Развернутая форма числа онлайн: Перевод числа в другие системы счисления

Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки.

Автор — Лада Борисовна Есакова.

Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.

Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:

Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.

Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.

Например, . Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = ).

Вернемся опять к привычной десятичной системе. Число = 100000. Т.е. 10 в степени k– это единица и k нулей.

Аналогичное утверждение справедливо для любой системы счисления:

Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.

Например, .

1. Поиск основания системы счисления

Пример 1.

В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда .Т.е. x = 9.

Ответ: 9

Пример 2.

В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда

Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.

Ответ: 3

Пример 3

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.



Решение:

Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,

Ответ: 6, 8, 12, 24

Пример 4

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.

Решение:

Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).

Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.

Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.

2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:

68:4 = 17; 17:4 = 4 (ост 1) – подходит

68:17 = 4; 4:17 = 0 (ост 4) – не подходит

68:34 = 2; 2:17 = 0 (ост 2) – не подходит

68:68 = 1; 1:68 = 0 (ост 1) – подходит

Ответ: 4, 68

2. Поиск чисел по условиям

Пример 5

Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?

Решение:

Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.

. Т.е. нам нужно найти все числа, не больше , запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
получаем числа и . Переводим их в десятичную систему счисления:

Ответ: 5, 21

3. Решение уравнений

Пример 6

Решите уравнение:

Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).

Решение:

Переведем все числа в десятичную систему счисления:

Квадратное уравнение имеет корни -8 и 6. (т.к. основание системы не может быть отрицательным). .

Ответ: 20

4. Подсчет количества единиц (нулей) в двоичной записи значения выражения

Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:

При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.

При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.

Пример 7

Сколько единиц содержится в двоичной записи значения выражения: ?

Решение:

Представим все числа выражения, как степени двойки:

В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя и , получим число, содержащее 2 единицы:

Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.

Теперь прибавляем к получившемуся числу 1:

Видим, что у результата 2013+1+1=2015 единиц.

Ответ: 2015.

Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки, арифметические действия в различных системах.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена: 07.05.2023

Перевод из десятичной системы счисления в другие

Для перевода целого десятичного числа  N  в систему счисления с основанием  q  необходимо  N  разделить с остатком («нацело») на  q , записанное в той же десятичной системе. Затем неполное частное, полученное от такого деления, нужно снова разделить с остатком на  q , и т.д., пока последнее полученное неполное частное не станет равным нулю.

Представлением числа N  в новой системе счисления будет последовательность остатков деления, изображенных одной q-ичной цифрой и записанных в порядке, обратном порядку их получения.

Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112   =  1138  =  4B16.

Перевод в десятичную систему счисления

Перевод целых чисел из системы счисления с основанием q (недесятичной системы) в десятичную систему счисления выполняется по правилу: если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. Рассмотрим примеры:

1123 = 1 · 32 + 1 · 31 + 2 · 30 = 9 + 3 + 2 = 1410

1011012 = 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 32 + 0 + 8 + 4 + 1 = 4510

15FС16 = 1 · 163 + 5 · 162 + 15(F) · 161 + 12(С) · 160 = 4096 + 1280 + 240 + 12 = 562810

Развернутая форма числа

Развернутая форма записи числа – это запись в виде разрядных слагаемых, записанных с помощью степени соответствующего разряда и основания степени=10.

Рассмотрим примеры:

3247810 = 3·10000 + 2·1000 + 4·100 + 7·10 + 8 =

= 3·104 + 2·103 + 4·102 + 7·101 + 8·100

1123 = 1·102 + 1·101 + 2·100

1011012 = 1·105 + 0·104 + 1·103 + 1·102 + 0·101 + 1·100

15FC16 = 1·103 + 5·102 + F·102 + C·100

Арифметические операции в позиционных системах счисления

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком   и  деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

С л о ж е н и е

Таблицы сложения легко составить, используя Правило Счета.  

Сложение в двоичной системе

Сложение в восьмеричной системе

Сложение в двоичной системе

Сложение в восьмеричной системе

                 Сложение в шестнадцатеричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

  Пример 1. Сложим числа 15 и 6 в различных системах счисления.

     

Шестнадцатеричная: F16+616

Ответ: 15+6 = 2110 = 101012 = 258 = 1516Проверка. Преобразуем полученные суммы к десятичному виду: 101012 = 24 + 22 + 20 = 16+4+1=21,  258 = 2.81 + 5.80 = 16 + 5 = 21,  1516 = 1.161 + 5.160 = 16+5 = 21. 

  Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F16+716+316

Ответ: 5+7+3 = 2510 = 110012 = 318 = 1916.   Проверка: 110012 = 24 + 23 + 20 = 16+8+1=25, 318 = 3.81 + 1.80 = 24 + 1 = 25,  1916 = 1.161 + 9.160 = 16+9 = 25. 

  Пример 3. Сложим числа 141,5 и 59,75.

  Ответ: 141,5 + 59,75 = 201,2510 = 11001001,012 = 311,28 = C9,416

Проверка. Преобразуем полученные суммы к десятичному виду:

11001001,012 = 27 + 26 + 23 + 20 + 2-2 = 201,25;

311,28 = 3. 82 + 1.81 + 1.80 + 2.8-1 = 201,25 ;

C9,416 = 12.161 + 9.160 + 4.16-1 = 201,25 .

Калькулятор расширенной формы

Базовый калькулятор

Калькулятор расширенной формы

Найти расширенные формы:

Ответ:

Стандартная форма:

23 958

Расширенные формы могут быть написаны как предложение или сложены для удобства чтения, как здесь.

Расширенная форма записи:

23 958

=

20 000

 

+

3,000

 

Расширенная форма коэффициентов:

 

 

23 958

=

 

2 ×

10 000

 

+

3 ×

1 000

 

+ 9 0003

9 ×

100

 

+

5 ×

10

 

+

900 02 8 ×

1

 

Расширенная экспоненциальная форма:

 

23 958 =

2 × 10 4

+

3 × 10 3

+

9 × 10 2

+

5 × 10 1

+

8 × 10 0

Форма слова:

23 958 =
двадцать три тысячи девятьсот пятьдесят -восемь

Поделитесь этой ссылкой для ответа: help
Вставьте эту ссылку в электронное письмо, текст или социальные сети.


Получить виджет для этого калькулятора

© Calculator Soup

Поделись этим калькулятором и Страница

Использование калькулятора

Калькулятор расширенной формы показывает расширенные формы числа, включая расширенную форму записи, расширенную форму множителя, расширенную экспоненциальную форму и форму слова.

Расширенная форма или расширенная нотация — это способ записи чисел, позволяющий увидеть математическое значение отдельных цифр. Когда числа разделены на отдельные разряды и десятичные разряды, они также могут формировать математическое выражение. 5 325 в расширенной записи равно 5 000 + 300 + 20 + 5 = 5 325.

Вы можете записывать числа в расширенной форме несколькими способами.

Напишите 5,325 в форме расширенного номера

Стандартная форма :
5 325

Расширенная форма:
5000 + 300 + 20 + 5 = 5325

Форма расширенных факторов:
(5 × 1000) + (3 × 100) + (2 × 10) + (5 × 1) = 5325

Расширенная экспоненциальная форма:
(5 × 10 3 ) + (3 × 10 2 ) + (2 × 10 1 ) + (5 × 10 0 ) = 5,325

Форма слова:
пять тысяч триста двадцать пять

Обратите внимание, что в Англии и Великобритании фраза «стандартная форма» относится к обозначению научных чисел, которое в США называется «научное обозначение». Стандартная форма в Великобритании и научная запись в США означают по существу одно и то же, когда речь идет о записи, используемой для представления очень больших или очень маленьких чисел, таких как 4,9.59 × 10 12 или 1,66 × 10 -24 .

Связанные калькуляторы

См. наши Конвертер чисел в слова для получения словесных форм имен чисел. Этот калькулятор особенно полезен для нахождения словоформы очень маленьких десятичных знаков.

 

Подпишитесь на CalculatorSoup:

Калькулятор развернутой формы

Создано Мацеем Ковальски, кандидатом наук

Отзыв Стивена Вудинга

Последнее обновление: 10 февраля 2023 г.

Содержание:
  • Что такое развернутая форма?
  • Как записывать числа в расширенной форме
  • Как записывать десятичные дроби в расширенной форме
  • Расширенная форма с показателями степени
  • Использование калькулятора расширенной формы

Добро пожаловать в калькулятор расширенной формы Omni — ваш выбор чтобы узнать, как писать числа в развернутом виде. По сути, расширенная форма в математике (также называемая расширенное обозначение ) — это способ разложить значение на слагаемые, соответствующие его цифрам . Тема похожа на научную нотацию, хотя здесь мы разделяем ее на еще большее количество терминов. Чтобы сделать связь еще более наглядной, у нас есть три разных варианта записи чисел в развернутом виде в калькуляторе, например, в развернутом виде с показателями степени.

Расширенная форма имеет решающее значение в различных областях математики, например, в алгоритме частичного произведения. Так что же такое расширенная форма? Ну, давайте сразу перейдем к статье и выясним!

Что такое расширенная форма?

Определение расширенной формы выглядит следующим образом:

💡 Запись чисел в развернутой форме означает отображение значения каждой цифры. Для точности выражаем число в виде суммы слагаемых, соответствующих цифрам единиц, десятков, сотен и т. д., а также цифрам десятых, сотых и т. д. для развернутой формы с десятичными знаками.

Как упоминалось выше, расширенное обозначение, скажем, 154 должно быть суммой членов, каждое из которых связано с одной из цифр . Очевидно, что мы не можем просто написать 1 + 5 + 4 , так как это далеко от того, что у нас было. Так как же написать число в развернутой форме? Ну, вы добавляете нули .

154 = 100 + 50 + 4

Так что же означает развернутая форма? Интуитивно мы связываем каждую цифру числа с чем-то, что имеет ту же цифру, , за которой следует достаточное количество нулей , чтобы оказаться в правильной позиции, когда мы суммируем все это. Чтобы сделать это более точным, давайте аккуратно опишем это в отдельном разделе.

Как записывать числа в развернутом виде

Возьмем число вида aₙ…a₄a₃a₂a₁a₀ , т. е. aₖ -s обозначают последовательные цифры числа где a₀ — цифра единиц , a₁ цифра десятков и так далее. В соответствии с определением расширенной формы из предыдущего раздела мы хотели бы написать:

aₙ…a₄a₃a₂a₁a₀ = bₙ + … + b₄ + b₃ + b₂ + b₁ + b₀ ,

с числом (не цифра!) bₖ каким-то образом соответствует aₖ .

Объясним, как записывать такие числа в расширенной форме начиная с правой стороны , т. е. с a₀ . Поскольку это цифра единиц, она должна стоять в конце нашего числа. Мы создаем b₀ , написав столько нулей справа от a₀ , сколько цифр после a₀ в нашем номере. Другими словами, мы ничего не прибавляем и получаем b₀ = a₀ .

Затем у нас есть цифра десятков a₁ . Опять же, мы образуем b₁ , помещая столько нулей справа от a₁ , сколько цифр после a₁ в исходном числе. В этом случае есть один такой (а именно, a₀ ), поэтому мы имеем b₁ = a₁0 (помните, что здесь мы используем запись цифры за цифрой). Точно так же к b₂ добавим два нуля (поскольку a₂ имеет a₁ и a₀ справа), что означает, что b₂ = a₂00 и так далее до bₙ = aₙ00…000 с n-1 нулями.

Итак, мы увидели, как записывать числа в расширенной форме в особом случае — , когда они целые . Но что, если у нас есть десятичные дроби? А если это какое-то длинное выражение с несколькими цифрами до и после точки? Что такое расширенная форма такого чудовища?

Ну что, посмотрим?

Как записать десятичные дроби в развернутом виде

По сути делаем то же самое что и в предыдущем разделе. Короче говоря, мы снова добавляем подходящее количество нулей к цифре, но для тех, что после десятичной точки, мы пишем их слева, а не справа . Очевидно, что точка должна быть размещена в правильном месте, чтобы все имело смысл (в конце концов, у нас не может быть целого числа, начинающегося с нуля). Так как же записать число в развернутом виде, если оно имеет дробную часть?

Структура из первого раздела не меняется: расширенная форма с десятичными знаками должна по-прежнему давать нам сумму вида :

aₙ…a₄a₃a₂a₁a₀.c₁c₂c₃…cₘ = bₙ + … + b₄ + b₃ + b₂ + b₁ + b₀ + d₁ + d₂ + d₃ + … + dₘ ,

(напоминаем, что aₖ -s и cₖ -s равны цифры , а bₖ — s и dₖ -s являются числами ). К счастью, мы получаем bₖ -s так же, как и раньше; мы просто должны помнить учитывать точку . Чтобы быть точным, мы добавляем столько нулей, сколько цифр справа, , но перед десятичной точкой (т. е. мы считаем только за -s).

С другой стороны, мы находим dₖ -s, помещая столько нулей слева от от cₖ -s, сколько цифр между десятичной точкой и рассматриваемой цифрой .

Например, чтобы найти d₁ , мы берем c₁ и добавляем столько нулей, сколько есть между десятичной точкой и c₁ (которых в данном случае нет). Затем к добавляем символы 0. в самом начале , что дает d₁ = 0.c₁ . Аналогично ставим один ноль слева от c₂ (поскольку у нас одна цифра между десятичной точкой и c₂ , а именно c₁ ), и получаем d₂ = 0,0c₂ . Мы повторяем это для всех d -s до dₘ = 0,000…cₘ , который имеет m-1 нулей после запятой.

Пусть будет пример расширенной формы с номером 154,102 :

154,102 = 100 + 50 + 4 + 0,1 + 0,002 .

(Обратите внимание, что у нас нет ничего, соответствующего сотой цифре. Это потому, что оно равно 0 , так что в расширенной нотации это будет 0.00 , или просто 0 , т.е. ничего.)

Внимательный глаз мог заметить общую черту при написании чисел в расширенной форме (даже в развернутой форме с десятичными знаками): все дело в добавлении нулей в нужных местах. Кроме того, нули, естественно, соответствуют 10 , 100 , 1000 , 0,1 , 0,01 , 0,001 , и так далее. Еще более зоркий глаз может заметить, что все эти числа являются степенями 10 :

10¹ = 10 , 10² = 100 , 10³ = 1000 900 12 , 10⁻¹ = 0,1 , 10⁻ ² = 0,01 , 10⁻³ = 0,001 .

Это подводит нас к новому взгляду на расширенную форму в математике: с показателями степени .

Расширенная форма с показателями

Показатели 10 очень простые . Всякий раз, когда мы берем некоторую степень целого числа 10 (здесь мы не рассматриваем дробные степени), результатом будет цифра 1 с несколькими нулями, которые соответствуют этой степени . Как мы видели в конце предыдущего раздела, первыми тремя положительными степенями являются:

10¹ = 10 , 10² = 100 , 10³ = 1000 ,

поэтому результатом является цифра 1 с единицей, двумя и тремя нулей соответственно. С другой стороны, первые три отрицательные степени таковы:

10⁻¹ = 0,1 , 10⁻² = 0,01 , 10⁻³ = 0,001 ,

итак, снова, цифра 1 с единицей , два и три нуля соответственно, с небольшим изменением, что нули появляются слева вместо правого (это результат минуса в показателе степени).

Еще одно замечательное свойство степеней 10 заключается в том, что если мы умножим любую из них на однозначное число, получится то же самое, но с заменой 1 на число . Например:

10 × 5 = 50 , 1000 × 3 = 3000 , 0,001 × 6 = 0,006 ,

и они выглядят так же, как сумма мы видели в расширенной записи . Другими словами, мы могли бы заменить каждое слагаемое при записи чисел в расширенной форме на [умножение чего-то, что состоит из цифры 1 и некоторых нулей, на однозначное число. И это объясняет, как записывать числа с десятичными знаками в расширенной форме с множителями (обратите внимание, как мы можем выбрать такую ​​опцию в калькуляторе расширенной формы).

Так что же в данном случае означает развернутая форма? Он снова говорит нам разложить наши числа на слагаемые, соответствующие цифрам, но на этот раз слагаемые имеют вид « цифра, умноженная на число с 1 и некоторыми нулями ».

Давайте рассмотрим пример , чтобы ясно это увидеть. Вспомним из предыдущего раздела, что:

154,102 = 100 + 50 + 4 + 0. 1 + 0,002

Используя приведенный выше аргумент, мы можем эквивалентно записать этот пример расширенной формы как: можно пойти еще дальше!0011 10 ? Ну давайте их так и напишем! Таким образом, мы получаем еще одну расширенную запись: расширенную форму с показателями степени (обратите внимание, как мы можем выбрать эту опцию в калькуляторе расширенной формы).

Так что же такое развернутая форма с показателями? Как и прежде, он разлагает наше число на слагаемые, соответствующие цифрам, но теперь слагаемые принимают форму « цифр, умноженных на 10 в некоторой степени ». В этом новом варианте приведенный выше пример развернутой формы выглядит так:

154,102 = 1×10² + 5×10¹ + 4×10⁰ + 1×10⁻¹ + 2×10⁻³ .

Обратите внимание, как степени, представленные здесь , согласуются с нижними индексами, которые мы использовали во втором разделе. Также обратите внимание, что 1 также является степенью 10 , т. е. нулем. На самом деле любое число, возведенное в степень 0 , равно 1 .

В общем, нам удалось научиться записывать числа с десятичной дробью в расширенной форме тремя разными способами : с числами, с множителями и с показателями.

По сути, осталось сделать только одно: давайте закончим описанием того, как пользоваться калькулятором расширенной формы .

Использование калькулятора расширенной формы

Правила использования калькулятора расширенной формы просты. Вам просто нужно выполнить следующие три шага :

  1. Введите число, которое вы хотели бы иметь в расширенной нотации, в поле « Номер ».
  2. Выберите нужную форму: числа, множители или показатели степени, выбрав нужное слово в » Показать ответ в .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *