Предел числовой последовательности калькулятор онлайн: Предел функции и последовательности. Онлайн калькулятор с примерами

Предел функции онлайн

Число A называется пределом функции y=f(x) в точке x0, если для любой последовательности точек из области определения функции, отличных от x0, сходящейся к точке x0(lim xn = x0), последовательность соответствующих значений функции сходится к числу A.
  • Решение онлайн
  • Видеоинструкция
  • Оформление Word
  • Также решают
lim

x→

Если выбрать вид предела, то подробное решение по шагам будет доступно в MS Word:
1. Не знаю
2. Пределы вида (см. пример).
3. Вычислить предел, используя правило Лопиталя.
4. Пределы простейших иррациональности вида
5. Нахождение пределов, используя свойства первого замечательного предела ,
6.
3/exp(cos(x)). В качестве предела указываем infinity.

Вместе с этим калькулятором также используют следующие:
Точки разрыва функции


Производная функции:

Построение графика функции методом дифференциального исчисления

Экстремум функции двух переменных

Вычисление интегралов

см. также нахождение пределов, используя свойства первого замечательного предела и второго замечательного предела.

Примеры.
Вычислить указанные пределы:

1. = .

2. =

3. . Так как числитель и знаменатель обратились в нуль при x=4, то 4 – корень обоих многочленов, а значит, каждый из них разлагается на множители, одним из которых будет (x-4). Получаем
.

4. .
5. = =

6. – не существует, так как -1<cos(x)<1.

7. . Обозначим , причем заметим, что при x→16, y→2. Получим:
.

8. . (Ответ получается непосредственно подстановкой (-∞) вместо x.)

9. . Здесь следует рассмотреть односторонние пределы:
; .
Следовательно, – не существует (так как у функции разные односторонние пределы).

Найти пределы функции, не применяя правило Лопиталя.
а) =
Ответ: 1/5

б)

=

Ответ: 1/6

в) = e-2/2 = e-1

Ответ: 1/e

г)
Так как числитель и знаменатель обратились в нуль при

x=1, то 1 – корень обоих многочленов, а значит, каждый из них разлагается на множители, одним из которых будет (x-1).
Найдем корни первого многочлена: x2+2x-3=0
D=22-4•1•(-3)=16
,
Найдем корни второго многочлена: x2-1=(x-1)(x+1)
Получаем:

Ответ: 2

д)

Ответ: 1/10

Калькулятор расчета сумм последовательностей | BBF.RU

Последовательность — высокоупорядоченный числовой набор, образованный по заданному закону. Термин «ряд» обозначает результат сложения членов соответствующей ему последовательности. Для различных числовых последовательностей мы можем найти сумму всех ее членов или общее число элементов до заданного предела.

Последовательность

Под этим термином понимается заданный набор элементов числового пространства. Каждый математический объект задается определенной формулой для определения общего элемента последовательности, а для большинства конечных числовых наборов существуют простые формулы определения их суммы. Наша программа представляет собой сборник из 8 онлайн-калькуляторов, созданных для вычисления сумм наиболее популярных числовых наборов. Начнем с самого простого — натурального ряда, которым мы пользуемся в повседневной жизни для пересчета предметов.

Натуральная последовательность

Когда школьники изучают числа, они первым делом учатся считать предметы, например, яблоки. Натуральные числа естественным образом возникают при счете предметов, и каждый ребенок знает, что 2 яблока — это всегда 2 яблока, не больше и не меньше. Натуральный ряд задается простым законом, который выглядит как n. Формула гласит, что n-ный член числового набора равен n: первый — 1, второй — 2, четыреста пятьдесят первый — 451 и так далее. Результат суммирования n первых натуральных чисел, то есть начинающихся от 1, определяется по простой формуле:

∑ = 0,5 n × (n+1).

Благодаря этому выражению легко рассчитать конечную сумму натурального ряда от 1 до n. Очевидно, что натуральная последовательность стремится в бесконечность, поэтому, чем больше n, тем больше конечный результат.

Расчет суммы натурального ряда

Для вычислений вам потребуется выбрать в меню калькулятора формулу натурального ряда n и ввести количество членов последовательности. Давайте вычислим сумму натурального ряда от 1 до 15. Указав n = 15, вы получите результат в виде самой последовательности:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

и суммы натурального ряда, равной 120.

Легко проверить корректность вычислений при помощи выше приведенной формулы. Для нашего примера результат сложения будет равен 0,5 × 15 × 16 = 0,5 × 240 = 120. Все верно.

Последовательность квадратов

Квадратичная последовательность образуется из натуральной, путем возведения каждого члена в квадрат. Ряд квадратов формируется по закону n2, следовательно, n-ный член последовательности будет равняться n2: первый — 1, второй — 22 = 4, третий — 32 = 9 и так далее. Результат суммирования начальных n элементов квадратичной последовательности вычисляется по закону:

∑ = (n × (n+1) × (2n+1)) / 6.

При помощи этой формулы вы легко можете высчитать сумму квадратов от 1 до n для сколько угодно большого n. Очевидно, что эта последовательность также бесконечна и с ростом n будет расти и общее значение числового набора.

Расчет суммы квадратного ряда

В этом случае вам потребуется выбрать в меню программы закон квадратной последовательности n2, после чего выбрать значение n. Давайте рассчитаем сумму первых десяти членов последовательности (n= 10). Программа выдаст саму последовательность:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100

а также сумму, равную 385.

Кубический ряд

Ряд кубов представляет собой последовательность натуральных чисел, возведенных в куб. Закон образования общего элемента последовательности записывается как n3. Таким образом, первый член ряда равен 13 = 1, второй — 23 = 8, третий — 33 = 27 и так далее. Сумма первых n элементов кубического ряда определяется по формуле:

∑ = (0,5 n × (n+1))2

Как и в предыдущих случаях, элементы числового пространства стремятся в бесконечность, и чем больше количество слагаемых, тем больше результат суммирования.

Расчет суммы кубического ряда

Для начала выберите в меню калькулятора закон кубического ряда n3 и задайте любое значение n. Давайте определим сумму ряда из 13 членов. Калькулятор выдаст нам результат в виде последовательности:

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197

и суммы соответствующего ей ряда, равного 8281.

Последовательность нечетных чисел

Множество натуральных чисел содержит подмножество нечетных элементов, то есть тех, которые не делятся на 2 без остатка. Последовательность нечетных чисел определяется выражением 2n — 1. Согласно закону, первый член последовательности будет равен 2×1 − 1 = 1, второй — 2×2 − 1 = 3, третий — 2×3 − 1 = 5 и так далее. Сумма начальных n элементов нечетного ряда вычисляется по простой формуле:

∑ = n2.

Рассмотрим пример.

Вычисление суммы нечетных чисел

Сначала выберете в меню программы закон образования нечетного ряда 2n−1, после чего введите n. Давайте узнаем первые 12 членов нечетной ряда и его сумму. Калькулятор мгновенно выдаст результат в виде набора чисел:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,

а также суммы нечетного ряда, который равен 144. И действительно, 122 = 144. Все верно.

Прямоугольные числа

Прямоугольные числа относятся к классу фигурных чисел, которые представляют собой класс числовых элементов, необходимых для построения геометрических фигур и тел. К примеру, чтобы построить треугольник необходимо 3, 6 или 10 точек, квадрат — 4, 9 или 16 точек, а для выкладывания тетраэдра потребуется 4, 10 или 20 шаров или кубов. Прямоугольники легко построить при помощи двух последовательных чисел, например, 1 и 2, 7 и 8, 56 и 57. Прямоугольные же числа выражаются в виде произведения двух последовательных натуральных чисел. Формула для общего члена ряда выглядит какn × (n+1). Первые десять элементов такого числового набора выглядят как:

2, 6, 12, 20, 30, 42, 56, 72, 90, 110…

С увеличением n растет и значение прямоугольных чисел, следовательно, сумма такого ряда также будет расти.

Обратная последовательность

Для прямоугольных чисел существует обратная последовательность, определяемая формулой 1 / (n × (n+1)). Числовой набор трансформируется в набор дробей и выглядит как:

1/2 , 1/6, 1/12, 1/20, 1/30, 1/42, 1/56, 1/72, 1/90, 1/110…

Сумма ряда дробей определяется по формуле:

∑ = 1 — 1/(n+1).

Очевидно, что при увеличении количества элементов ряда значение дроби 1/(n+1) стремится к нулю, а результат сложения приближается к единице. Рассмотрим примеры.

Сумма прямоугольного и обратного ему ряда

Давайте рассчитаем значение прямоугольной последовательности для n = 20. Для этого выберете в меню онлайн-калькулятора закон задания общего члена числового набора n × (n+1) и укажите n. Программа выдаст мгновенный результат в виде 3080. Для вычислений обратного ряда измените закон на 1 / (n × (n+1)). Сумма обратных числовых элементов будет равна 0,952.

Ряд произведений трех последовательных чисел

Прямоугольный числовой набор можно изменить, добавив к нему еще один последовательный множитель. Следовательно, формула для вычисления n-ного члена набора преобразится в n × (n+1) × (n+2). Согласно этой формуле элементы ряда образуются в виде произведения трех последовательных чисел, например, 1 × 2 × 3 или 10 × 11 × 12. Первые десять элементов такого ряда выглядят как:

6, 24, 60, 120, 210, 336, 504, 720, 990, 1320

Это быстрорастущий числовой набор, а сумма соответствующего ряда при росте n уходит в бесконечность.

Обратная последовательность

Как и в предыдущем случае, мы можем обратить формулу n-ного члена и получить выражение 1 / (n × (n+1) × (n+2)). Тогда набор целых значений преобразится в ряд дробей, в знаменателе которых будут стоять произведения трех последовательных чисел. Начало такого набора имеет следующий вид:

1/6, 1/24, 1/60, 1/120, 1/210, 1/336…

Сумма соответствующего ряда определяется по формуле:

∑ = 0,5 × (0,5 — 1 / (n+1) × (n+2)).

Очевидно, что при росте количества элементов дробь 1 / ((n+1) × (n+2)) стремится к нулю, а сумма ряда приближается к значению 0,5 × 0,5 = 0,25. Рассмотрим примеры.

Ряд произведений трех последовательных чисел и обратный ему

Для работы с этим набором требуется выбрать закон определения общего элемента n × (n+1) × (n+2) и задать n, к примеру, 100. Калькулятор выдаст вам саму последовательность, а также значение результата сложения сотни чисел, равный 26 527 650. Если выбрать обратный закон 1 / (n × (n+1) × (n+2)), сумма ряда из 100 членов будет равна 0,250.

Заключение

Сборник калькуляторов позволяет рассчитать сумму восьми наиболее популярных последовательностей. Пользуйтесь нашим сервисом для решения учебных заданий по математике или программированию.

Калькулятор предела последовательности | Найти предел последовательности с заданным n-м термином

Создано: Abhinandan Kumar
Рассмотрено: Phani Ponnapalli
Последнее обновление: 27 марта 2023 г.


легко. Просто укажите входные данные и нажмите кнопку «Рассчитать», чтобы получить требуемый результат.

Этот удобный инструмент Калькулятор предела последовательности прост в использовании и предоставляет шаги для легкого понимания темы.

Калькулятор предела последовательности: Нахождение предела последовательности не так просто и легко для всех. Он может состоять из сложных математических операций, которые могут отнять ваше время и энергию. Итак, вот лучшее решение для вашей проблемы, бесплатный онлайн-калькулятор предела последовательности, который быстро дает точные решения для ваших проблем.

Предел — это точка или значение, максимально близкое к требуемому значению последовательности, функции или сумма ряда, к которому можно постепенно приближаться.

Каков предел последовательности?

Предел — это точка или значение, максимально близкое к требуемому значению последовательности, функции или сумма ряда, к которому можно постепенно приближаться. Те последовательности, которые следуют этому шаблону, называются «конвергентными», тогда как те, которые не следуют этому образцу, называются «конвергентными».

«Дивергент».

Если вам интересно узнать о концепции последовательностей, оставайтесь на этой странице. Кроме того, посетите сайт sequencecalculators.com, чтобы найти несколько калькуляторов. как получить длинные ручные решения для очень быстрого решения последовательностей.

Как найти предел последовательности?

Оценка предела означает поиск ответа или окончательного значения. Таким образом, существует несколько различных методов оценки пределы последовательности.

  1. Замена

Здесь вы просто вводите значение. и вычислить ответ.

  1. Факторинг

Здесь упростите числитель и знаменатель и рассчитайте ответ.

  1. Сопряжение

Здесь вы должны умножить числитель и знаменатель на сопряжение, чтобы упростить уравнение и вычислить ответ.

  1. Рациональные функции.

Здесь функция представляет собой отношение двух многочленов, а предельное значение равно нулю или бесконечности. Найдя степень функции, мы можем вычислить ответ.

  1. Правило Госпиталя

Здесь, используя это правило, мы можем вычислить ответы функций, дающих неопределенные ответы, с помощью другие методы.

  1. Формальный метод

Здесь мы можем вычислить ответ, приблизив переменную x к некоторому значению (скажем, a).

Решенный пример нахождения пределов последовательности с шагами

Пример: Определить предел данной последовательности.

Решение:

Решение данной последовательности,

Итак, предел данной последовательности равен 11/12.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *