Как рассчитать мощность электрического тока?
Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.
Понятие электрической мощности и способы ее расчета
С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.
В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.
Через напряжение и ток
Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I
Где:
- P – активная мощность;
- U – напряжение приложенное к участку цепи;
- I – сила тока, протекающего через соответствующий участок.
Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.
Через напряжение и сопротивление
Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома для участка цепи, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:
I = U/R
Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:
P = U*(U/R)=U2/R
Где,
- P – величина нагрузки;
- U – приложенная разность потенциалов;
- R – сопротивление нагрузки.
Через ток и сопротивление
Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.
Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:
U=I*R
после того как выражение подставить в формулу мощности, получим:
P = (I*R)*I =I2*R
Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.
Полная мощность в цепи переменного тока
Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:
Где,
- S – полная мощность
- P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
- Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.
Также составляющие вычисляются через тригонометрические функции, так:
P = U*I*cosφ
Q = U*I*sinφ
что активно используется в расчете электрических машин.
Рис. 1. Треугольник мощностейПример расчета полной мощности для электродвигателя
Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.
Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:
S = 3*Uф*Iф
В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:
Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.
Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.
Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:
- полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
- коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
- тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
- напряжение, при соединении обмоток треугольником составит 220 В;
- сила тока при том же способе соединения – 13,3 А.
С таким перечнем характеристик можно воспользоваться несколькими способами:
S = 1,732*220*13,3 = 5067 Вт
Чтобы найти искомую величину, сначала определяем активную составляющую:
P = Pполезная / КПД = 3000/0.8 = 3750 Вт
Далее полную по способу деления активной на коэффициент cos φ:
S = P/cos φ = 3750/0. 74 = 5067 Вт
Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.
Примеры задач
Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.
Рис. 3. Последовательная расчетная цепьКак видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:
P = U2/R = 81 / (10+20+30) = 1.35 Вт
Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:
Рис. 4. Параллельная схема подключенияКак видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:
Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом
Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:
P = I2*R = 25*6 = 150 Вт
Видео по теме
youtube.com/embed/JaWqJyaiYvI?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>Онлайн калькулятор расчета тока трехфазной сети
На данной странице представлен онлайн калькулятор для расчета тока из напряжения в трехфазной сети
Формула расчета тока трехфазной сети: (I = P/(1,73*U*cos φ)
Где
I – ток в Амперах;
Р – мощность, кВт;
1,73 – корень из 3;
U – линейное (межфазное) напряжение, согласно гост ГОСТ 32144-2013, принимается равным 380 вольт;
cos φ – выбирается из паспорта оборудования или на основании СП 256.1325800.2016;
Онлайн калькулятор для расчета тока в трехфазной сети
Укажите расчетную мощность нагрузки в килоВаттах (кВт) Введите в это поле мощность в килоВаттах (кВт)
Укажите коэффициент мощности (cosφ)* Введите в это поле коэффициент (cosф)
*Значение cosφ принимается равным:
от 0,95 до 1 — для бытовых электросетей
от 0,75 до 0,85 — для промышленных электросетей
Ток трехфазной сети:
0 Ампер(а)
Электроснабжение
- Проектирование электроснабжения
- Электроснабжение предприятий
- Электроснабжение магазина
- Проектирование ТП и КТП
- Электроснабжение квартиры
- Механизация строительства
- Электроснабжение жилых домов
- Проектирование освещения
- Проект заземления
- Реконструкция ТП
Сети связи
- Проектирование ВОЛС
- Проектирование СКС
- Проектирование СКУД
- Монтаж СКУД
- Проектирование ЛВС
- Монтаж структурированной кабельной системы
АПС
- Монтаж АПС
- Проектирование АПС
- Проектирование СОУЭ
Автоматика
- Автоматизация техпроцессов
- Автоматизация процессов
- Проектирование АСУ ТП
- Проектирование систем диспетчеризации
- Проектирование систем автоматики
Проектирование электроснабжения
Проектирование СКС
Проектирование диспетчеризации
Проектирование АПС
Пожарная безопасность стадионов
Среди общественных зданий, сооружений спортивные, физкультурно-оздоровительные объекты выделяются повышенной…
подробнееМонтаж слаботочных систем.

Слаботочные системы — это локальные сети, работающие на безопасном уровне для жизни человека. Благодаря…
подробнееОсвещение в квартире
Правильная организация освещения в квартире служит основным фактором создания теплой атмосферы уюта и комфорта, в которую…
подробнееРасчет освещения строительной площадки
Электрическое освещение строительных площадок осуществляют с помощью стационарных и передвижных инвентарных…
подробнееКак считать электрическую мощность?
Чтобы обеспечить нормальное функционирование электрической проводки, необходимо ещё на этапе проектирования правильно рассчитать…
подробнееВиды аварийного освещения
При проектировании системы освещения, часто проектировщики не верно классифицируют на виды системы…
Калькулятор электроэнергии
Этот калькулятор электроэнергии поможет вам рассчитать мощность, потребляемую электрическими устройствами . Хотите знать, как рассчитать электрическую мощность? Вы задаетесь вопросом: что такое коэффициент мощности ? Просто прочитайте текст ниже, чтобы узнать.
Как рассчитать электрическую мощность
Электрическая мощность, как и механическая, представляет собой количество работы, выполняемой в единицу времени . В электрических цепях работа совершается электрическим током. Мощность зависит от «количества рабочих, доступных в единицу времени» – тока III и энергии «одного рабочего» – напряжения VVV.
В цепи постоянного тока мощность равна:
P=I V,P = I\,V,P=IV,
где:
- I [A]I\ \rm [A]I [A] – сила тока в амперах;
- В [В]В\ \rm [В]В [В] – напряжение в вольтах; и
- P[W]P [W]P[W] – мощность в ваттах.
В цепях переменного тока уравнение выглядит следующим образом:
P=I Vpf,P = I\, V \rm pf,P=IVpf,
где новый символ pf\rm pfpf означает коэффициент мощности .
Что такое коэффициент мощности?
В токах переменного тока ток и напряжение периодически изменяются во времени. Значения III или VVV соответствуют среднеквадратичному значению (RMS).
RMS — это квадратный корень из среднего квадрата чисел (дополнительные сведения см. в калькуляторе среднеквадратичного значения). Обычно упоминаемое напряжение электрических розеток ( 230 В в ЕС и Австралии, 110 В в США и Канаде, 100 В в Японии) соответствует напряжению RMS .
В цепях переменного тока ток и напряжение может не находиться в фазе . Максимальное значение тока может опережать или отставать от максимального значения напряжения. Это делает передачу власти менее эффективной. В худшем случае, когда ток и напряжение полностью не синхронизированы, передаваемая мощность равна нулю.
Коэффициент мощности говорит нам насколько ток синхронизирован с напряжением . Если они синхронизированы, коэффициент мощности равен 1 . В противном случае он меньше единицы и достигает нуля в случае полной рассинхронизации.
Коэффициент мощности зависит от устройства. Для устройства с чисто резистивным сопротивлением , такого как электрический чайник или электронагреватель, коэффициент мощности равен 1 . Устройство с индуктивными или емкостными элементами ставит ток и напряжение не в фазе. Это делает его коэффициент мощности меньше 1. Чтобы узнать больше, воспользуйтесь калькулятором коэффициента мощности.
Калькулятор электрической мощности
Для расчета электрической мощности необходимо указать ток, напряжение и коэффициент мощности элемента. Для устройств, подключенных к электрическим розеткам, напряжение — это просто напряжение бытовой электросети. Ток, потребляемый устройством, обычно можно найти либо на вилке, либо где-то на устройстве.
Коэффициент мощности определить немного сложнее, если только у вас нет под рукой анализатора качества электроэнергии. Проверьте этот список для коэффициентов мощности нескольких типичных бытовых устройств:
- Лампы со стандартной колбой: pf=1\rm pf = 1pf=1;
- Лампы люминесцентные: pf=0,93\rm pf=0,93pf=0,93;
- Обычный асинхронный двигатель при половинной нагрузке: pf=0,73\rm pf = 0,73pf=0,73, при полной нагрузке: pf=0,85\rm pf = 0,85pf=0,85;
- Электрическая духовка (с резистивным нагревательным элементом): pf=1,0\rm pf = 1,0pf=1,0; и
- Индуктивная печь: pf=0,85\rm pf = 0,85pf=0,85.
Точное значение коэффициента мощности зависит от деталей конструкции, поэтому относитесь к этим значениям с недоверием.
Мощность прибора
Вы также можете воспользоваться нашим калькулятором мощности прибора, чтобы узнать, как рассчитать потребляемую мощность.
Калькулятор мощности, напряжения, тока и сопротивления
Этот калькулятор основан на простом законе Ома. Как мы уже поделились Калькулятор закона Ома (P,I,V,R) В котором также можно рассчитать трехфазный ток.