Расчет потенциалов точек электрической цепи: Измерение потенциалов точек электрической цепи и построение потенциальной диаграммы

Содержание

Измерение потенциалов точек электрической цепи и построение потенциальной диаграммы

Электротехника \ Электротехника

Страницы работы

7 страниц (Word-файл)

Посмотреть все страницы

Скачать файл

Фрагмент текста работы

любой ветви схемы можно найти по закону Ома для участка цепи, содержащего ЭДС. Для того чтобы можно было применить закон Ома, необходимо знать потенциалы узлов схемы. Метод расчета электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов.

Допустим, что в схеме n узлов. Так как любая (одна) точка схемы может быть заземлена без изменения токораспределения в схеме, то один из узлов схемы можно мысленно заземлить, т. е. принять потенциал его равным нулю. При этом число неизвестных уменьшается с n до n-1.

Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по первому закону Кирхгофа. Метод узловых потенциалов, как и метод контурных токов, — один из основных расчетных приемов. В том случае, когда число узлов без единицы меньше числа независимых контуров в схеме, данный метод является более экономичным, чем метод контурных токов.

Вывод основных расчетных уравнений проведем применительно к схеме рис. 2, в которой три узла. Если узел 3 мысленно заземлить, т. е. принять =0, то необходимо определить потенциалы только двух узлов:,.

Запишем уравнения по первому закону Кирхгофа для независимых узлов, причем токи, направленные к узлу берем со знаком минус, а от узла – со знаком плюс.

Для первого узла          ,

Для второго узла           .    

                

Рис. 2. Схема для расчета по методу узловых потенциалов

Запишем токи по закону Ома:

 ,     ,     ,      ,      ,     .

Подставим токи в уравнения по первому закону Кирхгофа:

,

.

Перепишем уравнения:

,

;

,

;

,

, где   ,    ,    ,   ,

,    ,

G11— сумма проводимостей ветвей, сходящихся в первом узле,

G12— сумма проводимостей ветвей, соединяющих первый и второй узлы, взятая со знаком минус,

G21— сумма проводимостей ветвей, соединяющих первый и второй узлы, взятая со знаком минус,

G11— сумма проводимостей ветвей, сходящихся во втором узле,

I11— узловой ток первого узла,

I22 — узловой ток второго узла.

Запишем уравнения в матричной форме:

,

,    ,    .

Решим эти уравнения относительно искомых потенциалов и выразим токи ветвей, используя закон Ома.

После нахождения токов ветвей любым методом всегда делается проверка по первому закону Кирхгофа.

   Потенциальная диаграмма.

Под потенциальной диаграммой понимают график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура. По оси абсцисс на нем откладывают сопротивления вдоль контура, начиная с какой-либо произвольной точки, по оси ординат – потенциалы. Каждой точке участка цепи  или замкнутого контура соответствует своя точка на потенциальной диаграмме. Построим потенциальную диаграмму для контура   на рис.3. Пусть R1=10 Ом, R2=5 Ом, R3=15 Ом, E1=20 В, E2=10 В, I=1A.                                                                                                  

Рис.3. Контур для построения потенциальной диаграммы

,

,

,

,

,

.

Построим график.

Рис. 4. Потенциальная диаграмма для контура на рис.3.

Таблица 1. Исходные данные                                                                                                          

Схема

R1

R2

R3

R4

R5

R6

E1

E2

Рис.

Ом

Ом

Ом

Ом

Ом

Ом

В

В

Вариант 1

5

15

10

25

20

10

30

100

60

Вариант 2

6

4

6

3

2

5

6

35

25

Вариант 3

7

5

1

6

4

2

6

10

30

Вариант 4

8

3

6

9

10

6

8

55

40

Вариант 5

5

6

6

8

8

10

12

70

45

Вариант 6

6

4

2

4

5

6

3

15

35

Вариант 7

7

1

2

5

1

3

3

10

15

Вариант 8

8

25

50

15

25

20

30

150

75

Порядок выполнения работы:

1.   Нарисовать схему. Записать данные.

2.  Найти токи ветвей методом контурных токов.

3.  Сделать проверку по первому закону Кирхгофа.

4.  Найти токи ветвей методом узловых потенциалов.

5.  Рассчитанные токи занести в таблицу 2.

                                          Таблица 2

I1,A

I2,A

I3,A

I4,A

I5,A

I6,A

расчет

эксперимент

6.    Составить баланс мощностей.

7.   Потенциалы точек отмеченных на схеме занести в таблицу 3.

                      Таблица 3

A, B

B, B

C, B

D, B

F, B

расчет

эксперимент

8.   Собрать схему в программе Electronics Workbench.

9.  Измерить токи во всех ветвях. Для чего в каждую ветвь включить амперметр. Результаты измерений занести в таблицу 2.

10.  Заземлить узел, который заземляли при расчете по методу узловых потенциалов.

11.  Измерить потенциалы точек, отмеченных на схеме. Результаты занести в таблицу 3.

12.   Построить потенциальную диаграмму заданного контура.

13.  Сравнить измеренные данные с расчетными.

14.  Сделать вывод.

Содержание отчета:

1.  Тема, цель, приборы и оборудование.

2.  Схема заданной цепи. Исходные данные.

3.  Расчет по методу контурных токов и методу узловых потенциалов.

4.  Заполненная таблица 2.

5.  Проверка по первому закону Кирхгофа.

6.  Баланс мощностей.

7.  Заполненная таблица 3.

8.  Токи ветвей и потенциалы узлов цепи, измеренные в программе Electronics Workbench .

9.  Потенциальная диаграмма.

10.  Вывод.

Вопросы на защиту:

1.   Суть метода контурных токов.

2.  Суть метода узловых потенциалов.

3.  Какой используется закон Кирхгофа для составления уравнений по методу контурных токов? Сформулировать его.

4.  Какой используется закон Кирхгофа для составления уравнений по методу узловых потенциалов? Сформулировать его.

5.  Как называется сопротивление R11? Как оно находится?

6.  Как называется сопротивление R12? Как оно находится?

7.  Что такое Е11 в матричной записи уравнений по методу контурных токов?

8.  Как находится собственная проводимость узла по методу узловых потенциалов?

9.  Матричная форма записи уравнений по методу узловых потенциалов.

10.  Как строится потенциальная диаграмма контура сложной цепи

Похожие материалы

Информация о работе

Скачать файл

РАСЧЕТ ПОТЕНЦИАЛОВ ТОЧЕК ЦЕПИ — Мегаобучалка

Чтобы найти ток в цепи с несколькими источниками надо:

1) Сложить все Е, направленные в одну сторону;

2) Вычесть все Е, направленные в другую сторону

3) Разделить на сумму всех сопротивлений цепи

Ток течет в сторону большей суммы Е.

Пусть Е1 > Е2, тогда

Если ток и ЭДС совпадают по направлению, то источник работает в режиме генератора, если нет, то в режиме потребителя.

Е1 — генератор; Е2— потребитель

Потенциалом точки цепи называется напряжение между данной точкой и заземлённой.

φ0 = 0

При переходе через источник в режиме генератора потенциал повышается на величину ЭДС минус падение напряжения внутри источника.

φА = φ0 + Е1 — I∙Ri1

При переходе через резистор потенциал понижается на величину падения напряжений в нём:

φВ = φА — I∙R

При переходе через источник в режиме потребителя потенциал понижается на величину ЭДС и на величину падения напряжения внутри источника.

φ0 = φB — E2 — I∙Ri2

Потенциальная диаграмма — это график зависимости потенциалов точек цепи от величины сопротивления цепи.

Рассмотрим построение потенциальной диаграммы на конкретном примере. Одну точку цепи заземляем. Расставляем точки вдоль направления тока. При расчете снова должен получиться равным нулю

Пример решения задачи:

Дано:

Е1 = 25 B

Е2 = 35 В

Е3 = 18 В

Ri1 = 2 Ом

Ri2 = 1 Ом

Ri3 =2 Ом

R1 = 12 Ом

R2 = 5 Ом

R3 = 14 Ом

R4 = 6 Ом

1) Рассчитаем ток в цепи и определяем его направление:

A

2) Рассчитаем потенциалы точек:

φ0 = 0

φ1 = φ0 — I∙R1 = 0 — 12 = -12 B

φ2 = φ1 + Е1 — I∙Ri1 = -12 + 25 — 2 = 11 B

φ3 = φ2 — I∙R2 = 11 — 5 = 6 B

φ4 = φ3 + E2 — I∙Ri2 = 6 + 35 — 1 = 40 B

φ5 = φ4 — E3 — I∙Ri3 = 40 — 18 — 2 = 20 B

φ6 = φ5 — I∙R3 = 20 — 14 = 6 B

φ0 = φ6 — I∙R4 = 6 — 6 = 0

Вывод: При переходе через резистор потенциал понижается плавно, через источник в режиме генератора резко увеличивается, а в режиме потребителя резко уменьшается.

Тестовые задания:

Задание Варианты ответов
1.Являются ли напряжение между данной точкой цепи и заземленной потенциалом точки этой цепи? Да; Нет.
2. Источник работает в режиме генератора если… а) ЭДС и ток направлены в разные стороны; б) ЭДС и ток направлены в одну сторону.

 

РАБОТА ИСТОЧНИКА НА НАГРУЗКУ С ПЕРЕМЕННЫМ СОПРОТИВЛЕНИЕМ.

Построение зависимостей I, U, η = F(R).

 

Пусть сопротивление нагрузки изменяется от Rкз=0 до Rxx= . Рассмотрим величину тока в трех режимах короткое замыкание, холостой ход и согласованный режим.

1) Iкз = =

2) Iхх =

3)

Вывод 1: с ростом величины сопротивления ток в цепи уменьшается;

Вывод 2: ток максимальный в режиме короткого замыкания;

Рассмотрим величину напряжения в трех режимах

1) Uкз=

2)

3)

Вывод 1: с ростом величины сопротивления напряжение на зажимах источника растет;

Вывод 2: напряжение максимально в режиме Х. Х.

Рассмотрим величину К.П.Д. в трех режимах

Вывод: η стремиться к 1 в режиме Х.Х., но использовать на практике этот режим невозможно, так как цепь разомкнута.

Построение зависимостей Pu, Pн = F(R)

Рассмотрим величину мощности источника в трех режимах

Pu = E∙I = E∙

Вывод: мощность источника максимальна в режиме короткого замыкания.

Рассмотрим величину мощности нагрузки в трех режимах

 

 

Исследуя функцию Pн = f(R) на экстремум доказано, что максимальная мощность выделяется в нагрузке при согласованном режиме. Поэтому линии связи и другие устройства работают в этом режиме. И хотя η = 50%, но в слаботочных цепях это не имеет значения.

Тестовые задания:

Задание Режим работы Варианты ответов
4. Укажите при каких режимах работы перечисленные в ответах величины максимальны. 1) режим холостого хода; 2) режим короткого замыкания; 3) согласованный режим. а) мощность источника; б) ток цепи; в) мощность нагрузки напряжение на зажимах источника.

 

Калькулятор электрического потенциала

Автор Purnima Singh, PhD

Отзыв Стивена Вудинга

Последнее обновление: 02 февраля 2023 г.

Содержание:
  • Разность электрических потенциалов
  • Что такое электрический потенциал? – Определение электрического потенциала
  • Формула электрического потенциала
  • Как рассчитать электрический потенциал?
  • Как пользоваться калькулятором электрического потенциала
  • Единицы измерения электрического потенциала
  • Размерная формула электрического потенциала
  • Часто задаваемые вопросы

Используйте калькулятор электрического потенциала, чтобы определить электрический потенциал в точке либо за счет одиночного точечного заряда, либо за счет системы точечных зарядов. Вы также можете использовать этот инструмент для определения разности электрических потенциалов между двумя точками.

Если вы хотите рассчитать электрическое поле, создаваемое точечным зарядом, воспользуйтесь калькулятором электрического поля.

Продолжайте читать эту статью, чтобы узнать:

  • Что такое электрический потенциал?
  • Какая связь между электрическим потенциалом и электрической потенциальной энергией?
  • Как рассчитать электрический потенциал?
  • Что такое единица электрического потенциала?

Разность электрических потенциалов

Чтобы понять идею разности электрических потенциалов, рассмотрим некоторое распределение заряда. Это распределение заряда создаст электрическое поле. Теперь, если мы хотим переместить небольшой заряд qqq между любыми двумя точками в этом поле, необходимо совершить некоторую работу против кулоновской силы (вы можете использовать наш калькулятор закона Кулона, чтобы определить эту силу). Эта проделанная работа сохраняется в заряде в виде его потенциальной электрической энергии.

Если мы рассмотрим две произвольные точки, скажем A и B, то выполненная работа (WABW_{AB}WAB​) и изменение потенциальной энергии (ΔU\Delta UΔU) при перемещении заряда (qqq) из A в B можно записать как:

  • WAB=ΔU=(VA−VB)qW_{AB} = \Delta U = (V_A — V_B)qWAB​=ΔU=(VA−VB​)q …… (1)

, где VAV_AVA и VBV_BVB — электрические потенциалы в точках A и B соответственно (мы объясним, что это значит, в следующем разделе).

Если величина qqq равна единице (мы называем положительный заряд единичной величины пробным зарядом), уравнение меняется на:

  • ΔV=(VA−VB)=WABq \Delta V = (V_A — V_B) = \frac{W_{AB}}{q}ΔV=(VA−VB​)=qWAB​​ …. .. (2)

Используя приведенное выше уравнение, мы можем определить разность электрических потенциалов (ΔV\Delta VΔV) между двумя точками (B и A) как работу, выполненную для перемещения пробного заряда из A в B против электростатической силы .

Помните, что потенциальную электрическую энергию нельзя рассчитать по стандартной формуле потенциальной энергии E=mghE=mghE=mgh.

Что такое электрический потенциал? – Определение электрического потенциала

Если мы возьмем одну из точек в предыдущем разделе, скажем, точку A, находящуюся в бесконечности, и выберем потенциал на бесконечности равным нулю, мы можем изменить формулу разности электрических потенциалов (уравнение 2) следующим образом:

  • VB=W ∞Бк V_B = \frac{W_{\infty B}}{q}VB​=qW∞B​​

Следовательно, мы можем определить электрический потенциал в любой точке как количество работы, выполненной при перемещении пробного заряда из бесконечности в эту точку .

Мы также можем определить электрический потенциал как электрическую потенциальную энергию на единицу заряда, т.е.:

  • V=ΔUq V = \frac{\Delta U}{q}V=qΔU​

Итак, вы видите, что электрический потенциал и электрическая потенциальная энергия — это не одно и то же.

Формула электрического потенциала

Для расчета электрического потенциала в любой точке A от одного точечного заряда (см. рис. 1) воспользуемся формулой:

В=ккв\scriptsize V = k \frac{q}{r}V=krq​

где:

  • qqq — электростатический заряд;
  • rrr — расстояние между точкой А и точечным зарядом; и
  • k=14πϵ0k = \frac{1}{4 \pi \epsilon_0}k=4πϵ0​1​ — постоянная Кулона.
Рис. 1: Электрический потенциал точечного заряда.

Заметим, что когда заряд qqq положителен, электрический потенциал положителен. Когда заряд qqq отрицателен, электрический потенциал отрицателен.

Теперь рассмотрим случай, когда имеются четыре точечных заряда: q1q_1q1, q2q_2q2, q3q_3q3 и q4q_4q4 (см. рис. 2). Потенциал в точке A от заряда q1q_1q1 равен:

V1=kq1r1\scriptsize V_1 = k \frac{q_1}{r_1}V1​=kr1​q1​​

Рис. 2: Электрический потенциал, обусловленный системой точечных зарядов.

Мы можем написать аналогичные выражения для потенциала в точке A от других зарядов:

V2=kq2r2V3=kq3r3V4=kq4r4\scriptsize \начать{выравнивать*} V_2 &= k \frac{q_2}{r_2} \\ \\ V_3 &= k \frac{q_3}{r_3} \\ \\ V_4 &= k \frac{q_4}{r_4} \end{align*}V2​V3​V4​=kr2​q2​=kr3​q3​​=kr4​q4​​

Чтобы получить результирующий потенциал в точке A, воспользуемся принципом суперпозиции, т. е. , добавим отдельные потенциалы:

V=V1+V2+V3+V4V=k(q1r1+q2r2+q3r3+q4r4)\размер сценария \начать{выравнивать*} V &= V_1 + V_2 + V_3 + V_4 \\ \\ V &= k \left (\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \frac{q_4}{r_4}\right ) \\ \end{align*}VV​=V1​+V2​+V3​+V4​=k(r1​q1​​+r2​q2​​+r3​q3​​+r4​q4​)​

Для системы nnn точечных зарядов результирующий потенциал можно записать в виде: кири\скриптсайз \начать{выравнивать*} V &= V_1 + V_2 + V_3 + …. +V_n \\ \\ V &= k \left (\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + …. +\frac{q_n}{r_n}\right ) \\\\ V & = k \sum \frac{q_i}{r_i} \end{align*}VVV​=V1​+V2​+V3​+….+Vn​=k(r1​q1​​+r2​q2​​+r3​q3​​+…. +rn​qn​)=k∑ri​qi​​ 94\ \rm В3,6×104 В.

Как пользоваться калькулятором электрического потенциала

Теперь посмотрим, как можно решить ту же задачу с помощью нашего калькулятора электрического потенциала:

  1. В раскрывающемся меню выберите электрический потенциал за счет точечного заряда .

  2. Введите значение электрического заряда , т. е. 4e−074e-074e−07 и расстояние между точечным зарядом и точкой наблюдения (10 см10\ \rm см10 см). 94 \ \rm В3,595×104 В.

Единицы электрического потенциала

Единицей электрического потенциала СИ является вольт (В) . Мы можем сказать, что электрический потенциал в точке равен 1 В , если 1 Дж работы совершается при переносе положительного заряда 1 Кл из бесконечности в эту точку против электростатической силы.

Единицей измерения разности потенциалов также является вольт. Возможно, вы более знакомы с напряжением, а не с термином «разность потенциалов». Например, когда мы говорим о 3 В , мы просто имеем в виду, что разность потенциалов между двумя его клеммами составляет 3 В .

💡 Наш калькулятор емкости аккумулятора — это удобный инструмент, который поможет вам узнать, сколько энергии хранится в вашем аккумуляторе.

Размерная формула электрического потенциала

Чтобы написать размерную формулу электрического потенциала (или разности электрических потенциалов), мы сначала напишем уравнение для электрического потенциала:

  • V=Wq V = \frac{W}{q} V=qW​ 9{-1}]V=[AT][M1L2T−2]​=[M1L2T−3A−1]

    Часто задаваемые вопросы

    Как рассчитать электрический потенциал точечного заряда?

    Для расчета электрического потенциала точечного заряда (q) на расстоянии (r) следуйте приведенным инструкциям:

    1. Умножить заряд q на постоянную Кулона .

    2. Разделить значение из шаг 1 на расстояние р.

    3. Поздравляю! Вы вычислили электрический потенциал точечного заряда.

    Может ли электрический потенциал быть отрицательным?

    Да , электрический потенциал может быть отрицательным. Электростатический потенциал в точке из-за положительного заряда положителен. Если заряд отрицательный, электрический потенциал также отрицателен.

    Что такое разность электрических потенциалов?

    Разность электрических потенциалов между двумя точками A и B определяется как работа, совершаемая для перемещения единичного положительного заряда из A в B . Единицей разности потенциалов в системе СИ является вольт (В).

    Является ли электрический потенциал скалярной или векторной величиной?

    Электрический потенциал является скалярной величиной , поскольку он не имеет направления.

    Какова единица измерения электрического потенциала?

    Электрический потенциал – электрическая потенциальная энергия на единицу заряда. Единицей электрической потенциальной энергии в системе СИ является джоуль (Дж), а единицы заряда — кулон (Кл). Следовательно, единицей электрического потенциала СИ является Дж/Кл, т. е. вольт (В) .

    Чему равен электрический потенциал заряда в точке, удаленной на бесконечность?

    Ноль . Электрический потенциал в точке P , обусловленный зарядом q , обратно пропорционален расстоянию между ними. Следовательно, когда расстояние бесконечно, электрический потенциал равен нулю.

    Пурнима Сингх, доктор философии

    Я хочу вычислить…..

    Электрический потенциал

    Заряд (q)

    Расстояние (r)

    Электрический потенциал (В)

    Ознакомьтесь с 40 похожими калькуляторами электромагнетизма 🧲

    Ускорение частицы в электрическом полеВатт переменного токаЕмкость… еще 37

    3.3 Расчеты электрического потенциала – введение в электричество, магнетизм и электрические цепи

    ЦЕЛИ ОБУЧЕНИЯ

    К концу этого раздела вы сможете:
    • Расчет потенциала точечного заряда
    • Расчет потенциала системы множественных точечных зарядов
    • Описать электрический диполь
    • Определить дипольный момент
    • Расчет потенциала непрерывного распределения заряда

    Точечные заряды, такие как электроны, являются одними из основных строительных блоков материи. Кроме того, сферические распределения заряда (например, заряд на металлическом шаре) создают внешние электрические поля точно так же, как точечный заряд. Электрический потенциал, обусловленный точечным зарядом, является, таким образом, случаем, который нам необходимо рассмотреть.

    Мы можем использовать исчисление, чтобы найти работу, необходимую для перемещения пробного заряда с большого расстояния на расстояние  от точечного заряда. Отмечая связь между работой и потенциалом, как и в предыдущем разделе, мы можем получить следующий результат.

    ЭЛЕКТРИЧЕСКИЙ ПОТЕНЦИАЛ

    В ТОЧЕЧНЫЙ ЗАРЯД

    Электрический потенциал точечного заряда определяется как

    (3.3.1)  

    где  постоянная, равная .

    Потенциал на бесконечности выбран равным нулю. Таким образом,  для точечного заряда уменьшается с расстоянием, тогда как  для точечного заряда уменьшается с квадратом расстояния:

       

    Напомним, что электрический потенциал — скаляр и не имеет направления, тогда как электрическое поле — вектор. Чтобы найти напряжение из-за комбинации точечных зарядов, вы складываете отдельные напряжения в виде чисел. Чтобы найти полное электрическое поле, вы должны сложить отдельные поля в виде векторов, принимая во внимание величину и направление. Это согласуется с тем фактом, что тесно связано с энергией, скаляром, тогда как тесно связано с силой, вектором.

    ПРИМЕР 3.3.1


    Какое напряжение создает небольшой заряд на металлическом шаре?

    Заряды статического электричества обычно находятся в диапазоне от нанокулонов () до микрокулонов (). Каково напряжение вдали от центра твердого металлического шара диаметром, имеющего статический заряд?

    Стратегия

    Как мы обсуждали в разделе «Электрические заряды и поля», заряд на металлическом шаре распространяется равномерно и создает поле, похожее на поле точечного заряда, расположенного в его центре. Таким образом, мы можем найти напряжение, используя уравнение.

    Решение

    Подставляя известные значения в выражение для потенциала точечного заряда, получаем

       

    Значение

    Отрицательное значение напряжения означает, что положительный заряд будет притягиваться с большего расстояния, поскольку потенциал ниже (более отрицательный), чем на больших расстояниях. И наоборот, отрицательный заряд будет отталкиваться, как и ожидалось.

    ПРИМЕР 3.3.2


    Что такое избыточный заряд генератора Ван де Граафа?

    Демонстрационный генератор Ван де Граафа имеет металлическую сферу диаметром, которая создает напряжение вблизи ее поверхности (рис. 3.3.1). Какой избыточный заряд находится на шаре? (Предположим, что каждое числовое значение здесь показано с тремя значащими цифрами.)

    (рис. 3.3.1)  

    Рисунок 3.3.1  Напряжение этого демонстрационного генератора Ван де Граафа измеряется между заряженной сферой и землей. Потенциал Земли принимается равным нулю в качестве эталона. Потенциал заряженной проводящей сферы такой же, как и у равного точечного заряда в ее центре.
    Стратегия

    Потенциал на поверхности такой же, как и у точечного заряда в центре сферы вдали. (Радиус сферы равен .) Таким образом, мы можем определить избыточный заряд, используя уравнение

       

    Решение

    Решение для  и ввод известных значений дает

       

    Значение

    Это относительно небольшая зарядка, но выдает довольно большое напряжение. У нас есть еще одно указание на то, что трудно хранить изолированные заряды.

    ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 3.8


    Каков потенциал внутри металлической сферы в Примере 3.3.1?

    Напряжения в обоих этих примерах можно измерить с помощью измерителя, который сравнивает измеренный потенциал с потенциалом земли. Потенциал земли часто принимается равным нулю (вместо того, чтобы принимать потенциал на бесконечности равным нулю). Важна именно разность потенциалов между двумя точками, и очень часто неявно предполагается, что какая-то точка отсчета, например Земля или очень удаленная точка, имеет нулевой потенциал. Как отмечалось ранее, это аналогично уровню моря при рассмотрении потенциальной энергии гравитации.

    Системы многоточечных зарядов

    Как электрическое поле подчиняется принципу суперпозиции, так и электрический потенциал. Рассмотрим систему, состоящую из зарядов . Каков чистый электрический потенциал в точке пространства от этих зарядов? Каждый из этих зарядов является исходным зарядом, который создает свой собственный электрический потенциал в точке , независимо от того, какие другие изменения могут происходить. Пусть — электрические потенциалы при , создаваемые зарядами соответственно. Тогда суммарный электрический потенциал в этой точке равен сумме этих отдельных электрических потенциалов. Это легко показать, рассчитав потенциальную энергию пробного заряда, когда вы перенесете пробный заряд из точки отсчета на бесконечности в точку:

       

    Обратите внимание, что электрический потенциал следует тому же принципу суперпозиции, что и электрическое поле и электрическая потенциальная энергия. Чтобы показать это более явно, обратите внимание, что тестовый заряд в точке пространства находится на расстоянии от зарядов, зафиксированных в пространстве выше, как показано на рисунке 3.3.2. Используя нашу формулу потенциала точечного заряда для каждого из этих (предполагаемых точечными) зарядов, находим, что

    (3.3.2)  

    Следовательно, электрическая потенциальная энергия пробного заряда равна

       

    , который аналогичен работе по вводу пробного заряда в систему, описанной в первом разделе главы.

    (рис. 3.3.2)  

    Рисунок 3.3.2  Обозначение прямых расстояний от зарядов до точки пространства.

    Электрический диполь

    Электрический диполь  – это система двух равных, но противоположных зарядов, находящихся на фиксированном расстоянии друг от друга. Эта система используется для моделирования многих систем реального мира, включая атомные и молекулярные взаимодействия. Одной из таких систем является молекула воды при определенных обстоятельствах. Эти обстоятельства встречаются внутри микроволновой печи, где электрические поля переменного направления заставляют молекулы воды менять ориентацию. Эта вибрация аналогична теплу на молекулярном уровне.

    ПРИМЕР 3.3.3


    Электрический потенциал диполя

    Рассмотрим диполь на Рисунке 3.3.3 с величиной заряда  и расстоянием разделения . Каков потенциал в следующих местах в космосе? (а) ; (б) ; (с) .

    (рис. 3.3.3)  

    Рисунок 3. 3.3  Общая схема электрического диполя и обозначения расстояний от отдельных зарядов до точки в пространстве.
    Стратегия

    Применить к каждой из этих трех точек.

    Решение

    а.

    б.

    в.

    Значение

    Обратите внимание, что оценка потенциала значительно проще, чем электрического поля, поскольку потенциал является скаляром, а не вектором.

    ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 3.9

    Какой потенциал на -оси? -ось?

    Теперь рассмотрим частный случай, когда расстояние точки  от диполя много больше, чем расстояние между зарядами в диполе, ; например, когда нас интересует электрический потенциал поляризованной молекулы, такой как молекула воды. Это не так далеко (бесконечность), чтобы мы могли просто считать потенциал равным нулю, но расстояние достаточно велико, чтобы мы могли упростить наши вычисления по сравнению с предыдущим примером.

    Начнем с того, что на рис. 3.3.4 потенциал представлен как

    .

       

    где

       

    (рис. 3.3.4)  

    Рисунок 3.3.4  Общая схема электрического диполя и обозначения расстояний от отдельных зарядов до точки в пространстве.

    Это по-прежнему точная формула. Чтобы воспользоваться тем, что , мы перепишем радиусы в терминах полярных координат, с  и . Это дает нам

       

    Мы можем упростить это выражение, вытащив  из корня,

       

    , а затем умножить скобки на

    .

       

    Последний член в корне достаточно мал, чтобы им можно было пренебречь (помните, что  и, следовательно,  чрезвычайно мал, фактически равен нулю до уровня, который мы, вероятно, будем измерять), оставляя нам

       

    Использование биномиального приближения (стандартный результат математики рядов, когда  небольшое)

       

    и подставив это в нашу формулу для , мы получим

       

    Это может быть записано более удобно, если мы определим новую величину, электрический дипольный момент ,

    (3. 3.3)  

    , где эти векторы указывают от отрицательного заряда к положительному. Обратите внимание, что это имеет величину . Эта величина позволяет нам записать потенциал в точке из-за диполя в начале координат как

    .

    (3.3.4)  

    Схема применения этой формулы показана на Рисунке 3.3.5.

    (рис. 3.3.5)  

    Рисунок 3.3.5  Геометрия приложения потенциала диполя.

    Существуют также моменты более высокого порядка для квадруполей, октуполей и т. д. Вы увидите их на следующих уроках.

    Возможность непрерывного распределения заряда

    Мы много работали с точечными зарядами, но как насчет непрерывного распределения заряда? Напомним из уравнения 3.3.2, что

       

    Мы можем рассматривать непрерывное распределение заряда как набор бесконечно малых отдельных точек. Это дает интеграл

    (3.3.5)  

    для потенциала в точке . Обратите внимание, что  это расстояние от каждой отдельной точки распределения заряда до точки . Как мы видели в разделе «Электрические заряды и поля», бесконечно малые заряды равны

       

    , где – линейная плотность заряда, – заряд на единицу площади и – заряд на единицу объема.

    ПРИМЕР 3.3.4


    Потенциал линии заряда

    Найдите электрический потенциал однородно заряженного непроводящего провода с линейной плотностью (кулон/метр) и длиной  в точке, лежащей на линии, которая делит провод на две равные части.

    Стратегия

    Для постановки задачи мы выбираем декартовы координаты таким образом, чтобы максимально использовать симметрию в задаче. Поместим начало координат в центр провода и ориентируем -ось вдоль провода так, чтобы концы провода находились в точках . Точка поля находится в -плоскости, и поскольку выбор осей зависит от нас, мы выбираем -ось для прохождения через точку поля, как показано на рисунке 3.3.6.

    (рис. 3.3.6)  

    Рисунок 3.3.6  Мы хотим рассчитать электрический потенциал линии заряда.
    Решение

    Рассмотрим небольшой элемент распределения заряда между  и . Заряд в этой ячейке равен , а расстояние от ячейки до точки поля равно . Таким образом, потенциал становится равным

    .

       

    Значение

    Обратите внимание, что это было проще, чем эквивалентная задача для электрического поля, из-за использования скалярных величин. Напомним, что мы ожидаем, что нулевой уровень потенциала будет на бесконечности, когда у нас конечный заряд. Чтобы исследовать это, мы берем предел вышеуказанного потенциала по мере приближения к бесконечности; в этом случае члены внутри натурального логарифма стремятся к единице, и, следовательно, потенциал приближается к нулю в этом пределе. Обратите внимание, что мы могли бы решить эту задачу эквивалентно в цилиндрических координатах; единственный эффект будет состоять в том, чтобы заменить  на  и на .

    ПРИМЕР 3.3.5


    Потенциал из-за кольца заряда

    Кольцо имеет однородную плотность заряда с единицами кулонов на единицу дугового метра. Найти электрический потенциал в точке на оси, проходящей через центр кольца.

    Стратегия

    Используем ту же процедуру, что и для заряженного провода. Отличие здесь в том, что заряд распределяется по окружности. Мы делим окружность на бесконечно малые элементы в виде дуг на окружности и используем цилиндрические координаты, показанные на рис. 3.3.7.

    (рис. 3.3.7)  

    Рисунок 3.3.7  Мы хотим рассчитать электрический потенциал из-за кольца заряда.
    Решение

    Общий элемент дуги между  и  имеет длину  и поэтому содержит заряд, равный . Элемент находится на расстоянии  от , и поэтому потенциал равен

       

    Значение

    Этот результат ожидаем, поскольку все элементы кольца находятся на одинаковом расстоянии от точки . Чистый потенциал при  является потенциалом полного заряда, расположенного на общем расстоянии, .

    ПРИМЕР 3.3.6


    Потенциал за счет однородного диска заряда

    Диск радиусом  имеет однородную плотность заряда  в единицах кулон-метр в квадрате. Найти электрический потенциал в любой точке оси, проходящей через центр диска.

    Стратегия

    Мы делим диск на кольцеобразные ячейки и используем результат для кольца, полученный в предыдущем примере, затем интегрируем по  в дополнение к . Это показано на Рисунке 3.3.8.

    (рис. 3.3.8)  

    Рисунок 3.3.8  Мы хотим рассчитать электрический потенциал заряженного диска.
    Решение

    Ячейка бесконечно малой ширины между цилиндрическими координатами  и  изображенная на рис. 3.3.8 будет представлять собой кольцо зарядов, электрический потенциал которого  в точке поля имеет следующее выражение

       

    где

       

    Суперпозиция потенциалов всех бесконечно малых колец, составляющих диск, дает суммарный потенциал в точке. Это достигается путем интеграции from to :

       

    Значение

    Основная процедура для диска состоит в том, чтобы сначала интегрировать  , а затем . Это было продемонстрировано для однородной (постоянной) плотности заряда. Часто плотность заряда зависит от , и тогда последний интеграл будет давать разные результаты.

    ПРИМЕР 3.3.7


    Потенциал из-за бесконечного заряженного провода

    Найдите электрический потенциал бесконечно длинного однородно заряженного провода.

    Стратегия

    Поскольку мы уже рассчитали потенциал провода конечной длины в примере 3.2.4, мы можем задаться вопросом, сработает ли наш предыдущий результат:

       

    Однако этот предел не существует, потому что аргумент логарифма принимает вид , поэтому этот способ нахождения бесконечной проволоки не работает. Причину этой проблемы можно проследить в том, что заряды не локализованы в каком-то пространстве, а продолжаются на бесконечность в направлении провода. Следовательно, наше (негласное) предположение о том, что нулевой потенциал должен находиться на бесконечном расстоянии от провода, больше не имеет силы.

    Чтобы избежать этой трудности при вычислении пределов, давайте воспользуемся определением потенциала путем интегрирования по электрическому полю из предыдущего раздела и значением электрического поля из этой конфигурации заряда из предыдущей главы.

    Решение

    Используем интеграл

       

    , где — конечное расстояние от линии заряда, как показано на рис. 3.3.9.

    (рис. 3.3.9)  

    Рисунок 3.3.9  Точки интереса для расчета потенциала бесконечной линии заряда.

    В этой настройке мы используем  и  для получения

       

    Теперь, если мы определим опорный потенциал при , это упрощается до

       

    Обратите внимание, что эта форма потенциала вполне пригодна для использования; оно находится в бесконечности и не определено в бесконечности, поэтому мы не можем использовать последнее в качестве ссылки.

    Значение

    Хотя прямой расчет потенциала может быть весьма удобным, мы только что обнаружили систему, для которой эта стратегия не работает. В таких случаях возвращение к определению потенциала с точки зрения электрического поля может предложить путь вперед.

    ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 3.10

    Чему равен потенциал на оси неоднородного кольца заряда, где плотность заряда ?

    Цитаты Кандела

    Контент под лицензией CC, конкретное указание авторства

    • Загрузите бесплатно по адресу http://cnx.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *