Производная корня
См. также:
таблица производных простых функций
таблица производных логарифмических функций
таблица производных тригонометрических функций
- Общий случай формулы производной корня произвольной степени — дробь, в числителе которой единица, а в знаменателе число, равное степени корня, для которого вычислялась производная, умноженная на корень такой же степени, подкоренное выражение которого — переменная в степени корня, для которого вычислялась производная, уменьшенной на единицу
- Производная квадратного корня — является частным случаем предыдущей формулы. Производная квадратного корня из x — это дробь, числитель которого равен единице, а знаменатель — двойка, умноженная на квадратный корень х
- Производная кубического корня, также частный случай общей формулы.
Ниже приведены преобразования, поясняющие, почему формулы нахождения производной квадратного и кубического корня именно такие, как приведены на рисунке.
Разумеется, данные формулы можно вообще не запоминать, если принять во внимание, что извлечение корня производной степени — это то же самое, что возведение в степень дроби, знаменатель которой равен той же степени. Тогда нахождение производной корня сводится к применению формулы нахождения производной степени соответствующей дроби.
Производная переменной под квадратным корнем
( √x )’ = 1 / ( 2√x ) или 1/2 х-1/2
Пояснение:
( √x )’ = ( х1/2 )’
Квадратный корень — это точно то же самое действие, что и возведение в степень 1/2, значит для нахождения производной корня можно применить формулу из правила нахождения производной от переменной в произвольной степени:
( х1/2 )’ = 1/2 х-1/2 = 1 / (2√х)
Производная кубического корня (производная корня третьей степени)
Производная кубического корня находится точно по такому же принципу, что и квадратного.Представим себе кубический корень как степень 1/3 и найдем производную по общим правилам дифференцирования. Краткую формулу можно посмотреть на картинке выше, а ниже расписано пояснение, почему именно так.
Степень -2/3 получается в следствие вычитания единицы из 1/3
Производная переменной под корнем произвольной степени
Данная формула пригодна для нахождения производной корня любой степени:( n√x )’ = 1 / ( n n√xn-1 )
В более удобном для глаза виде она представлена на картинке выше.
Здесь:
n — степень корня, для которой находится производная
x — переменная, для которой находится производная
2080.1947
Производная дроби | Описание курса | Нахождение экстремума функции
1 | Найти производную — d/dx | бревно натуральное х | |
2 | Оценить интеграл | интеграл натурального логарифма x относительно x | |
3 | Найти производную — d/dx | 92)||
21 | Оценить интеграл | интеграл от 0 до 1 кубического корня из 1+7x относительно x | |
22 | Найти производную — d/dx | грех(2x) | |
23 | Найти производную — d/dx | 9(3x) по отношению к x||
41 | Оценить интеграл | интеграл от cos(2x) относительно x | |
42 | Найти производную — d/dx | 1/(корень квадратный из х) | |
43 | Оценка интеграла 9бесконечность | ||
45 | Найти производную — d/dx | х/2 | |
46 | Найти производную — d/dx | ||
47 | Найти производную — d/dx | грех(3x) | 92+1|
68 | Оценить интеграл | интеграл от sin(x) по x | |
69 | Найти производную — d/dx | угловой синус(х) | |
70 | Оценить предел | ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х | |
85 | Найти производную — d/dx | лог х | |
86 | Найти производную — d/dx | арктан(х) | |
87 | Найти производную — d/dx | бревно натуральное 5х9$ $\endgroup$ 1 $\begingroup$ Некоторые люди давали хорошие советы, но я хотел бы уточнить их ответы. |