Производная x в степени 3: производная x в 3 степени

2

Производная корня

См. также: 

таблица производных простых функций

таблица производных логарифмических функций

таблица производных тригонометрических функций

  1. Общий случай формулы производной корня произвольной степени — дробь, в числителе которой единица, а в знаменателе число, равное степени корня, для которого вычислялась производная, умноженная на корень такой же степени, подкоренное выражение которого — переменная в степени корня, для которого вычислялась производная, уменьшенной на единицу
  2. Производная квадратного корня — является частным случаем предыдущей формулы. Производная квадратного корня из x — это дробь, числитель которого равен единице, а знаменатель — двойка, умноженная на квадратный корень х
  3. Производная кубического корня, также частный случай общей формулы.
    Производная кубического корня — это единица, деленная на три кубических корня из икс квадрат.

Ниже приведены преобразования, поясняющие, почему формулы нахождения производной квадратного и кубического корня именно такие, как приведены на рисунке. 

Разумеется, данные формулы можно вообще не запоминать, если принять во внимание, что извлечение корня производной степени — это то же самое, что возведение в степень дроби, знаменатель которой равен той же степени. Тогда нахождение производной корня сводится к применению формулы нахождения производной степени соответствующей дроби.

Производная переменной под квадратным корнем

( √x )’ = 1 / ( 2√x )   или 1/2 х-1/2  

 
Пояснение:
( √x )’ = ( х1/2 )’   

Квадратный корень — это точно то же самое действие, что и возведение в степень 1/2, значит для нахождения производной корня можно применить формулу из правила нахождения производной от переменной в произвольной степени:

( х1/2 )’ = 1/2 х-1/2 = 1 / (2√х)  

Производная кубического корня  (производная корня третьей степени)

Производная кубического корня находится точно по такому же принципу, что и квадратного.

Представим себе кубический корень как степень 1/3 и найдем производную по общим правилам дифференцирования. Краткую формулу можно посмотреть на картинке выше, а ниже расписано пояснение, почему именно так.

Степень -2/3 получается в следствие вычитания единицы из 1/3

Производная переменной под корнем произвольной степени 

Данная формула пригодна для нахождения производной корня любой степени:

n√x )’ = 1 / ( n n√xn-1 ) 

В более удобном для глаза виде она представлена на картинке выше.

Здесь:

n — степень корня, для которой находится производная

x — переменная, для которой находится производная

2080.1947  

 Производная дроби | Описание курса | Нахождение экстремума функции 

   

Мэтуэй | Популярные задачи

92)
9(3x) по отношению к x 92+1
1 Найти производную — d/dx бревно натуральное х
2 Оценить интеграл интеграл натурального логарифма x относительно x
3 Найти производную — d/dx
21 Оценить интеграл интеграл от 0 до 1 кубического корня из 1+7x относительно x
22 Найти производную — d/dx грех(2x)
23 Найти производную — d/dx
41 Оценить интеграл интеграл от cos(2x) относительно x
42 Найти производную — d/dx 1/(корень квадратный из х)
43 Оценка интеграла 9бесконечность
45 Найти производную — d/dx х/2
46 Найти производную — d/dx
-cos(x)
47 Найти производную — d/dx грех(3x)
68 Оценить интеграл интеграл от sin(x) по x
69 Найти производную — d/dx угловой синус(х)
70 Оценить предел ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х
85 Найти производную — d/dx лог х
86 Найти производную — d/dx
арктан(х)
87 Найти производную — d/dx бревно натуральное 5х9$

$\endgroup$

1

$\begingroup$

Некоторые люди давали хорошие советы, но я хотел бы уточнить их ответы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта