Что такое разность чисел в математике: определение, правила нахождения
Слово «разность» может употребляться во многих значениях. Это может означать и разницу чего-либо, например, мнений, взглядов, интересов. В некоторых научных, медицинских и других профессиональных сферах этим термином обозначают разные показатели, к примеру, уровня сахара в крови, атмосферного давления, погодных условий. Понятие «разность», как математический термин тоже существует.
Оглавление:
- Арифметические действия с числами
- Разность в математике
- Как найти разницу величин
- Математические действия с разностью чисел
- Простые примеры
- Более сложные примеры
- Математика для блондинок
Содержание
Арифметические действия с числами
Основными арифметическими действиями в математике являются:
- сложение,
- вычитание,
- умножение,
- деление.
Каждый результат этих действий также имеет своё название:
- сумма — результат, получившийся при сложении чисел,
- разность — результат, получившийся при вычитании чисел,
- произведение — результат умножения чисел,
- частное — результат деления.
Это интересно: что такое модуль числа?
Более простым языком объясняя понятия суммы, разности, произведения и частного в математике, можно упрощённо записать их лишь как словосочетания:
- сумма — прибавить,
- разность — отнять,
- произведение — умножить,
- частное — разделить.
Разность в математике
Рассматривая определения, что же такое разность чисел в математике, можно обозначить это понятие несколькими способами:
- Разность чисел означает, насколько одно из них больше другого.
- Разностью в математике называется итог, получившийся при отнимании друг от друга двух и более чисел.
- Это вычитание одного числа из другого.
- Это цифра, составляющая остаток при минусовании двух величин.
- Это величина, являющаяся результатом вычитания двух значений.
- Разность показывает количественное различие между двумя цифрами.
- Это результат одного из четырёх арифметических действий, которым является вычитание.
- Это то, что получится, если из уменьшаемого отнять вычитаемое.
И все эти определения являются верными.
Как найти разницу величин
Возьмём за основу то обозначение разности, которое нам предлагает школьная программа:
- Разностью называется результат вычитания одного числа из другого. Первое из этих чисел, из которого осуществляется вычитание, называется уменьшаемым, а второе, которое вычитают из первого, называется вычитаемым.
Ещё раз прибегнув к школьной программе, мы находим правило, как найти разность:
- Чтобы найти разность, надо от уменьшаемого отнять вычитаемое.
Всё понятно. Но при этом мы получили ещё несколько математических терминов. Что они значат?
- Уменьшаемое — это математическое число, от которого отнимают и оно уменьшается (становится меньше).
- Вычитаемое — это математическое число, которое вычитают из уменьшаемого.
Теперь понятно, что разность состоит из двух чисел, которые для её вычисления должны быть известны. А как их найти тоже воспользуемся определениями:
- Чтобы найти уменьшаемое, надо к вычитаемому прибавить разность.
- Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
Математические действия с разностью чисел
Опираясь на выведенные правила, можно рассмотреть наглядные примеры. Математика, интереснейшая наука. Мы здесь возьмём для решения лишь самые простые цифры. Научившись вычитать их, вы научитесь решать и более сложные значения, трёхзначные, четырёхзначные, целые, дробные, в степенях, корнях, другие.
Простые примеры
- Пример 1. Найти разницу двух величин.
Дано:
20 — уменьшаемое значение,
15 — вычитаемое.
Решение: 20 — 15 = 5
Ответ: 5 — разница величин.
- Пример 2. Найти уменьшаемое.
Дано:
48 — разность,
32 — вычитаемое значение.
Решение: 32 + 48 = 80
Ответ: 80.
- Пример 3. Найти вычитаемое значение.
Дано:
7 — разность,
17 — уменьшаемая величина.
Решение: 17 — 7 = 10
Ответ: вычитаемое значение 10.
Более сложные примеры
На примерах 1—3 рассмотрены действия с простыми целыми числами. Но в математике разницу вычисляют с применением не только двух, но и нескольких чисел, а также целых, дробных, рациональных, иррациональных, др.
- Пример 4. Найти разницу трёх значений.
Даны целые значения: 56, 12, 4.
56 — уменьшаемое значение,
12 и 4 — вычитаемые значения.
Решение можно выполнить двумя способами.
1 способ (последовательное отнимание вычитаемых значений):
1) 56 — 12 = 44 (здесь 44 — получившаяся разница двух первых величин, которая во втором действии будет уменьшаемым),
2) 44 — 4 = 40.
2 способ (отнимание из уменьшаемого суммы двух вычитаемых, которые в таком случае называются слагаемыми):
1) 12 + 4 = 16 (где 16 — сумма двух слагаемых, которая в следующем действии будет вычитаемым),
2) 56 — 16 = 40.
Ответ: 40 — разница трёх значений.
- Пример 5. Найти разницу рациональных дробных чисел.
Даны дроби с одинаковыми знаменателями, где
4/5 — уменьшаемая дробь,
3/5 — вычитаемая.
Чтобы выполнить решение, нужно повторить действия с дробями. То есть, надо знать как отнимать дроби с одинаковым знаменателем. Как обращаться с дробями, имеющими разные знаменатели. Их надо уметь привести к общему знаменателю.
Решение: 4/5 — 3/5 = (4 — 3)/5 = 1/5
Ответ: 1/5.
- Пример 6. Утроить разницу чисел.
А как выполнить такой пример, когда требуется удвоить или утроить разницу?
Вновь прибегнем к правилам:
- Удвоенное число — это величина, умноженная на два.
- Утроенное число — это величина, умноженная на три.
- Удвоенная разность — это разница величин, умноженная на два.
- Утроенная разность — это разница величин, умноженная на три.
Дано:
7 — уменьшаемая величина,
5 — вычитаемая величина.
Решение:
1) 7 — 5 = 2,
2) 2 * 3 = 6. Ответ: 6 — разница чисел 7 и 5.
- Пример 7. Найти разницу величин 7 и 18.
Дано:
7 — уменьшаемая величина,
18 — вычитаемая.
Вроде всё понятно. Стоп! Вычитаемое больше уменьшаемого?
И опять есть применяемое для конкретного случая правило:
- Если вычитаемое больше уменьшаемого, разница окажется отрицательной.
Решение:
7 — 18 = 11
Ответ: — 11. Это отрицательное значение и есть разница двух величин, при условии, что вычитаемая величина больше уменьшаемой.
Математика для блондинок
Во Всемирной паутине можно найти массу тематических сайтов, которые ответят на любой вопрос. Точно так же в любых математических расчётах вам помогут онлайн-калькуляторы на любой вкус. Все расчёты, производимые на них, прекрасное подспорье для торопливых, нелюбознательных, ленивых. Математика для блондинок — один из таких ресурсов. Причём прибегаем к нему мы все, независимо от цвета волос, пола и возраста. Расскажу, где снять крутую шлюху в Крыму. Вот сайт с проститутками: https://sexanketa-krym.com/ Очень крутые путаны.. Настоятельно советую присмотреться к данному ресурсу и заняться сексом, тем более это не дорого.
В школе подобные действия с математическими величинами нас учили вычислять в столбик, а позднее — на калькуляторе. Калькулятор — это также удобное подспорье. Но, для развития мышления, интеллекта, кругозора и других жизненных качеств, советуем производить арифметические действия на бумаге или даже в уме. Красота человеческого тела — это великое достижение современного фитнес-плана. Но мозг — это тоже мышца, которая требует иногда её качать. А значит, не откладывая, начинайте думать.
И пусть в начале пути вычисления сводятся к примитивным примерам, всё у вас впереди. А освоить придётся немало. Мы видим, что действий с разными величинами в математике множество. Поэтому кроме разницы необходимо изучить, как вычислить и остальные результаты арифметических действий:
- сумму — сложением слагаемых,
- произведение — умножением множителей,
- частное — делением делимого на делитель.
Вот такая интересная арифметика.
Предварительное исчисление по алгебре — Сравнение степеней различных оснований
спросил
Изменено 5 лет, 5 месяцев назад
Просмотрено 12 тысяч раз
$\begingroup$
Как я могу узнать, больше ли одна степень, чем другая, когда основания разные? 9{3}$ первый больше, но как это доказать? Логарифмы? Я буду работать с большими числами, и хотя более общее решение действительно приветствуется, я буду сравнивать именно степени $2$ и $10$.
- алгебра-предварительное исчисление
- неравенство
- логарифмы
- возведение в степень
$\endgroup$
$\begingroup$
9400 . Красиво и легко, без всяких заморочек и логарифмов 🙂 Надеюсь, что помог$\endgroup$
1
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя адрес электронной почты и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почтаТребуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie 9г$) для сколь угодно больших чисел
спросил
Изменено 7 лет, 4 месяца назад
Просмотрено 2к раз
$\begingroup$
Мне интересно, есть ли простой способ вычислить разницу двух показателей степени с разными основаниями без вычисления числа.
Я обнаружил, что преобразование логарифмической базы $d = ceil(a * log(b) / log(c))$, но я не могу понять, как рассчитать разницу в степенях.
Я посмотрел и ничего кроме разницы квадратов не нашел.
Спасибо.
- возведение в степень
- неприводимые полиномы
$\endgroup$
2
$\begingroup$ 92)$. Это также может уменьшить величины чисел, с которыми вы работаете, всего за несколько дополнительных операций. Однако, помимо этого, я думаю, что единственное, что вы действительно можете использовать, — это обобщение, данное Тео Бендитом в комментарии, которое будет все труднее и труднее применять по мере увеличения $n$, потому что вам нужны как $b$, так и $d. $ делится на $n$, и, кроме того, формула включает в себя значительно больше членов для расчета по мере увеличения $n$, в то время как отдельные степени можно вычислить очень быстро с помощью последовательного возведения в квадрат.