности образцов металлов на рис. 1.

В верхнем ряду слева направо:

  1. Вероятно, чугун (7,13 г/см 3 )
  2. Алюминий высокой чистоты (2,70 г/см 3 )
  3. Красноватый медный сплав (возможно, 85 % меди и 15 % цинка, 8,23 г/см 3 )
  4. Медь высокой чистоты (8,88 г/см 3 )

В нижнем ряду слева направо:

  1. Литой цинк (сплав неизвестен, 7,09 г/см 3 )
  2. Свинец высокой чистоты (11,20 г/см 3 )
  3. Олово высокой чистоты (7,27 г/см 3 )
  4. Желтый картридж из латуни (70 % меди и 30 % цинка, 8,45 г/см 3 )

В каждом образце плотность определяли по приведенной выше формуле. Например, для алюминиевого предмета (b) масса оказалась равной 110,18 г в воздухе и 69,45 г в воде, что дает плотность 2,70 г/см 3 . Для чугунного предмета (а) масса была 2090,47 г в воздухе и 180,13 г в воде, что дает 7,13 г/см 3 . Для свинцового объекта (f) масса в воздухе составляла 102,44 г, а в воде — 93,31 г, что дает 11,20 г/см 3 .

Измеренные плотности алюминия, чугуна и свинца (2,70, 7,13 и 11,20 г/см 3 ) близки к известным плотностям (2,71, 7,20 и 11,33 г/см 3 из таблицы 1). Таким образом, алюминиевые и свинцовые предметы легко идентифицируются по плотности.

Для предмета из чугуна одной плотности недостаточно, чтобы исключить другие металлы, такие как цинк (известная плотность 7,13 г/см 3 ). Когда плотность неизвестного металла близка к нескольким металлам и сплавам (например, цинку, железу и олову), тогда необходимо определить другие свойства, такие как магнетизм и цвет, чтобы помочь идентифицировать его.

Известная плотность отдельных металлов и сплавов

Известная плотность выбранных металлов и сплавов приведена в таблице 1 в порядке возрастания плотности (ASTM 2006, Lide 1998).

Таблица 1: известная плотность выбранных металлов и сплавов
Металл или сплав Плотность (г/см 3 )
Алюминий 2,71
Алюминиевые сплавы 2,66–2,84
Цинк 7,13
Железо (серое литье) 7,20
Олово 7,30
Сталь (углеродистая) 7,86
Нержавеющая сталь 7,65–8,03
Латунь (картридж: 70 % меди, 30 % цинка) 8,52
Латунь (красная: 85 % меди, 15 % цинка) 8,75
Нейзильбер (65 % меди, 18 % никеля, 17 % цинка) 8,75
Бронза (85 % меди, 5 % олова, 5 % цинка, 5 % свинца) 8,80
Никель 8,89
Медь 8,94
Серебро 10,49
Свинец 11,33
Золото 19. 30

Детали баланса

Весы с возможностью взвешивания ниже нормы обычно поставляются с крышкой под внутренним крюком. На рис. 2 показан пример расположения крышки на дне весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0359
Рис. 2. Весы с возможностью взвешивания ниже баланса.

На рис. 3 показан увеличенный вид с закрытой крышкой; на рис. 4 крышка открывается, открывая внутренний крючок.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0360
Рис. 3. Фрагмент нижней стороны весов, показывающий подвижную металлическую крышку, закрывающую внутренний крюк.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0361
Рис. 4. Фрагмент нижней стороны весов, показывающий внутренний крючок после поворота металлической крышки.

На рис. 5 показана металлическая проволока, согнутая в виде крючков на обоих концах. На рис. 6 показан крючок на одном конце проволоки, прикрепленный к внутреннему крючку внутри весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0363
Рисунок 5. Проволока с концами, загнутыми в форме крючка.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0362
Рисунок 6. Деталь проволоки, загнутой в крюки на обоих концах. Верхний конец крючка прикреплен к другому крючку внутри весов.

На рис. 7 показаны весы, размещенные на подставке из плексигласа с прорезанным в верхней части отверстием. Отверстие позволяет получить доступ к крючку на нижней стороне весов.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0365
Рис. 7. Весы помещаются на подставку из плексигласа, при этом крюк вот-вот пройдет через отверстие в подставке.

На рис. 8 показаны весы на штативе из плексигласа с прямоугольным образцом из чистой меди, взвешиваемым на воздухе. На рис. 9 показаны весы на штативе из плексигласа с прямоугольным образцом из чистой меди, взвешиваемым в воде. Меньшая подставка из плексигласа используется для поддержки стакана на нужной высоте.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0366
Рис. 8. Взвешивание прямоугольного образца чистой меди на воздухе.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0367
Рис. 9. Прямоугольный образец из чистой меди, погруженный в воду.

На рис. 10 показан пример объекта с отверстием, в которое попали пузырьки воздуха. Будьте осторожны, чтобы пузырьки воздуха не попали в объект, так как это приведет к неточным показаниям.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0375
Рисунок 10. Три пузырька воздуха, застрявшие в отверстии.

Дополнительная информация

Использование других растворителей, кроме воды

Если нецелесообразно погружать объект в воду, например, из железа, из-за того, что он очень восприимчив к ржавчине, можно использовать органический растворитель, такой как ацетон или безводный этанол. Необходимо использовать надлежащую вентиляцию и соответствующие средства индивидуальной защиты. Рекомендуемое оборудование см. в паспорте безопасности (SDS) конкретного растворителя. Плотность ацетона 0,790 г/см 3 и плотность безводного этанола 0,789 г/см 3 , оба при 20°С. Для тех, кому может понадобиться использовать одну из этих других жидкостей, попробуйте измерить плотность объекта, используя как воду, так и одну из этих жидкостей, и сравните результаты.

Советы по адаптации весов
Альтернативная подставка для весов

Лист фанеры с отверстием можно прикрепить к краю стойки, если нет подставки для балансировки (Рисунок 11).

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0296
Рисунок 11: Платформа для весов из фанеры и зажимов.

Весы без возможности взвешивания ниже баланса

Весы без крюка для взвешивания можно использовать для определения плотности, но для этого требуется рама, чтобы подвешивать объект под весами и передавать вес объекта на весы. Баланс должен быть установлен на платформе; можно использовать установку, подобную показанной на рис. 11. (В этом случае отверстие в дереве, показанное на рис. 11, не требуется.) Затем вокруг весов и платформы устанавливается четырехгранная рама (в форме фоторамки), которая опирается только на чашу весов и не соприкасается ни с одной из сторон. другая часть баланса (рис. 12). Весы тарируются с рамой и крюком на месте, а затем объект прикрепляется к крюку на раме и взвешивается в воздухе и в жидкости, как в шагах 4–9.Методика: определение плотности металла.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0298
Рис. 12. Вид спереди (левая сторона рисунка) и вид сбоку (правая сторона), демонстрирующие весы без возможности взвешивания ниже баланса. Верхний сегмент прямоугольной рамы опирается на чашу весов, а предмет крепится к нижнему сегменту.

Наука, стоящая за измерением плотности

Плавучесть и принцип Архимеда

Методы этой процедуры восходят к третьему веку до нашей эры. В своей книге «О плавающих телах» Архимед Сиракузский предположил, что если объект погрузить в жидкость и взвесить, он будет измерен как легче, чем его истинный вес, на вес жидкости, которую он вытесняет. История гласит, что Архимед использовал эту идею, чтобы показать, что корона — это не чистое золото, а скорее смесь золота и серебра (Heath 1920).

Объект кажется легче в жидкости, потому что на объект действует сила, называемая выталкивающей силой. Сила возникает из-за того, что давление в жидкости увеличивается с глубиной, поэтому давление на нижнюю часть объекта (толкающее объект вверх) выше, чем давление на верхнюю часть (толкающее его вниз). Разница между давлением вверх и вниз создает выталкивающую силу. Выталкивающая сила, толкающая предмет вверх, действует против силы тяжести, которая тянет предмет вниз. Если выталкивающая сила меньше силы тяжести, объект утонет, но в жидкости будет казаться, что он весит меньше, чем в воздухе. Если выталкивающая сила больше силы тяжести, объект всплывет на поверхность жидкости.

Плотность объекта рассчитывается по приведенной ранее формуле

Когда плотность известна, ее можно использовать для расчета объема объекта по следующей формуле:

Объем объекта = (масса в воздухе) / (плотность объекта)

Как и вода, воздух создает выталкивающую силу. (Вот почему воздушные шары с гелием всплывают вверх.) Выталкивающая сила воздуха слишком мала, чтобы иметь значение в этой процедуре, но ее следует учитывать, когда требуется высокая точность взвешивания (Skoog et al. 2014).

Плотность определяется по перемещенному объему

Более простой, но менее точный способ измерения плотности состоит в том, чтобы поместить объект в жидкость и измерить объем вытесненной жидкости. Это можно использовать для небольших объектов, которые помещаются в градуированный цилиндр, например, чтобы решить, сделан ли объект из свинца или менее плотного металла.

Процедура следующая. Найдите градуированный цилиндр диаметром не намного больше предмета. Определите массу предмета с помощью подходящих весов. Добавьте воду в мерный цилиндр и запишите первоначальный объем. Полностью погрузите предмет в воду, стараясь не допустить появления пузырьков, а затем запишите объем еще раз. Объем объекта равен разности конечного и начального объемов, отсчитанных от градуированного цилиндра, а плотность — это масса, деленная на объем объекта.

В качестве примера была измерена фигурка лося. Масса составила 4,088 г. На рис. 13 фигурка изображена снаружи градуированного цилиндра, а на рис. 14 — в погруженном состоянии. Объем воды в градуированном цилиндре увеличился с 5,0 мл до 5,6 мл, когда фигурка была погружена в воду, что дало изменение объема на 0,6 мл. Игнорируя любые ошибки в измерении объема, вычисленная плотность составляет 4,088 г/0,6 мл = 6,8 г/см 3 . (Примечание: 1 мл = 1 см 3 .) Это меньше плотности цинка и может свидетельствовать о сплаве цинка и более легкого металла, возможно, магния или алюминия. Но учитывая небольшой объем, есть погрешности в измерении. Объем можно измерить только с точностью до 0,1 мл с помощью мерного цилиндра, поэтому объем может составлять примерно от 0,5 мл до 0,7 мл. Таким образом, плотность может варьироваться от 4,088 г/0,7 мл = 5,8 г/см 3 до 4,088 г/0,5 мл = 8,2 г/см 3 . Из этого диапазона размеров фигурка может быть из цинка, железа, олова, стали или других сплавов, но это не чистый алюминий или чистый свинец. На самом деле анализ показал, что это олово с плотностью 7,30 г/см 3 .

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0373
Рис. 13. Небольшой металлический предмет перед погружением в воду в градуированном цилиндре объемом 25 мл. Обратите внимание на уровень воды.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0374
Рисунок 14. Небольшой металлический предмет после погружения в воду в градуированном цилиндре объемом 25 мл. Уровень воды примерно на 0,6 мл выше, чем до погружения объекта.

Другое использование

Описанные выше процедуры можно использовать не только для идентификации металлов по их плотности.

Груз для литья металлов

При отливке скульптуры необходимо оценить количество металла, необходимого для заполнения формы модели скульптуры. Если отливаемая модель может быть погружена в воду, объем модели можно определить с помощью описанных выше методов. Тогда необходимую массу m металла можно рассчитать по объему V модели и плотности ρ металла по формуле m = ρV. (Имейте в виду, что дополнительный металл обычно требуется для заполнения каналов, направляющих расплавленный металл в форму.)

Благодарности

Особая благодарность Миган Уолли, Люси ‘т Харт и Кэтрин Мачадо, бывшим стажерам CCI, за их помощь в подготовке этой заметки.

Ссылки

ASTM G1-03. «Стандартная практика подготовки, очистки и оценки образцов для испытаний на коррозию». В Ежегодном сборнике стандартов ASTM, vol. 03. 02. Вест Коншохокен, Пенсильвания: Американское общество испытаний и материалов, 2006 г., стр. 17–25.

Хит, Т.Л. Архимед. Нью-Йорк, штат Нью-Йорк: Макмиллан, 19 лет.20.

Лиде, Д.Р., изд. Справочник CRC по химии и физике, 79-е изд. Бока-Ратон, Флорида: CRC Press, 1998, стр. 12-191–12-192.

Скуг, Д.А., Д.М. Уэст, Ф.Дж. Холлер и С.Р. Присесть. Основы аналитической химии, 9-е изд. Бельмонт, Калифорния: Брукс/Коул, 2014 г., стр. 22–23.

Автор Линдси Селвин

Également publié во французской версии.

© Правительство Канады, Канадский институт охраны природы, 2016 г.

ISSN 1928-1455

Как определить плотность металла – Примечания Канадского института охраны природы (CCI) 9/10

  • Введение
  • Процедура: определение плотности металла
  • Наука, стоящая за измерением плотности
  • Благодарности
  • Ссылки

Введение

Плотность объекта равна массе объекта, деленной на его объем. Плотность характеризует материал, из которого сделан объект, и ее значение может помочь идентифицировать материал.

За исключением объектов простой формы, трудно определить объем напрямую. Простой способ определить плотность металлического предмета — взвесить его в воздухе, а затем снова взвесить, когда он будет погружен в жидкость, как описано в разделе Наука об измерении плотности. Вода является наиболее удобной жидкостью для использования, но если предмет нельзя погружать в воду, можно использовать органические растворители, такие как этанол или ацетон. Плотность объекта можно рассчитать по двум измерениям веса и плотности жидкости.

При правильном балансе и подходящем контейнере этот метод можно использовать для самых разных объектов: больших или малых, металлических и неметаллических. Этот метод работает для сложных форм, даже для объектов с отверстиями, если жидкость может проникнуть в отверстия и заполнить их. После того, как плотность определена, ее можно сравнить с плотностью известных материалов, чтобы сузить круг вопросов, из которых может быть сделан объект.

В этом примечании описывается процедура и необходимые материалы для определения плотности металлического предмета. Первым шагом является проведение процедуры на одном или нескольких металлических объектах известного состава, будь то чистый металл или сплав, чтобы получить опыт использования метода и убедиться, что он используется правильно. Затем можно определить плотность неизвестных металлов.

Процедура: определение плотности металла

Оборудование и материалы, необходимые для определения плотности

  • Небольшие металлические предметы, которые можно погружать в воду
  • Весы с возможностью взвешивания ниже баланса (то есть могут взвешивать предметы, подвешенные под ним) и которые могут измерять с разрешением не менее 0,01 грамма (см. раздел Весы без возможности взвешивания ниже баланса, чтобы узнать, как адаптировать процедуру взвешивания ниже баланс)
  • Металлическая проволока для крепления к крючку внутри баланса (хорошо подойдет изогнутая скрепка)
  • Подставка или платформа для удержания баланса, чтобы предметы можно было подвешивать под ней с помощью крючка
  • Стаканы достаточно большие, чтобы предметы могли быть полностью погружены в воду без перелива жидкости
  • Опоры для удержания стаканов на нужной высоте под весами
  • Водопроводная вода
  • Калькулятор     
  • Нейлоновая нить (например, леска или аналогичный легкий материал) для подвешивания предметов под весами
  • Одноразовые нитриловые перчатки
  • Дополнительно: зажимы для крепления опоры весов к краю стойки

Процедура определения плотности с возможностью взвешивания ниже баланса

  1. Снимите крышку с нижней стороны весов, чтобы открыть внутренний крючок.
  2. Поместите весы на опору с отверстием для доступа к внутреннему крюку.
  3. Прикрепите проволочный крюк к внутреннему крюку, а затем тарируйте весы (установите их на ноль).
  4. Подвесьте предмет на крючок под весами с помощью нейлоновой нити или аналогичного материала и взвесьте его в воздухе. Надевайте перчатки при работе с металлическими предметами, особенно с подозрениями на содержание свинца.
  5. Наполните стакан водой и поставьте его под весы.
  6. Поднимите стакан, пока объект полностью не погрузится в него. Поместите подставку под стакан, чтобы удерживать его на нужной высоте. Убедитесь, что под объектом или в пустотах внутри объекта нет пузырьков.
  7. Взвесьте погруженный объект.
  8. Рассчитайте плотность, используя приведенное ниже уравнение.
  9. Сравните расчетную плотность с известной плотностью металлов и сплавов, используя приведенную ниже таблицу или более подробные списки, доступные в справочных материалах.
  10. Повторите шаги 4–9 с остальными объектами.

Расчет плотности

Плотность ρ объекта или материала определяется как масса m, деленная на объем V; в символах ρ = m/V. Если предмет взвешивают в воздухе, чтобы определить его фактическую массу, и взвешивают в жидкости, чтобы определить его (кажущуюся) массу в жидкости, то плотность предмета определяется как:0017

Плотность воды 0,998 г/см 3 при 20°С и 0,997 г/см 3 при 25°С.

Результаты этой процедуры

Примеры объектов

На рис. 1 показаны примеры восьми различных металлических образцов, использованных для демонстрации этой процедуры.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0358
Рисунок 1. Металлические предметы, используемые для демонстрации процедуры.

Ниже приведены измеренные значения плотности образцов металлов на рис. 1.

В верхнем ряду слева направо:

  1. Вероятно, чугун (7,13 г/см 3 )
  2. Алюминий высокой чистоты (2,70 г/см 3 )
  3. Красноватый медный сплав (возможно, 85 % меди и 15 % цинка, 8,23 г/см 3 )
  4. Медь высокой чистоты (8,88 г/см 3 )

В нижнем ряду слева направо:

  1. Литой цинк (сплав неизвестен, 7,09 г/см 3 )
  2. Свинец высокой чистоты (11,20 г/см 3 )
  3. Олово высокой чистоты (7,27 г/см 3 )
  4. Желтый картридж из латуни (70 % меди и 30 % цинка, 8,45 г/см 3 )

В каждом образце плотность определяли по приведенной выше формуле. Например, для алюминиевого предмета (b) масса оказалась равной 110,18 г в воздухе и 69,45 г в воде, что дает плотность 2,70 г/см 3 . Для чугунного предмета (а) масса была 2090,47 г в воздухе и 180,13 г в воде, что дает 7,13 г/см 3 . Для свинцового объекта (f) масса в воздухе составляла 102,44 г, а в воде — 93,31 г, что дает 11,20 г/см 3 .

Измеренные плотности алюминия, чугуна и свинца (2,70, 7,13 и 11,20 г/см 3 ) близки к известным плотностям (2,71, 7,20 и 11,33 г/см 3 из таблицы 1). Таким образом, алюминиевые и свинцовые предметы легко идентифицируются по плотности.

Для предмета из чугуна одной плотности недостаточно, чтобы исключить другие металлы, такие как цинк (известная плотность 7,13 г/см 3 ). Когда плотность неизвестного металла близка к нескольким металлам и сплавам (например, цинку, железу и олову), тогда необходимо определить другие свойства, такие как магнетизм и цвет, чтобы помочь идентифицировать его.

Известная плотность отдельных металлов и сплавов

Известная плотность выбранных металлов и сплавов приведена в таблице 1 в порядке возрастания плотности (ASTM 2006, Lide 1998).

Таблица 1: известная плотность выбранных металлов и сплавов
Металл или сплав Плотность (г/см 3 )
Алюминий 2,71
Алюминиевые сплавы 2,66–2,84
Цинк 7,13
Железо (серое литье) 7,20
Олово 7,30
Сталь (углеродистая) 7,86
Нержавеющая сталь 7,65–8,03
Латунь (картридж: 70 % меди, 30 % цинка) 8,52
Латунь (красная: 85 % меди, 15 % цинка) 8,75
Нейзильбер (65 % меди, 18 % никеля, 17 % цинка) 8,75
Бронза (85 % меди, 5 % олова, 5 % цинка, 5 % свинца) 8,80
Никель 8,89
Медь 8,94
Серебро 10,49
Свинец 11,33
Золото 19. 30

Детали баланса

Весы с возможностью взвешивания ниже нормы обычно поставляются с крышкой под внутренним крюком. На рис. 2 показан пример расположения крышки на дне весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0359
Рис. 2. Весы с возможностью взвешивания ниже баланса.

На рис. 3 показан увеличенный вид с закрытой крышкой; на рис. 4 крышка открывается, открывая внутренний крючок.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0360
Рис. 3. Фрагмент нижней стороны весов, показывающий подвижную металлическую крышку, закрывающую внутренний крюк.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0361
Рис. 4. Фрагмент нижней стороны весов, показывающий внутренний крючок после поворота металлической крышки.

На рис. 5 показана металлическая проволока, согнутая в виде крючков на обоих концах. На рис. 6 показан крючок на одном конце проволоки, прикрепленный к внутреннему крючку внутри весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0363
Рисунок 5. Проволока с концами, загнутыми в форме крючка.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0362
Рисунок 6. Деталь проволоки, загнутой в крюки на обоих концах. Верхний конец крючка прикреплен к другому крючку внутри весов.

На рис. 7 показаны весы, размещенные на подставке из плексигласа с прорезанным в верхней части отверстием. Отверстие позволяет получить доступ к крючку на нижней стороне весов.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0365
Рис. 7. Весы помещаются на подставку из плексигласа, при этом крюк вот-вот пройдет через отверстие в подставке.

На рис. 8 показаны весы на штативе из плексигласа с прямоугольным образцом из чистой меди, взвешиваемым на воздухе. На рис. 9 показаны весы на штативе из плексигласа с прямоугольным образцом из чистой меди, взвешиваемым в воде. Меньшая подставка из плексигласа используется для поддержки стакана на нужной высоте.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0366
Рис. 8. Взвешивание прямоугольного образца чистой меди на воздухе.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0367
Рис. 9. Прямоугольный образец из чистой меди, погруженный в воду.

На рис. 10 показан пример объекта с отверстием, в которое попали пузырьки воздуха. Будьте осторожны, чтобы пузырьки воздуха не попали в объект, так как это приведет к неточным показаниям.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0375
Рисунок 10. Три пузырька воздуха, застрявшие в отверстии.

Дополнительная информация

Использование других растворителей, кроме воды

Если нецелесообразно погружать объект в воду, например, из железа, из-за того, что он очень восприимчив к ржавчине, можно использовать органический растворитель, такой как ацетон или безводный этанол. Необходимо использовать надлежащую вентиляцию и соответствующие средства индивидуальной защиты. Рекомендуемое оборудование см. в паспорте безопасности (SDS) конкретного растворителя. Плотность ацетона 0,790 г/см 3 и плотность безводного этанола 0,789 г/см 3 , оба при 20°С. Для тех, кому может понадобиться использовать одну из этих других жидкостей, попробуйте измерить плотность объекта, используя как воду, так и одну из этих жидкостей, и сравните результаты.

Советы по адаптации весов
Альтернативная подставка для весов

Лист фанеры с отверстием можно прикрепить к краю стойки, если нет подставки для балансировки (Рисунок 11).

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0296
Рисунок 11: Платформа для весов из фанеры и зажимов.

Весы без возможности взвешивания ниже баланса

Весы без крюка для взвешивания можно использовать для определения плотности, но для этого требуется рама, чтобы подвешивать объект под весами и передавать вес объекта на весы. Баланс должен быть установлен на платформе; можно использовать установку, подобную показанной на рис. 11. (В этом случае отверстие в дереве, показанное на рис. 11, не требуется.) Затем вокруг весов и платформы устанавливается четырехгранная рама (в форме фоторамки), которая опирается только на чашу весов и не соприкасается ни с одной из сторон. другая часть баланса (рис. 12). Весы тарируются с рамой и крюком на месте, а затем объект прикрепляется к крюку на раме и взвешивается в воздухе и в жидкости, как в шагах 4–9.Методика: определение плотности металла.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0298
Рис. 12. Вид спереди (левая сторона рисунка) и вид сбоку (правая сторона), демонстрирующие весы без возможности взвешивания ниже баланса. Верхний сегмент прямоугольной рамы опирается на чашу весов, а предмет крепится к нижнему сегменту.

Наука, стоящая за измерением плотности

Плавучесть и принцип Архимеда

Методы этой процедуры восходят к третьему веку до нашей эры. В своей книге «О плавающих телах» Архимед Сиракузский предположил, что если объект погрузить в жидкость и взвесить, он будет измерен как легче, чем его истинный вес, на вес жидкости, которую он вытесняет. История гласит, что Архимед использовал эту идею, чтобы показать, что корона — это не чистое золото, а скорее смесь золота и серебра (Heath 1920).

Объект кажется легче в жидкости, потому что на объект действует сила, называемая выталкивающей силой. Сила возникает из-за того, что давление в жидкости увеличивается с глубиной, поэтому давление на нижнюю часть объекта (толкающее объект вверх) выше, чем давление на верхнюю часть (толкающее его вниз). Разница между давлением вверх и вниз создает выталкивающую силу. Выталкивающая сила, толкающая предмет вверх, действует против силы тяжести, которая тянет предмет вниз. Если выталкивающая сила меньше силы тяжести, объект утонет, но в жидкости будет казаться, что он весит меньше, чем в воздухе. Если выталкивающая сила больше силы тяжести, объект всплывет на поверхность жидкости.

Плотность объекта рассчитывается по приведенной ранее формуле

Когда плотность известна, ее можно использовать для расчета объема объекта по следующей формуле:

Объем объекта = (масса в воздухе) / (плотность объекта)

Как и вода, воздух создает выталкивающую силу. (Вот почему воздушные шары с гелием всплывают вверх.) Выталкивающая сила воздуха слишком мала, чтобы иметь значение в этой процедуре, но ее следует учитывать, когда требуется высокая точность взвешивания (Skoog et al. 2014).

Плотность определяется по перемещенному объему

Более простой, но менее точный способ измерения плотности состоит в том, чтобы поместить объект в жидкость и измерить объем вытесненной жидкости. Это можно использовать для небольших объектов, которые помещаются в градуированный цилиндр, например, чтобы решить, сделан ли объект из свинца или менее плотного металла.

Процедура следующая. Найдите градуированный цилиндр диаметром не намного больше предмета. Определите массу предмета с помощью подходящих весов. Добавьте воду в мерный цилиндр и запишите первоначальный объем. Полностью погрузите предмет в воду, стараясь не допустить появления пузырьков, а затем запишите объем еще раз. Объем объекта равен разности конечного и начального объемов, отсчитанных от градуированного цилиндра, а плотность — это масса, деленная на объем объекта.

В качестве примера была измерена фигурка лося. Масса составила 4,088 г. На рис. 13 фигурка изображена снаружи градуированного цилиндра, а на рис. 14 — в погруженном состоянии. Объем воды в градуированном цилиндре увеличился с 5,0 мл до 5,6 мл, когда фигурка была погружена в воду, что дало изменение объема на 0,6 мл. Игнорируя любые ошибки в измерении объема, вычисленная плотность составляет 4,088 г/0,6 мл = 6,8 г/см 3 . (Примечание: 1 мл = 1 см 3 .) Это меньше плотности цинка и может свидетельствовать о сплаве цинка и более легкого металла, возможно, магния или алюминия. Но учитывая небольшой объем, есть погрешности в измерении. Объем можно измерить только с точностью до 0,1 мл с помощью мерного цилиндра, поэтому объем может составлять примерно от 0,5 мл до 0,7 мл. Таким образом, плотность может варьироваться от 4,088 г/0,7 мл = 5,8 г/см 3 до 4,088 г/0,5 мл = 8,2 г/см 3 . Из этого диапазона размеров фигурка может быть из цинка, железа, олова, стали или других сплавов, но это не чистый алюминий или чистый свинец. На самом деле анализ показал, что это олово с плотностью 7,30 г/см 3 .

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0373
Рис. 13. Небольшой металлический предмет перед погружением в воду в градуированном цилиндре объемом 25 мл. Обратите внимание на уровень воды.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0374
Рисунок 14. Небольшой металлический предмет после погружения в воду в градуированном цилиндре объемом 25 мл. Уровень воды примерно на 0,6 мл выше, чем до погружения объекта.

Другое использование

Описанные выше процедуры можно использовать не только для идентификации металлов по их плотности.

Груз для литья металлов

При отливке скульптуры необходимо оценить количество металла, необходимого для заполнения формы модели скульптуры. Если отливаемая модель может быть погружена в воду, объем модели можно определить с помощью описанных выше методов. Тогда необходимую массу m металла можно рассчитать по объему V модели и плотности ρ металла по формуле m = ρV. (Имейте в виду, что дополнительный металл обычно требуется для заполнения каналов, направляющих расплавленный металл в форму.)

Благодарности

Особая благодарность Миган Уолли, Люси ‘т Харт и Кэтрин Мачадо, бывшим стажерам CCI, за их помощь в подготовке этой заметки.

Ссылки

ASTM G1-03. «Стандартная практика подготовки, очистки и оценки образцов для испытаний на коррозию». В Ежегодном сборнике стандартов ASTM, vol. 03.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *