Примеры онлайн на сложение и вычитание двузначных чисел
Онлайн примеры на сложение и вычитание двузначных чисел позволяют выбрать сложность примеров: без перехода через десяток, с некоторыми переходами через десяток, и с обязательным переодом через десяток.
Для успешного овладения устными счётомнеобходима практика. Он-лайн примеры позволяют наработать практику устного счёта. Для этого школьнику даются неповторяющиеся примеры на сложение и вычитание, и прорешаве несколько десятков примеров он доведёт навыки устного счёта до автоматизма.
К сожалению, «зубрёжка» в устном счёте — это главный элемент: вы не должны каждый раз считать в уме результат, он должен автоматически выдаваться из памяти.
Примеры можно разделить по степени сложности: лёгкие – это примеры без перехода через десяток, сложные – с обязательным переходом, обычные – слагаемые выбираются случайным образом.
| Настройка генератора примеров |
|---|
|
|
|
Образец примеров
25 — 2
88 + 6
18 — 2
49 + 14
96 — 3
76 + 3
80 — 32
91 — 24
58 — 47
59 — 46
83 — 52
82 — 29
50 + 34
31 — 26
14 + 76
92 — 70
32 — 29
60 + 27
88 — 64
42 — 37
79 — 65
20 + 63
52 + 43
48 + 6
27 + 38
88 — 62
2 + 31
70 — 28
31 + 62
94 — 80
10 + 31
29 + 60
53 — 29
70 + 13
72 — 29
4 — 2
24 + 6
15 + 66
45 + 48
70 — 39
24 + 72
94 — 5
30 + 51
89 + 1
39 + 24
67 + 28
48 — 21
57 — 36
95 — 8
65 + 27
36 — 30
93 — 71
32 + 16
18 + 76
43 — 33
91 — 67
63 — 48
95 — 11
19 + 46
29 + 8
96 — 74
73 — 36
55 + 14
7 + 6
11 + 53
77 + 10
12 + 86
60 + 14
59 + 13
12 + 26
5 + 16
69 — 53
96 — 56
54 + 5
63 + 12
4 + 31
88 — 67
37 + 59
99 — 52
51 + 2
79 — 62
42 + 28
40 + 18
19 + 53
22 + 28
43 — 21
97 — 12
35 + 55
65 — 26
82 — 69
19 + 5
47 — 26
61 + 18
74 — 43
12 + 48
45 + 27
94 — 59
83 — 7
6 + 92
49 — 10
46 + 23
71 — 36
38 + 41
70 — 18
47 — 41
74 — 73
96 — 37
56 — 47
11 + 50
41 — 40
48 — 20
91 — 57
68 — 29
73 — 8
9 + 60
91 — 79
81 — 55
69 — 43
15 + 76
42 + 50
8 + 2
2 + 84
57 — 4
28 — 9
95 — 7
25 + 51
25 + 23
11 — 9
15 + 58
62 — 58
79 — 15
55 — 14
69 — 32
51 — 16
78 — 68
19 + 26
70 + 8
10 + 66
59 + 18
86 — 5
19 + 51
98 — 40
66 + 3
15 + 33
77 — 10
18 + 8
31 + 45
88 — 52
65 — 22
98 — 25
81 + 6
94 — 11
18 — 16
67 — 42
85 — 76
61 + 19
42 — 26
2 + 75
60 + 2
89 — 80
17 + 42
19 + 16
96 — 82
97 — 63
5 + 42
92 — 22
64 — 45
69 — 69
26 + 63
51 — 50
29 — 29
17 + 61
16 + 50
21 — 4
62 + 5
69 — 45
7 + 24
6 + 26
93 — 18
86 — 22
74 — 29
43 — 37
30 + 40
82 + 2
11 + 82
73 + 16
13 + 7
85 — 76
97 — 47
89 — 53
65 — 31
44 + 6
81 — 27
48 — 21
5 + 88
18 + 70
77 — 33
68 — 11
29 + 25
48 — 16
2 + 43
35 — 32
7 + 41
7 + 60
97 — 2
74 + 18
93 — 59
98 — 10
84 — 78
46 + 31
4 + 24
14 + 45
80 — 76
41 — 6
15 + 75
92 — 53
7 + 53
13 + 80
57 — 24
7 + 24
82 — 79
67 — 9
99 — 34
98 — 3
77 — 9
37 — 3
95 — 19
44 + 4
88 + 9
54 — 24
37 + 40
9 + 81
88 — 19
58 — 24
15 + 39
47 + 22
3 + 12
61 — 61
27 — 10
17 + 60
82 — 40
24 + 67
77 — 25
82 — 38
38 + 36
85 — 4
9 + 21
59 + 20
58 — 43
4 + 13
77 — 41
26 — 10
18 + 34
75 + 13
82 — 8
76 — 65
33 + 34
66 — 61
26 — 3
7 + 19
32 — 27
11 + 74
6 + 61
35 + 18
59 — 15
35 + 44
82 — 71
31 + 62
36 + 20
16 + 60
50 + 36
96 — 93
54 + 9
15 + 20
17 + 48
55 — 45
30 + 54
50 + 6
25 + 40
12 + 34
45 + 8
3 + 32
49 + 39
98 — 21
69 + 7
70 + 14
79 — 32
74 — 20
90 + 7
32 + 27
57 — 5
47 — 42
45 — 9
51 — 30
46 + 49
3 + 70
79 — 34
33 — 1
28 — 2
36 — 25
95 — 89
43 + 41
15 + 75
53 — 37
79 — 3
69 + 25
95 — 86
97 — 14
60 + 1
33 + 41
52 + 24
1 + 35
39 — 39
44 — 25
41 — 9
47 — 35
5 + 81
34 + 17
49 — 36
25 + 42
6 + 83
11 + 69
11 + 38
41 + 28
27 + 8
99 — 54
21 + 42
45 + 54
19 + 60
64 — 64
19 + 54
50 — 43
84 — 78
43 — 26
42 + 49
91 — 53
34 — 11
87 — 87
34 + 2
90 — 44
18 + 25
72 — 36
40 + 37
20 + 53
18 + 3
38 + 14
32 + 63
31 + 21
49 — 13
25 + 27
98 — 50
13 + 73
60 — 24
33 — 18
77 — 14
88 — 16
24 + 57
51 + 28
25 + 16
17 — 7
2 + 73
31 + 37
45 + 34
21 + 45
14 + 84
51 + 31
70 + 5
92 + 7
9 + 72
71 — 9
84 + 2
24 + 8
50 + 38
8 + 83
45 — 28
2 + 74
31 — 22
29 + 4
70 + 22
66 — 48
42 — 21
39 — 28
6 — 1
4 + 25
93 + 2
10 + 47
78 — 29
42 + 6
29 — 17
52 — 24
90 — 69
38 — 16
12 + 15
30 + 34
77 + 13
51 + 24
71 — 58
23 + 52
56 + 13
25 + 35
60 — 31
79 — 37
25 + 53
65 + 9
70 — 36
13 + 73
12 + 49
92 — 19
31 — 1
94 + 3
59 — 41
85 — 25
40 + 37
48 + 39
72 — 12
20 + 54
48 + 9
32 + 58
71 — 51
79 + 17
27 + 65
94 — 21
66 — 48
49 + 32
81 — 6
68 + 25
56 + 17
80 — 52
94 — 57
87 — 56
23 + 52
46 — 15
31 + 18
32 + 30
29 — 22
80 — 63
64 + 4
68 — 34
42 — 15
28 + 5
24 + 3
30 + 35
20 — 2
30 — 14
10 + 33
15 + 77
83 — 27
68 + 13
3 + 32
71 — 24
88 + 11
61 — 36
63 + 10
87 — 36
48 + 50
78 — 78
33 + 61
44 + 3
74 — 48
39 — 38
4 + 50
58 — 46
7 + 44
15 + 26
8 + 21
79 — 51
93 — 21
91 — 50
2 + 37
53 + 41
82 — 26
20 + 1
75 — 3
41 — 12
33 — 8
31 — 1
56 — 43
70 + 23
61 — 8
56 — 38
9 + 23
13 + 27
40 + 44
5 + 72
21 + 77
17 + 40
77 — 50
66 — 20
38 — 3
78 — 40
42 — 26
47 + 14
92 — 38
96 — 68
56 — 22
46 — 36
47 — 18
Примеры онлайн на сложение и вычитание двузначных чисел
Примеры онлайн на сложение и вычитание двузначных чиселПримерОнлайн.
ru
Генератор примеров по математике 1-3 класс
Примеры на сложение однозначных и двузначных чисел позволяют выбрать положение двузначных и однозначных чисел – для тренировки перехода через десяток в разных десятках, или сложение любых двузначных чисел. Пока результат всех примеров не будет превышать 100.
Онлайн примеры можно разделить по степени сложности: лёгкие – это примеры без перехода через десяток, сложные – с обязательным переходом, обычные – слагаемые выбираются случайным образом.
| Настройка генератора примеров |
|---|
|
|
|
Образец примеров
59 — 53
63 + 31
13 + 74
7 + 77
65 — 52
53 — 51
40 + 12
32 + 6
92 + 3
16 + 55
49 + 44
6 + 89
75 — 34
43 + 20
91 + 7
89 — 77
49 + 42
68 + 23
67 + 3
68 — 49
7 + 73
20 + 25
70 — 60
16 + 63
75 — 39
91 — 11
81 + 3
84 — 70
72 — 23
21 + 64
15 + 8
2 + 22
88 + 6
66 — 44
83 — 13
97 — 89
9 + 9
82 — 66
39 — 24
5 + 46
93 — 12
69 + 23
87 — 65
11 + 72
96 — 96
48 + 17
83 — 46
98 — 13
71 + 2
76 — 8
80 — 68
81 — 41
83 + 4
15 + 12
25 — 16
77 — 53
26 + 4
58 — 42
67 — 4
87 — 43
9 + 89
77 — 40
74 — 17
81 — 8
7 + 74
21 + 52
36 — 25
75 + 15
38 — 27
52 — 14
2 + 92
10 + 59
60 + 11
66 — 37
73 — 28
64 — 53
35 + 37
72 — 59
69 + 6
46 + 1
63 — 36
66 — 61
47 + 24
34 + 21
65 + 2
17 + 49
95 — 17
2 + 87
93 — 40
36 — 35
48 + 2
53 + 5
42 + 25
21 + 72
96 — 28
22 — 18
61 — 25
9 + 87
61 — 43
46 + 36
76 — 22
47 — 36
67 — 38
30 + 13
81 — 25
86 + 8
43 — 15
35 + 60
90 — 82
36 + 19
66 — 28
32 + 59
82 — 80
59 + 39
4 + 23
65 + 17
91 — 1
18 — 3
52 — 2
5 + 21
81 — 62
56 + 5
96 — 24
54 — 28
84 — 12
43 + 8
51 — 43
43 + 3
33 — 20
9 + 23
50 + 20
69 + 7
26 — 25
9 + 30
2 + 15
8 + 32
73 — 28
91 — 75
88 — 25
60 + 36
75 — 25
97 — 7
20 + 13
73 — 45
6 + 29
98 — 31
54 — 6
35 + 39
82 — 7
52 + 17
8 + 9
14 + 17
24 + 21
61 — 27
26 + 42
5 + 64
47 — 18
2 + 46
79 — 27
66 — 51
4 + 18
23 + 23
36 + 46
34 + 30
38 — 27
93 — 82
86 — 71
74 + 16
38 + 51
16 + 14
52 — 11
86 — 69
30 + 54
54 — 41
8 + 73
40 + 59
71 — 38
90 — 63
61 — 49
94 — 58
24 + 41
76 — 54
5 + 14
35 + 29
81 — 27
73 — 59
95 — 88
42 + 46
43 — 19
97 — 49
4 + 73
66 — 65
35 — 13
46 + 26
6 + 23
16 + 80
36 + 35
99 — 62
93 — 23
69 — 11
90 + 9
40 + 51
84 — 33
94 — 48
89 — 27
83 — 71
47 — 21
13 + 14
33 + 44
84 — 24
27 + 28
41 + 15
31 — 18
76 — 7
91 — 48
76 + 4
86 — 14
39 — 11
20 + 12
5 + 77
26 — 19
57 — 41
84 — 68
9 + 50
15 + 83
94 — 79
10 — 3
58 — 34
25 + 38
90 + 1
39 + 32
51 + 48
28 — 17
54 — 11
12 + 21
8 + 37
47 + 7
13 — 13
7 + 20
7 + 42
11 + 83
19 — 8
3 + 7
3 + 37
75 — 68
18 + 15
38 + 14
74 + 8
59 — 19
38 — 5
3 + 9
41 — 9
80 + 10
62 — 18
37 + 40
47 + 8
26 + 54
60 — 38
44 + 29
70 — 1
18 + 34
45 + 33
93 — 56
15 + 2
91 + 4
25 + 46
83 — 18
84 — 64
67 — 20
78 — 75
94 — 81
65 — 42
48 + 4
98 — 36
30 — 19
8 + 3
58 — 2
91 — 67
55 + 12
30 — 4
56 + 43
39 + 51
46 — 14
42 + 28
30 — 25
16 + 64
64 — 59
2 + 87
82 + 7
23 + 73
15 + 5
28 + 52
72 — 53
21 — 12
73 — 55
46 + 6
1 + 46
90 — 33
47 + 12
29 + 38
48 — 21
78 — 8
15 + 54
65 — 30
8 — 2
27 + 20
28 + 13
90 — 73
94 + 1
71 + 27
12 + 3
57 — 1
47 — 4
94 — 76
26 + 66
16 — 5
6 + 9
59 + 19
45 — 8
44 + 3
90 — 63
6 + 71
14 + 70
12 + 22
77 — 38
6 — 2
74 — 42
55 — 24
25 + 22
51 — 15
66 — 5
21 + 70
3 + 28
23 + 29
38 — 14
29 — 16
76 — 28
85 — 10
79 + 12
6 + 35
43 + 19
49 — 42
43 + 4
10 + 52
64 + 15
96 — 78
57 + 3
41 + 34
8 + 42
85 — 56
39 + 33
24 + 70
67 + 2
23 + 34
4 + 37
25 — 16
53 — 47
66 — 29
14 + 59
22 + 3
80 — 9
3 + 7
94 — 88
27 + 1
84 — 46
95 — 84
33 — 29
4 + 41
33 + 35
26 + 53
49 — 27
11 — 5
23 + 35
52 + 26
38 + 32
45 — 16
26 + 46
68 — 68
63 + 11
77 — 41
45 — 19
37 — 15
77 + 17
61 + 8
60 — 6
28 + 37
1 + 57
67 + 30
54 + 4
5 + 31
97 — 29
74 — 21
41 + 24
5 + 21
94 — 62
73 — 46
9 + 48
4 + 67
37 + 45
11 + 12
59 + 31
6 + 25
21 — 21
73 + 17
86 — 69
60 + 38
6 + 11
18 + 5
91 — 67
14 + 18
59 — 18
68 — 27
86 — 56
67 + 1
65 — 7
85 — 18
51 + 9
51 + 2
75 — 53
93 — 37
7 + 88
76 — 59
65 + 13
13 + 36
50 — 26
47 + 7
36 + 47
9 + 66
33 + 56
13 + 28
26 + 23
99 — 6
28 + 18
35 — 9
67 — 24
95 — 94
85 — 8
21 + 78
64 — 26
32 + 28
14 + 75
85 — 82
68 + 21
81 — 26
70 — 34
5 + 74
39 — 11
62 — 35
18 — 9
94 — 34
17 — 9
71 — 48
30 + 39
17 + 50
7 + 49
44 — 27
1 + 62
10 + 70
19 + 53
97 — 70
45 + 37
16 + 44
77 + 11
69 — 44
20 + 52
29 + 20
55 — 53
71 — 13
78 — 69
13 — 12
71 — 43
19 — 1
91 — 12
57 — 35
54 — 37
98 — 2
9 + 18
49 + 3
58 — 13
45 + 28
28 + 26
88 — 54
50 — 38
67 — 14
21 — 11
95 — 84
45 + 7
42 + 37
49 — 23
66 — 40
72 — 2
92 — 77
55 — 43
26 + 53
17 + 56
6 + 51
63 + 6
78 — 4
Модели и стратегии для сложения и вычитания двузначных чисел
Второй класс — очень важный год, когда учащиеся развивают свободное владение двузначным сложением и вычитанием .
В этом году мы работаем над множеством стратегий сложения и вычитания, которые учащиеся могут использовать для решения задач. Мы тратим много времени на обсуждение различных стратегий, использование множества различных моделей и расчеты в уме.
Почему? Развивать у учащихся гибкость при решении математических задач с понятиями сложения и вычитания .
Общий базовый стандарт для двузначного сложения и вычитания:
CCSS.MATH.CONTENT.2.NBT.B.5
Свободно сложение и вычитание в пределах 100 с использованием стратегий на основе разрядного значения, свойств операций и/или отношения между сложением и вычитанием.
Стандарт для сложения и вычитания трехзначных чисел, чтобы показать, куда мы движемся:
CCSS.MATH.CONTENT.2.NBT.B.7
Сложение и вычитание в пределах 1000, с использованием конкретных моделей или рисунков и стратегий , основанных на позиционном значении, свойствах операций и/или отношении между сложением и вычитанием; связать стратегию с письменным методом.
Поймите, что при сложении или вычитании трехзначных чисел добавляются или вычитаются сотни и сотни, десятки и десятки, единицы и единицы; а иногда надо составить или разложить десятки или сотни.
Нигде в этих двух стандартах ничего не говорится о стандартном алгоритме, который мы все выучили в школе (скорее всего, на языке «перенос» и «заимствование»), и стандартный алгоритм прямо не рассматривается в Общем стандарте второго класса. Основные стандарты. Прочтите до конца, чтобы узнать, как я применяю стандартный алгоритм в нашем классе.
Вас интересует бесплатный образец некоторых из моих продуктов сложения и вычитания двузначных чисел?
Стратегии и модели
Если вы знакомы с моими задачами на сложение и вычитание, вы, возможно, заметили, что я делаю большое различие между стратегиями, используемыми при решении задач, и моделями, которые студентов используют с этими стратегиями. .
Стратегии обычно представляют собой то, как учащиеся подходят к числам и манипулируют ими.
Модели — это то, как стратегии организованы на бумаге, чтобы учащиеся могли объяснить или увидеть стратегию.
Глядя на приведенные выше стандарты, я вижу, что стратегии четко указаны в стандарте:
В 2.NBT.B.5 и стратегии:
- разрядное значение
- свойства операций
- связь между сложением и вычитанием
Стандарт 2.NBT.B.7 даже отмечает, что модели или чертежи (которые я также называю моделями) отделены от стратегий, которые основаны на:
- разрядное значение
- свойства операций
- связь между сложением и вычитанием
Как видите, стратегии четко изложены в стандартах. Теперь в каждой из вышеперечисленных общих категорий стратегий действительно есть много разных стратегий, которые могут использовать учащиеся, и вы можете обозначить их как хотите в своем классе. Мне нравится маркировать их именами учеников для удобства. Таким образом, мы можем ссылаться на стратегию Саманты при решении проблемы.
Или вы можете пометить стратегию действием, которое учащийся предпринимает в задаче (например, «Сначала добавьте десятки»).
Однако я все же различаю стратегию и модель. Почему? Потому что учащиеся могут использовать несколько стратегий с одной моделью. Не существует единственно правильного способа использования модели, пока учащийся может объяснить свое мышление. Модели (или рисунки) просто дают учащимся инструмент для объяснения своего мышления на бумаге или с помощью манипуляций. Мышление или то, что ученики делают с числами, и есть стратегия. То, что они используют, чтобы показать это вам, является моделью.
Честно говоря, я не всегда последовательно называю что-то стратегией или моделью. Я стараюсь быть таким, но, как и вы, я человек и иногда путаю их, особенно когда я нахожусь в данный момент со студентами. Это процесс обучения, и я постоянно размышляю об этом на протяжении многих лет. Все это говорит о том, что вы можете увидеть несколько вещей, обозначенных одним способом, и усомниться в этом.
Идите вперед и спросите об этом, подумайте об этом, обдумайте это и выясните, является ли это точным или нет. Все это еще в новинку для многих из нас.
Вот несколько диаграмм сложения и вычитания, которые я использовал за последние пару лет и которые иллюстрируют некоторые из приведенных ниже моделей и стратегий.
На изображении выше показаны некоторые стратегии математического вычитания второклассников, которые я использовал со студентами.
Модели для сложения двух цифр
Ниже приведены несколько моделей, которые мы используем для сложения или вычитания двух цифр. Это единственные модели, которые вы можете использовать? Нет, это не исчерпывающий список. Это то, что я нашел полезным в классе для студентов, чтобы практиковать и использовать для построения концептуального понимания и чувства числа.
Числовые ряды для сложения и вычитания двузначных чисел
Я обычно начинаю с числовых рядов, когда знакомлю учащихся с бумажными/карандашными моделями.
Открытая числовая линия очень гибкая. Студенты могут делать прыжки от одного до десяти (или более) и легко манипулировать ими, чтобы показать свое математическое мышление.
Я обычно помогаю учащимся добраться до ближайших 10, дружественных или эталонных чисел при использовании числовой прямой, потому что легче делать скачки на 10. Это пример разницы между моделью и стратегией. Моделью является числовая линия. Стратегия делает прыжки на 10.
Обучение тому, как использовать числовые ряды при использовании 10 для сложения фактов +9 и +8, укрепляет эту стратегию, когда учащиеся складывают большие двузначные числа.
Помните, что числовая линия является моделью, и ее можно использовать с различными стратегиями. Моделирование и практика использования числовой прямой с более простыми задачами поможет учащимся при использовании числовой прямой с более сложными задачами.
Одно из наших ежедневных занятий с числовыми линиями — это ежедневная математика. Это лист белой доски, который мы просматриваем ежедневно.
Числовая линия внизу помогает учащимся укрепить свое понимание того, как использовать числовую линию и как «сделать 100 или сделать 1000».
Вот еще несколько примеров того, как мы используем числовые ряды в классе.
Это с моих математических станций Roll & Spin. В этом упражнении учащиеся тренируются делать прыжки на 10 и 100 вверх по числовой строке.
Существуют также версии, в которых учащиеся вычитают 10 и 100 по числовой строке. Одним из навыков, необходимых учащимся для успешного решения числовых рядов, является способность делать прыжки от 10 до 100.
Это пример из одной из наших задач на сложение и вычитание, где учащиеся должны были вычислить 9.0007 отдельный запуск неизвестная проблема . Этот ученик начал с 15 и насчитал 35 прыжков, а в конце убрал один. Это также отличный пример компенсации (см. ниже), потому что ученик добавил единицу к 34, чтобы облегчить прыжки, а затем убрал ее в конце.
Это из моих заданий по математике «Вырезать и вставить» во втором классе.
В этом упражнении учащиеся тренируются, как складывать, начиная с наименьшего числа и выясняя, кто доберется до большего числа, перепрыгивая к дружественным числам. Этот студент начал в 19, подскочил до 20, затем сделал прыжки от 10 до 60 и сделал прыжок на 3. Ученик сложил свои прыжки вместе, чтобы получить 44.
Выше приведены несколько примеров из моих математических станций сложения двух цифр. Моим ученикам нужно было больше практиковаться с числовыми линиями и делать прыжки, несмотря на всю нашу групповую практику. Итак, я давал им указания, и студенты следовали за ними по числовым линиям.
Более новый ресурс, который я разработал, чтобы помочь учащимся развить беглость счета, — это ресурс «Сделай 100» и «Сделай 1000». На этом ресурсе есть МНОЖЕСТВО заданий, в которых учащиеся тренируются в счете 100 и 1000. Числовые строки — одно из заданий.
У меня также есть целая запись в блоге о том, как использовать числовую линейку, с еще большим количеством примеров того, как развивать беглость числовой линейки в классе.
Блоки с основанием 10
Блоки с основанием 10 — еще одна модель, которой я обучаю студентов; тем не менее, я обычно учу студентов рисовать кубики с основанием 10. На занятиях мы используем настоящие пеноблоки, но я стараюсь как можно быстрее от них уйти.
Почему? У учеников всегда будет карандаш и бумага для решения задач, но не всегда у них будут манипуляции. Использование блоков с основанием 10 также занимает много времени. Я не против потратить на них время для студентов, которым они нужны, но я также хочу подтолкнуть студентов к более эффективным инструментам.
Вот несколько примеров того, как мы используем блоки с основанием 10:
Вышеприведенные двое используют блоки с основанием 10, вытягивая десятки как «палочки», как мы называем их в нашем классе. Этим ученикам было трудно сосчитать более 100 десятками, поэтому я попросил их нарисовать каждое число десятками, затем считать десятками, пока они не дойдут до 100, а затем снова начать считать по десяткам.
Это не только помогло им складывать числа после 100, но и увеличило расходы с нашей системой счисления с основанием 10.
Приведенный выше пример снова взят из моих математических станций сложения двухзначных чисел и представляет собой просто базовую задачу — сопоставление ответов с представлениями блоков с основанием 10.
Запись в блоге «Числовая линия» также содержит интересное визуальное задание, помогающее учащимся перейти от блоков с основанием 10 к числовым линиям.
Стратегии сложения двузначных чисел
Как отмечалось выше, в стандартах указаны три основные стратегии:
- разрядное значение
- свойства операций
- связь между сложением и вычитанием
Ниже приведены несколько стратегий, которые мы используем для решения задач на сложение двузначных чисел. Большинство из них основаны на стратегиях позиционной стоимости, поскольку я считаю, что учащимся легче их понять и применить. Опять же, именно так учащиеся манипулируют числами в задаче, чтобы упростить ее решение.
Ни одна стратегия не является «правильной» для каждого учащегося при решении каждой проблемы. Некоторые проблемы поддаются определенным стратегиям из-за чисел. Студенты также могут переключаться между стратегиями в рамках одной и той же задачи, в зависимости от того, как они манипулируют числами. Главное, на что нужно обращать внимание, это то, может ли ученик объяснить свои мысли при решении задачи.
Разбить или разгруппировать (поместить значение)
Эта стратегия требует немного больше умственной математической практики, но она может быть очень мощной. Основная идея состоит в том, что число разбивается на десятки и единицы, а затем, используя числовую линейку, блоки с основанием 10 или просто числа, учащиеся манипулируют частями, чтобы складывать или вычитать числа.
Разбиение или разгруппирование части числа помогает учащимся увидеть значение разряда. Разряд десятков это не просто 4. Его значение 40 или 4 десятка.
Одним из ресурсов, помогающих разработать эту стратегию, является книга Number Talks (партнерская ссылка).
В течение года мы проводим беседы о числах, начиная со сложения фактов и переходя к двузначному сложению и вычитанию к концу года. Мне нравится видеть стратегии, которые могут придумать мои ученики! Книга Number Talk – это также отличная книга, которая помогает развить навыки слушания.
Подумай над задачей 64-47. Учащиеся разбивают задачу на 50+14-7-40 и отбирают части по разрядности. Я бы, наверное, начал с 14-7, но студенты могут начать с любого, что для них имеет смысл.
Приведенные выше примеры взяты из моих математических станций сложения двух цифр и иллюстрируют, как учащиеся могут разбивать числа на части и складывать значения каждого разряда. Разделение также называется разгруппированием или декомпозицией, в зависимости от используемой математической программы.
Вы заметили, что в одной из задач выше ученик прибавил 60 +40 и получил 106, но написал правильный ответ на задачу? Как вы думаете, что происходило с этим студентом? У вас тогда он не смог сложить 60+40, сделал глупую ошибку, или есть другая причина, по которой он написал 106? Увидев, как учащиеся взаимодействуют с этими типами стратегий, вы сможете начать разговор с ними об их математическом мышлении.
Еще один пример из некоторых карточек с дополнительными заданиями, где учащиеся только разбивают второе число, а затем делают прыжки на 10 и 1, используя таблицы 100 и 1000. Несмотря на то, что в первом классе мы много практикуемся, используя таблицу со сотнями, я обнаружил, что учащиеся не обязательно переносят свое обучение на более крупные числа во втором классе.
Добавление десятков к десяткам и единиц к единицам (разрядное значение)
Это очень похоже на стратегии разбивки на части, за исключением того, что числа не разбиваются на части. Учащиеся могут мысленно складывать части числа (десятки или единицы), потому что они знают факты сложения. В основном мы используем v-модель для рисования линий, соединяющих десятки, и сложения или вычитания этих частей.
Вот один пример того, как мы использовали его в классе:
Вычитание десятков, вычитание единиц (разрядное значение)
Подобно сложению десятков к десяткам и единиц к единицам, учащиеся вычитают каждое разрядное значение отдельно, а затем вычитают те из десятков (или добавить его).
Есть два основных способа использования этой стратегии. Студенты могут разложить десять или студенты могут использовать отрицательные числа.
Я использую эту стратегию со студентами с отрицательными числами. Я знаю, что мы не учим отрицательные числа во втором классе, но для некоторых учеников это действительно способ понять и усвоить больше, чем другие стратегии. Вы можете увидеть примеры этого на второй и третьей якорных диаграммах выше.
Подумайте о 64-47. Если я вычту 4-7, я получу -3. Я говорю учащимся, что перед большим числом стоит знак «минус», поэтому у него есть еще что-то, что нужно убрать. Затем учащиеся вычитают 60-40, получают 20 и вычитают еще, чтобы получить 17.
Обратный счет / Думайте о сложении (Обратный счет) / Складывание (отношение между сложением и вычитанием или размещением значения)
Я не совсем уверен, что эта стратегия касается отношений между сложением и вычитанием или позиционным значением. Стратегия «думай-сложение» похожа (если не совпадает) на стратегию «Подсчитай» или «Сложи».
Эта стратегия также очень похожа на стратегию «Разделить на части» в том смысле, что учащимся необходимо разбить хотя бы одно из чисел, чтобы произносить звук вверх или вниз по частям числа.
Хотя учащиеся могут считать единицами, я настоятельно рекомендую вам помочь им перейти к более эффективным стратегиям и считать сначала десятками, а затем единицами. Использование диаграммы сотен позволяет учащимся практиковаться в перемещении на 10 секунд вверх и вниз по диаграмме. Диаграмма сотен похожа на сжатую числовую прямую. См. фото выше с графиками 100 и 1000.
Вот несколько примеров подсчета:
Приведенные выше два примера — это только те, которые мы выполнили на доске, и я попросил учащихся записать их в своих тетрадях.
Это страница из моей тетради с двузначным вычитанием. Эти книги с клапанами проходят через несколько различных моделей и стратегий и дают учащимся возможность попрактиковаться в словарном запасе и объяснении своего мышления.
Что мне НРАВИТСЯ в этих тетрадях, так это то, что учащиеся могут глубоко погрузиться в один из аспектов вычитания двузначных чисел и связать язык с числами и процессами, которые они используют.
Использовать компенсацию (свойства операций)
Последняя стратегия не похожа ни на одну из предыдущих. По сути, вы должны убедиться, что числа сбалансированы в рамках проблемы и что вы учитываете все части. Это предшественник алгебры и отличная стратегия для ментальной арифметики.
Существует несколько различных способов использования компенсации, но основная идея заключается в том, что вы добавляете или вычитаете часть одного числа и прибавляете его к другому числу, чтобы получить понятное число. Вы должны следить за тем, что было добавлено или убрано, и как-то учитывать это в задаче.
Компенсация особенно полезна для чисел, близких к дружественным числам, хотя ее можно использовать для любого числа. Например, 68 — 39 можно преобразовать в 69 — 40. Я добавил к каждому числу единицу. Значение +1 и -1 равно 0, поэтому я вообще не изменил задачу.
Вот еще один пример: 53 + 38. Я мог бы добавить 53 + 40 и получить 93, но поскольку я добавил два к 38, чтобы получить 40, мне нужно вычесть два из 93, чтобы получить 91.
Базовый Идея с компенсацией заключается в том, что вы превращаете одну часть числа в понятное число, чтобы упростить сложение или вычитание. Однако, когда вы корректируете одно число, вы должны отслеживать то, что вы корректировали, и компенсировать это.
Что нужно знать учащимся, прежде чем использовать эти стратегии?
Вышеупомянутые стратегии очень эффективны, если учащиеся могут добавить их в свой набор инструментов при приближении к двузначному сложению и вычитанию. Тем не менее, чтобы эффективно использовать вышеуказанные стратегии, учащимся необходимо иметь несколько вещей.
Факты сложения и вычитания – Учащиеся должны довольно бегло владеть фактами сложения и вычитания. Нужно ли запоминать их все быстро? Нет. Однако, если учащиеся тратят слишком много времени, пытаясь понять факт сложения, и это мешает им сосредоточиться на стратегии, потому что они забывают, что они делали, тогда им нужно больше беглости с фактами сложения и вычитания.
Мои оценки автоматизма помогают учащимся практиковать свои факты с помощью стратегии.
Способность находить дружественные числа – В начале года мы долго развиваем беглость речи, используя 10 в качестве контрольного числа. Хотя мы делаем это в начале года, чтобы улучшить беглость математических фактов, это также полезно, когда учащиеся начинают свое путешествие со сложения и вычитания двузначных чисел. Учащиеся должны знать, как перейти к следующему дружественному числу, которое, по сути, является их фактами о десятках, но применяя их к двузначным числам, чтобы найти следующие десять.
Прибавление 10 к числу — Мы начнем наш модуль сложения двух цифр с большой практики прибавления и вычитания десяти из числа. Это базовый навык как в моих двузначных продуктах сложения, так и в моих двухзначных продуктах вычитания. Учащиеся должны увидеть схему прибавления 10 к числу.
Разрядное значение — Чтобы складывать двузначные числа, учащиеся должны иметь прочную основу в концепции единиц и десятков, а также в том, что значит разбивать число на единицы и десятки.
С первого дня в школе мы делаем ежедневные математические упражнения, которые развивают беглость со значением разряда, а также пропускают счет на 10 с любого числа.
Обучать ли меня традиционному алгоритму?
Да и нет. Да, я преподаю концепцию перегруппировки и да, я учу студентов двигаться к эффективности при сложении и вычитании. Это может включать традиционный алгоритм , если они смогут понять его значение.
Ученикам не нужно использовать стандартный алгоритм до четвертого класса (в соответствии с Common Core Standards). Могут ли они сделать это раньше? Может быть.
Я показываю им это во втором классе как модель, которую они могут использовать; однако мы не уделяем этому много внимания, потому что я хочу, чтобы студенты вырабатывали стратегии решения задач, а не были привязаны к одной модели.
Когда мы работаем с традиционным алгоритмом, мы придаем ему много слов и значений, как правило, связывая его с работой, которую мы уже сделали, например, с нашей работой с блоками с основанием 10.
Вот несколько примеров того, как я обучаю студентов традиционному алгоритму, связывая его с моделями, которые мы уже использовали, и давая студентам точный язык для объяснения их мышления.
Вот несколько примеров того, как я даю учащимся опыт работы с традиционным алгоритмом.
Вы заметили, что должно быть 7 десятков и 11 единиц? Ученик не обратил внимания на блоки с основанием 10!
Они взяты из моего пакета «Разложи десять», который уравновешивает работу традиционного алгоритма с моделями с основанием 10 и дает учащимся язык разложения чисел.
Ух ты, столько информации нужно переварить! Существует множество различных моделей и стратегий, которые учащиеся могут использовать для решения задач на сложение и вычитание двузначных чисел. То, что я обрисовал в общих чертах выше, является некоторыми, которые я нашел особенно полезными для студентов. Они помогают учащимся разработать прочную основу для сложения и вычитания двузначных чисел, создать мост к сложению и вычитанию трехзначных чисел, а также подчеркнуть идею использования стратегий и моделей для решения проблем, а не просто следования шагам в процессе.
Если вы преподаете во втором классе, вам могут понравиться несколько страниц из некоторых моих продуктов для сложения и вычитания двузначных чисел. Я собрал этот PDF-файл ресурсов в качестве образца из нескольких различных продуктов, которые действительно подчеркивают всю работу, которую мы делаем в нашем классе для углубленной разработки этих стратегий.
Различные компоненты семплера можно использовать всей группой или небольшой группой, и они идеально подходят для того, чтобы помочь вашим ученикам мыслить нестандартно, когда дело доходит до решения многозначного сложения и вычитания.
Упомянутые выше двузначные ресурсы
Вот список со ссылками на все двузначных ресурсов сложения и вычитания , упомянутых выше. Их можно приобрести на моем сайте или на сайте Teachers Pay Teachers.
- Математические станции вращения и вращения
- Математические задания для вырезания и вставки для второго класса (TpT)
- Математические центры сложения двухзначных чисел (TpT)
- Математические центры двузначного вычитания (TpT)
- Добавление карточек с заданиями с использованием сотенных диаграмм (TpT)
- Клапанные книги для двухзначного вычитания (TpT)
- Разложить десять карточек заданий (TpT)
Многие из вышеперечисленных функций также включены в НАБОР Сложения и вычитания двухзначных чисел (TpT).
Дополнительные ресурсы для сложения и вычитания двузначных чисел
- Головоломки с двузначными числами (TpT)
- Головоломки с двузначным числом на вычитание (TpT)
- Головоломки с разложением двузначных чисел (TpT)
- Двузначное сложение без подготовки печатных форм/рабочих листов (TpT)
- Вычитание двухзначных чисел Без подготовки Печатные формы / Рабочие листы
Математические игры Roll and Spin для многозначного сложения и вычитания
$3,75
В корзину
Добавление карточек с заданиями с использованием сотенных таблиц
4,79 $
В корзину
Разложить десятку
$3,75
В корзину
Книги с двухзначным вычитанием с клапаном
$5,39
В корзину
Тесты на вычитание двух цифр, карточки с заданиями, занятия и игры
$9,57
В корзину
Двузначные карточки с заданиями, оценки, задания и игры
$9,57
В корзину
Двузначное добавление без подготовки к печати Практика
$9,57
В корзину
Двузначное сложение и вычитание НАБОР
48,57 $
В корзину
Вырезать и вставить математические задания для второго класса — Числа и основание 10
5,75 $
В корзину
Сложение и вычитание двузначных чисел
Что такое двузначные числа? Двузначные числа начинаются с 10 и заканчиваются на 99.
Цифры в разряде десятков в двузначном числе должны быть от 1 до 9. Наибольшее двузначное число равно 99, а наименьшее двузначное число равно 10.
Разрядное значение числа — это позиция каждой цифры. Имея дело с двузначными числами, у нас есть два различных разряда, называемых единицами и десятками.
Рассмотрим число 86.
В данном примере 8 стоит на месте десятков, что означает значение 80, а 6 стоит на месте единиц, что имеет значение 6.
Как сложить двузначное число числа?Всякий раз, когда мы складываем двузначные числа, мы всегда начинаем процесс с крайней правой цифры или с разряда единиц.
Сложение двузначных чисел без перегруппировки
Чтобы сложить двузначные числа, выполните следующие действия:
- Запишите числа со знаками разряда вверх.
- Сложите цифры вместо единиц.
- Сложите цифры в разряде десятков.
Пример №1
Чему равна сумма 13 и 11?
Решение
| Процесс добавления | Пошаговое объяснение |
Расположите числа в виде столбца, выровняв разряды.![]() | |
| Сложите цифры в столбце разряда единиц. Таким образом, 1 + 3 = 4 . Затем запишите сумму 1 и 3 под чертой. | |
| Получите сумму чисел в разряде десятков. Следовательно, 1 + 1 = 2 Затем запишите цифру 2 под чертой. | |
| Следовательно, сумма 13 и 11 равна 24 |
Пример № 2
Найдите сумму 24 и 33.
Решение
| . Расположите числа в виде столбца, выровняв значения разрядов. | | |
| Получите сумму чисел в разряде единиц. Следовательно, 4 + 3 = 7 Затем запишите цифру 7 под чертой. | ||
| Сложите числа в разряде десятков. Таким образом, 2 + 3 = 5 . Затем запишите сумму 2 и 3 под чертой. | ||
Следовательно, сумма 24 и 33 равна 57 .![]() |
Пример № 3
Определите сумму 16 и 42.
Решение
| DESST | | 0408 | | | | | | | | | Расположите числа в виде столбца, выровняв разряды. | Сложите числа в столбце единиц. Таким образом, 6 + 2 = 8 | . Затем запишите сумму под чертой. Получите сумму чисел в разряде десятков. Следовательно, 1 + 4 = 5 | Затем запишите сумму 1 и 4 под чертой. Следовательно, сумма 16 и 42 равна 58 . | |
Пример #4
Что получится, если к 58 прибавить 21?
Решение
| Процесс добавления | Пошаговый объяснение |
Arrange Arrange в COLLAND с номерами в COLND с номерами в COLNAD с номерами в COUMER.![]() | |
| Получите сумму чисел в столбце единиц. Следовательно, 8 + 1 = 9 . Затем запишите сумму 8 и 1 под чертой. | |
| Сложите числа в разряде десятков. Таким образом, 5 + 2 = 7 . Затем напишите 7 под чертой. | |
| Следовательно, сумма 58 и 21 равна 79 . |
Пример #5
Что получится, если сложить 73 и 22?
Решение
| Процесс добавления | Пошаговое объяснение |
| Расположите числа в виде столбца, выровняв разряды. | |
| Получить сумму чисел в столбце разряда единиц. Таким образом, 3 + 2 = 5 . Затем напишите 5 под чертой. | |
| Сложите числа в разряде десятков. Следовательно, 7 + 2 = 9 Затем запишите сумму 7 и 2 под чертой. | |
Следовательно, сумма 73 и 22 равна 95 .![]() |
Добавление двузначных чисел с перегруппировкой
Чтобы добавить двузначные числа, которые необходимо перегруппировать, выполните следующие действия:
- Запишите числа с разрядными значениями в ряд.
- Сложите цифры вместо единиц. Если сумма больше 10, то цифра переносится на разряд десятков.
- Сложите цифры в разряде десятков. Если сумма больше 10, то цифра переносится на разряд сотен.
Пример №1
Сумма 23 и 19?
Решение
| Процесс добавления | Пошаговый объяснение |
| Arrange Arrange в COLLAND с номерами в COLND с номерами в COLNAD с номерами в COUMER. | |
| Получите сумму чисел в столбце единиц. Таким образом, 3 + 9 = 12 . Поскольку сумма превышает 10, напишите 0 под чертой столбца единиц и поместите перенос 1 в начало столбца десятков. ![]() | |
| Добавьте перенос и разряд десятков 23 и 19. Следовательно, 1 + 2 + 1 = 4 Затем напишите 4 под чертой чисел в столбце десятков. | |
| Следовательно, сумма 23 и 19 равна 42 . |
Пример № 2
Определите результат добавления 48 и 36.
Решение
| Процесс добавления | 904 | .0003 Пошаговое объяснение |
| Расположите числа в виде столбца, выровняв разряды. | ||
| Сложите числа в столбце единиц. Таким образом, 8 + 6 = 14 . Поскольку сумма равна 14, напишите 4 под чертой чисел в разряде единиц и поместите перенос 1 в начало столбца разряда десятков. | ||
| Получите сумму переноса и десятков цифр 48 и 36. Таким образом, 1 + 4 + 3 = 8 Затем напишите 8 под чертой столбца десятков. ![]() | ||
| Следовательно, сумма 48 и 36 равна 84 . |
Пример №3
Что получится, если сложить 56 и 63?
Решение
| Процесс добавления | Пошаговый объяснение |
| Arrange Arrange в COLLAND с номерами в COLND с номерами в COLNAD с номерами в COUMER. | |
| Сложите числа в столбце единиц. Следовательно, 6 + 3 = 9 . Затем напишите 9 под чертой. | |
| Получите сумму чисел в столбце десятков. Таким образом, 5 + 6 = 11 . Поскольку сумма равна 11, напишите 1 под чертой чисел в столбце десятков и перенесите перенос в столбец разряда сотен. | |
| Поскольку в числах 56 и 63 нет сотен, просто уменьшите перенос 1. | |
Следовательно, сумма 56 и 63 равна 119 .![]() |
Пример #4
Чему равна сумма 73 и 87?
Решение
| Процесс добавления | Пошаговый объяснение |
| Arrange Arrange в COLLAND с номерами в COLND с номерами в COLNAD с номерами в COUMER. | |
| Получите сумму чисел в столбце единиц. Таким образом, 3 + 7 = 10 Поскольку сумма равна 10, напишите 1 под чертой чисел в столбце единиц и перенесите перенос в столбец десятков. | |
| Добавьте перенос и числа в столбце десятков. Следовательно, 1 + 7 + 8 = 16 . Поскольку сумма равна 16, напишите 6 под чертой чисел в столбце десятков и поместите перенос сверху столбца сотен. | |
| Так как в числах 78 и 67 нет сотен, просто уменьшите перенос 1. | |
Следовательно, сумма 73 и 87 равна 160 .![]() |
Пример № 5
Найдите сумму 98 и 19.
Решение
| | | | . Расположите числа в виде столбца, выровняв значения разрядов. | | |
| Получите сумму чисел в столбце единиц. Таким образом, 9+ 8 = 17 Поскольку сумма равна 17, напишите 7 под чертой цифр в столбце единиц и перенесите перенос в столбец десятков. | |||||
| Добавьте перенос и числа в столбце десятков. Следовательно, 1 + 9 + 1 = 11 . Поскольку сумма равна 11, напишите 1 под чертой чисел в столбце десятков и поместите перенос сверху столбца сотен. | |||||
| Поскольку в столбце сотен цифр нет числа, просто уменьшите перенос 1. | |||||
| Следовательно, сумма 98 и 19 равна 117 . |
Всякий раз, когда мы вычитаем двузначные числа, мы всегда начинаем процесс с крайней правой цифры или разряда единиц.
Вычитание двузначных чисел без перегруппировки
Чтобы вычесть двузначные числа, выполните следующие действия:
- Расположите числа одно над другим так, чтобы разряды десятков и единиц совпадали.
- Вычтите разряд единиц числа во второй строке из разряда единиц числа в первой строке.
- Вычтите разряд десятков числа во второй строке из разряда десятков числа в первой строке.
Пример #1
В чем разница между 45 и 14?
Решение
| Процесс вычитания | Пошаговое объяснение |
| Выровняйте цифры 45 и 14 в виде столбца, выровняв разряды. | |
| Вычтите 4 из 5. Таким образом, 5 – 4 = 1 Затем запишите разницу 5 и 4 под чертой. | |
| Вычтите числа в разрядах десятков. Таким образом, 4 – 1 = 3 . Затем напишите 3 под чертой. ![]() | |
| Следовательно, разница между 45 и 14 составляет 31 . |
Пример № 2
Определите результат вычитания 59 из 99.
Раствор
| Процесс вычитания | STEP-BY-STEP ARTERATAT цифры 99 и 59 в виде столбца с выровненными разрядными значениями. |
| Вычтите число из разряда единиц. Следовательно, 9 – 9 = 0 Затем запишите 0 под чертой столбца единиц измерения. | |
| Вычтите число из столбца десятков. Таким образом, 9 – 5 = 4 . Затем запишите разницу между 9 и 5 под чертой столбца десятков. | |
| Следовательно, результатом вычитания 59 из 99 будет 40 . |
Пример № 3
Найти разницу 63 и 21.
Решение
| Процесс выравнивания | ||
| Процесс выравнивания | . 0003 Пошаговое объяснение | |
| Выровняйте цифры 63 и 21 в форме столбца, выровняв разряды. | ||
| Вычтите число из разряда единиц. Следовательно, 3 – 1 = 2 Затем запишите разницу между 3 и 1 под чертой столбца единиц измерения. | ||
| Получите разницу числа в столбце десятков. Таким образом, 6 – 2 = 4 . Затем напишите 4 под чертой столбца десятков. | ||
| Следовательно, разница между 63 и 21 составляет 42 . |
Пример #4
Каков результат 84 – 33?
Solution
| Subtraction Process | Step-by-Step Explanation |
| Align the digits of the 84 and 33 in a column form with the place values lined up. | |
Вычтите число из разряда единиц. Следовательно, 4 – 3 = 1 Затем запишите разницу между 4 и 3 под чертой столбца единиц. | |
| Получите разницу числа в столбце десятков. Таким образом, 8 – 3 = 5 . Затем напишите 4 под чертой столбца десятков. | |
| Следовательно, разница между 84 и 33 составляет 51 . |
Пример #5
Найдите разницу, вычитая 18 из 79.
Решение
| Процесс вычитания | Пошаговый объяснение | |
| ALINTIND ARITSIT. DICS 7904 | . | |
| Вычтите число из разряда единиц. Следовательно, 9 – 8 = 1 Затем запишите разницу между 9 и 8 под чертой столбца единиц. | ||
| Получите разницу числа в столбце десятков. Таким образом, 7 – 1 = 6 Затем напишите 6 под чертой столбца десятков. | ||
Следовательно, если из 79 вычесть 18, получится 61 .![]() |
Вычитание двузначных чисел с перегруппировкой
Чтобы вычесть двузначные числа, выполните следующие действия:
- Расположите числа одно над другим так, чтобы разряды десятков и единиц совпадали.
- Вычтите разряд единиц числа во второй строке из разряда единиц числа в первой строке. Если разряд единиц вычитаемого больше разряда единиц уменьшаемого, то заимствуйте 1 в разряде десятков.
- Вычтите разряд десятков числа во второй строке из разряда десятков числа в первой строке. Если разряд десятков вычитаемого больше разряда единиц уменьшаемого, то заимствуйте 1 в разряде сотен.
Пример #1
В чем разница между 33 и 17?
Решение
| Процесс вычитания | Пошаговое объяснение |
| Выровняйте цифры 33 и 17 в виде столбца, выровняв разряды. | |
Поскольку 7 больше 3, нам нужно заимствовать 1 из разряда десятков. Таким образом, к разряду единиц мы прибавим 10, а к разряду десятков вычтем 1. | |
| Вычтите 7 из 13. Таким образом, 13 – 7 = 6 Затем запишите разницу под чертой в столбце единиц. | |
| Вычесть 1 из 2. Следовательно, 2 – 1 = 1 Затем напишите 1 под чертой в столбце десятков. | |
| Следовательно, разница между 33 и 17 составляет 16 . |
Example #2
Find the result of subtracting 13 from 21.
Solution
| Subtraction Process | Step-by-Step Explanation |
| Выровняйте цифры 21 и 13 в форме столбца, выровняв разрядные значения. | |
Поскольку 3 больше 1, нам нужно позаимствовать 1 из разряда десятков. Таким образом, к разряду единиц мы прибавим 10, а к разряду десятков вычтем 1.![]() | |
| Получите разницу между 11 и 3. Таким образом, 11 – 3 = 8 Затем запишите 8 под чертой в столбце единиц измерения. | |
| Вычтите числа в столбце десятков. Следовательно, 1 – 1 = 0 . Поскольку разница равна 0, и это последний столбец, который мы собираемся вычесть, вы можете написать 0 под чертой. | |
| Таким образом, разница между 21 и 13 составляет 8 . |
Example #3
Determine the difference of subtracting 25 from 91.
Solution
| Subtraction Process | Step-by-Step Explanation |
| Выровняйте цифры 91 и 25 в форме столбца, выровняв разрядные значения. | |
Поскольку разряд единиц вычитаемого больше разряда единиц уменьшаемого, нам нужно заимствовать 1 из разряда десятков. Таким образом, к разряду единиц мы прибавим 10, а к разряду десятков вычтем 1. | |
| Получите разницу 11 и 3. Таким образом, 11 – 5 = 6 Затем запишите 6 под чертой в столбце единиц. | |
| Вычтите числа в столбце десятков. Следовательно, 8 – 2 = 6 . Затем запишите разницу между 8 и 2 под чертой в столбце десятков. | |
| Следовательно, разница между 91 и 25 составляет 66 . |
Пример #4
В чем разница между 87 и 59?
Solution
| Subtraction Process | Step-by-Step Explanation |
| Align the digits of the 87 and 59 in a column form with the place values lined up. | |
Поскольку разряд единиц вычитаемого больше разряда единиц уменьшаемого, нам нужно заимствовать 1 из разряда десятков. Таким образом, к разряду единиц мы прибавим 10, а к разряду десятков вычтем 1. | |
| Получите разницу 11 и 3. Таким образом, 17 – 9 = 8 Затем запишите 8 под чертой в столбце единиц. | |
| Вычтите числа в столбце десятков. Следовательно, 7 – 5 = 2 . Затем запишите разницу между 7 и 5 под чертой в столбце десятков. | |
| Следовательно, разница между 87 и 59 составляет 28 . |
Пример № 5
Найти разницу между 76 и 49.
Решение
| | | | | | . Выровняйте цифры 33 и 17 в форме столбца, выровняв разрядные значения. | Поскольку 9 больше 6, нам нужно заимствовать 1 из разряда десятков. Таким образом, к разряду единиц мы прибавим 10, а к разряду десятков вычтем 1. | ![]() |

