Решение метод крамера решение онлайн: Онлайн калькулятор. Решение систем линейных уравнений. Метод Крамера

Лекция 3 СЛУ Метод Крамера

6

Лекция 3. Системы линейных уравнений.

метод Крамера

Содержание

  1. Основные определения.

  2. Метод Крамера (определителей) решения систем линейных уравнений.

1. Основные определения

где числа — коэффициенты при неизвестных, — номер уравнения, — номер неизвестной, — свободные члены.

,

который при подстановке в каждое уравнение системы вместо неизвестных соответственно обращает их в верные равенства.

Система линейных уравнений называется:

а) совместной, если она имеет хотя бы одно решение;

б) несовместной, если она не имеет решений;

в) определенной, если она имеет единственное решение;

г) неопределенной, если она имеет бесконечное множество решений;

д) однородной, если все свободные члены равны нулю ;

е) неоднородной, если есть .

2. Метод Крамера (определителей) решения систем линейных уравнений

Правило (метод) Крамера применяется к системам, у которых число уравнений равно числу неизвестных. Этот метод использует определители.

2.1. Число уравнений и неизвестных равно 2

Рассмотрим систему линейных уравнений

Вычисляются определители:

, , .

Здесь

— определитель системы, составленный из коэффициентов при неизвестных;

— это определитель, полученный из определителя заменой столбца коэффициентов при на столбец свободных членов;

— это определитель, полученный из определителя заменой столбца коэффициентов при на столбец свободных членов.

1. Если , то система совместная и определенная, то есть имеет единственное решение, которое находится по формулам Крамера:

.

2. Если , а хотя бы один из определителей , отличен от нуля, то система не имеет решений (несовместная).

3. Если , то система имеет бесконечно много решений (совместная и неопределенная).

Пример 1. Решить с помощью метода Крамера систему уравнений

Решение

, поэтому СЛУ имеет единственное решение.

, .

Тогда ; .

Ответ: система уравнений совместна и определенна, ее единственное решение .

Пример 2. Решить с помощью метода Крамера систему уравнений

.

Решение

Определитель системы равен нулю: , однако один из вспомогательных определителей не равен нулю: , значит, СЛУ не имеет решений, то есть СЛУ несовместная.

Пример 3. Решить с помощью метода Крамера систему уравнений

Решение

, , .

Поэтому система имеет бесконечно много решений.

Разделив коэффициенты 2-го уравнения на 3, получим: Оставим только одно из этих уравнений: .

Выразим через : , значение — любое действительное число. Это и есть выражение для общего решения СЛУ. Ответ можно записать так: , где .

Придавая различные значения, будем получать бесконечное множество частных решений. Например, при получим и первое частное решение . При получим и второе частное решение , и так далее.

2.2. Число уравнений и неизвестных равно 3

Рассмотрим СЛУ

Вычисляются определители:

, ,

, .

1. Если , то система имеет единственное решение, которое находится по формулам Крамера:

, .

2. Если , а хотя бы один из определителей , , отличен от нуля, то система не имеет решений.

3.Если , то система имеет бесконечно много решений.

Пример 4. Решить систему линейных уравнений .

Составим определитель из коэффициентов при неизвестных и вычислим его: ,

значит, СЛУ имеет единственное решение.

Найдем вспомогательные определители и значения неизвестных.

Ответ: Система совместная и определенная, единственное решение .

Рассмотрим пример, в котором СЛУ имеет бесконечное множество решений, и они будут найдены с применением формул Крамера.

Пример 5.

Решить СЛУ

Решение

Вычислим определитель системы:

Заметим, что третье уравнение системы равно сумме первых двух уравнений, т.е. зависит от первых двух уравнений.

Отбросив третье уравнение, получим равносильную систему двух уравнений с тремя неизвестными:

Оставим в левой части системы те неизвестные, коэффициенты при которых образуют определитель, не равный нулю.

Например, коэффициенты при и образуют определитель . Поэтому оставим в левой части уравнений слагаемые с и , а слагаемые с перенесем в правую часть с противоположным знаком.

Неизвестное назовем свободным, а неизвестные и базисными неизвестными.

Запишем систему в виде и применим к ней правило Крамера:

;

Выражение

общее решение неопределенной СЛУ, где — любое действительное число.

Из общего решения можно получить частные решения, если придать свободной неизвестной какое-то конкретное значение.

Например, пусть , тогда ; тогда частное решение . И так далее.

Контрольные вопросы

  1. Запишите общий вид системы 2 линейных уравнений с тремя неизвестными.

  2. Что называется решением СЛУ?

  3. Что значит «решить систему линейных уравнений»?

  4. Какие системы линейных уравнений называются совместными и несовместными?

  5. При каком условии система линейных уравнений с неизвестными имеет единственное решение?

  6. Напишите формулы Крамера для решения системы линейных уравнений. В каком случае они применимы?

  7. Как, зная общее решение, записать частное решение неопределенной системы?

«Метод Крамера»

Формулы Крамера для модуля на ШЦП 4. 0

Посмотреть урок по ссылкеhttps://youtu.be/f0GvqaF2ht8

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается  (дельта).

Определители 

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения   и  возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Ответ : (5;2)

Пример 1. Решить систему линейных уравнений:

.                         (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

*  ,

**  ,

т. е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

**  .

Итак, система m линейных уравнений с переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:
Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Правильное решение и ответ.

Пример 5. Решить систему линейных уравнений методом Крамера:

. Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Калькулятор

матриц Якоби — Google

AlleBilderVideosShoppingMapsNewsBücher

suchoptionen

Wolfram|Alpha Widgets: «Матрица Якоби и определитель»

виджет ›0003alpha.com 16.08.2016 · Вычисляет матрицу Якоби ( матрица частных производных) данной вектор-функции относительно соответствующего списка …

Калькулятор Якобиана — AllMath

www. allmath.com › jacobian-matrix-calculator

Калькулятор Якобиана используется для нахождения матрицы Якобиана и определителя после взятия производной заданной функции. Этот калькулятор матрицы Якоби …

Калькулятор Якоби — eMathHelp

www.emathhelp.net › калькуляторы › исчисление-3 › jaco…

Калькулятор найдет матрицу Якоби набора функций и якобиан определитель (если возможно) с указанием шагов.

Калькулятор якобиана — Найдите якобиан с двумя и тремя переменными

calculate-online.net › jacobian-calculator

Онлайн-калькулятор Якобиана поможет вам быстро найти матрицу Якоби и определитель набора функций с двумя и тремя переменными.

Как рассчитать якобиан? · Критические точки

Ähnliche Fragen

Что такое калькулятор матрицы Якоби?

Что такое матрица Якоби с примером?

Калькулятор матрицы Якоби + онлайн-решатель с бесплатными шагами

www.storyofmathematics. com › математические калькуляторы › j…

Bewertung 5,0

(5)

Калькулятор матрицы Якоби работает, выполняя частные дифференциалы первого порядка для заданной входной задачи. Он также решает определитель для этого …

Онлайн-калькулятор якобиана — comnuan.com

comnuan.com › cmnn04 › cmnn04003

Онлайн-калькулятор для нахождения якобиана системы вещественных функций с использованием … значений f1,f2,…,fm и матрицы Якоби размера m×n: [∂f1∂x1∂f1∂x2…

Калькулятор Якобиана — Калькулятор пределов

www.limitcalculator.online › jacobian-matrix-calcul…

Калькулятор Якобиана находит матрицу Якобиана, взяв две и три переменные. Калькулятор матрицы Якобиана также предоставляет определитель якобиана …

Калькулятор матрицы Якобиана

www.meracalculator.com › math › матрица Якобиана-…

Калькулятор матрицы Якобиана.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *