Решение ряды фурье онлайн: Ряд Фурье онлайн

Разложение в ряд Фурье онлайн

Разложение некоторой функции f(x) в тригонометрический ряд Фурье на отрезке [-k, k] имеет вид:

a02∞n1ancosnπxkbnsinnπxk

где

an1kkkfxcosnπxkdx для (n = 0, 1, 2, 3,…)

bn1kkkfxsinnπxkdx для (n = 1, 2, 3,…)

В качестве примера, разложим в ряд Фурье функцию f(x)=x на отрезке [-1, 1]. В этом случае коэффициенты an и bn определяются по формулам:

an11xcosnπxdx0

bn11xsinnπxdx21nnπ

Таким образом, разложение функции f(x)=x в ряд Фурье на отрезке [-1, 1] имеет вид:

∞n121nnπsinnπx

На рисунке ниже приведено два графика: f(x)=x (красным цветом) и yx25n121nnπsinnπx , (синим цветом) для которого мы взяли порядок разложения функции в ряд Фурье равным 25.

Стоит отметить, что в приведенном выше примере, коэффициенты an равны нулю не случайно. Дело в том, что функция f(x)=x является нечетной на интервале [-1, 1]. Функция cosnπx - напротив является чётной. Произведение чётной функции на нечетную является нечётной функцией, поэтому согласно свойствам, интеграл от нечётной функции на симметричном интервале равен нулю.

В случае, если бы мы раскладывали в ряд Фурье на симметричном интервале какую-нибудь чётную функцию, например x2

, коэффициенты bn равнялись бы нулю, поскольку в этом случае, подинтегральное выражение x2sinnπx — являлось бы нечётной функцией.

Исходя из приведённых выше рассуждений можно сделать следующие выводы:

  • Разложение в ряд Фурье нечётной функции на симметричном интервале будет содержить только слагаемые с синусами.
  • Разложение в ряд Фурье чётной функции на симметричном интервале будет содержить только слагаемые с косинусами.
  • Если нам необходимо получить разложение в ряд Фурье некоторой произвольной функции на интервале [0, b] , то у нас есть две возможности. Мы можем продолжить эту функцию на интервал [-b, 0] нечётным образом и тогда в разложении получим только синусы. Или же мы можем продолжить её в указанный интервал чётным образом и тогда получим в разложении только косинусы.

Стоит также отметить, что используя приведённые выше формулы и соответствующую замену переменной, можно получить формулы для коэффициентов разложения функции в ряд Фурье на произвольном интервале [p, q]:

an1kqpfxcosnπxkdx

bn1kqpfxsinnπxkdx

здесь kqp2 .

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha раскладывает произвольную функцию в ряд Фурье на интервале [-π π]. В принципе, это не накладывает существенных ограничений, поскольку, используя соответствующую замену переменной, мы можем получить разложение на произвольном интервале [p, q].

Разложение в ряд Фурье

Переменная функции: xyztupqnms

Порядок разложения: 123456789101112131415161718192021222324252627282930

Тип разложения: по общей формулепо косинусампо синусам

Интервал разложения: [ , ]

Разложить функцию fxx2в ряд Фурье на интервале [0,3]по косинусам.Порядок разложения равен 10.

Установить калькулятор на свой сайт

Другие полезные разделы:

Калькулятор сходимости рядов
Обратное преобразование Лапласа онлайн
Преобразование Лапласа онлайн

Оставить свой комментарий:


Найти коэффициенты фурье онлайн.

Ряд Фурье

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны — это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+…+b 1 sinx+b 2 sin2x+b 3 sin3x+…,

где a o , a 1 ,a 2 ,…,b 1 ,b 2 ,.. — действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда — использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+…+c n sin(nx+α n)

Где a o — константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 — амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение

Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить разложение Фурье на полупериоде по синусам функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис.

Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны — это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+. ..+b 1 sinx+b 2 sin2x+b 3 sin3x+…,

где a o , a 1 ,a 2 ,…,b 1 ,b 2 ,.. — действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда — использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+…+c n sin(nx+α n)

Где a o — константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 — амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т. е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить разложение Фурье на полупериоде по синусам функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Министерство общего и профессионального образования

Сочинский государственный университет туризма

и курортного дела

Педагогический институт

Математический факультет

Кафедра общей математики

ДИПЛОМНАЯ РАБОТА

Ряды Фурье и их приложения

В математической физике.

Выполнила: студентка 5-го курса

подпись дневной формы обучения

Специальность 010100

„Математика”

Касперовой Н. С.

Студенческий билет № 95471

Научный руководитель:доцент, канд.

подпись техн. наук

Позин П.А.

Сочи, 2000 г.

1. Введение.

2. Понятие ряда Фурье.

2.1. Определение коэффициентов ряда Фурье.

2.2. Интегралы от периодических функций.

3. Признаки сходимости рядов Фурье.

3.1. Примеры разложения функций в ряды Фурье.

4. Замечание о разложении периодической функции в ряд Фурье

5. Ряды Фурье для четных и нечетных функций.

6. Ряды Фурье для функций с периодом 2 l .

7. Разложение в ряд Фурье непериодической функции.

Введение.

Жан Батист Жозеф Фурье — французский математик, член Парижской Академии Наук (1817).

Первые труды Фурье относятся к алгебре. Уже в лекциях 1796 он изложил теорему о числе действительных корней алгебраического уравнения, лежащих между данными границами (опубл. 1820), названную его именем; полное решение о числе действительных корней алгебраического уравнения было получено в 1829 Ж. Ш.Ф. Штурмом. В 1818 Фурье исследовал вопрос об условиях применимости разработанного Ньютоном метода численного решения уравнений, не зная об аналогичных результатах, полученных в 1768 французским математиком Ж.Р. Мурайлем. Итогом работ Фурье по численным методам решения уравнений является «Анализ определённых уравнений», изданный посмертно в 1831.

Основной областью занятий Фурье была математическая физика. В 1807 и 1811 он представил Парижской Академии Наук свои первые открытия по теории распространении тепла в твёрдом теле, а в 1822 опубликовал известную работу «Аналитическая теория теплоты», сыгравшую большую роль в последующей истории математики. Это – математическая теория теплопроводности. В силу общности метода эта книга стала источником всех современных методов математической физики. В этой работе Фурье вывел дифференциальное уравнение теплопроводности и развил идеи, в самых общих чертах намеченные ранее Д. Бернулли, разработал для решения уравнения теплопроводности при тех или иных заданных граничных условиях метод разделения переменных (метод Фурье), который он применял к ряду частных случаев (куб, цилиндр и др. ). В основе этого метода лежит представление функций тригонометрическими рядами Фурье.

Ряды Фурье теперь стали хорошо разработанным средством в теории уравнений в частных производных при решении граничных задач.

1. Понятие ряда Фурье. (стр. 94, Уваренков)

Ряды Фурье играют большую роль в математической физике, теории упругости, электротехнике и особенно их частный случай – тригонометрические ряды Фурье.

Тригонометрическим рядом называют ряд вида

или, символической записи:

(1)

где ω, a 0 , a 1 , …, a n , …, b 0 , b 1 , …,b n , …- постоянные числа (ω>0) .

К изучению таких рядов исторически привели некоторые задачи физики, например задача о колебаниях струны (XVIII в.), задача о закономерностях в явлениях теплопроводности и др. В приложениях рассмотрение тригонометрических рядов, прежде всего связано с задачей представления данного движения, описанного уравнением у = ƒ(χ), в

виде суммы простейших гармонических колебаний, часто взятых в бесконечно большом числе, т. е. в качестве суммы ряда вида (1).

Таким образом, мы приходим к следующей задаче: выяснить существует ли для данной функции ƒ(x) на заданном промежутке такой ряд (1),который сходился бы на этом промежутке к данной функции. Если это возможно, то говорят, что на этом промежутке функция ƒ(x) разлагается в тригонометрический ряд.

Ряд (1) сходится в некоторой точке х 0 , в силу периодичности функций

(n=1,2,..), он окажется сходящимся и во всех точках вида (m- любое целое число), и тем самым его сумма S(x) будет (в области сходимости ряда) периодической функцией: если S n (x) – n-я частичная сумма этого ряда, то имеем

а потому и

, т. е. S(x 0 +T)=S(x 0). Поэтому, говоря о разложении некоторой функции ƒ(x) в ряд вида (1), будем предполагать ƒ(x) периодической функцией.

2. Определение коэффициентов ряда по формулам Фурье.

Пусть периодическая функция ƒ(х) с периодом 2π такая, что она представляется тригонометрическим рядом, сходящимся к данной функции в интервале (-π, π), т. е. является суммой этого ряда:

. (2)

Предположим, что интеграл от функции, стоящей в левой части этого равенства, равняется сумме интегралов от членов этого ряда. Это будет выполняться, если предположить, что числовой ряд, составленный из коэффициентов данного тригонометрического ряда, абсолютно сходится, т. е.. сходится положительный числовой ряд

(3)

Ряд (1) мажорируем и его можно почленно интегрировать в промежутке (-π, π). Проинтегрируем обе части равенства (2):

.

Вычислим отдельно каждый интеграл, встречающийся в правой части:

, , .

Таким образом,

, откуда . (4)

Оценка коэффициентов Фурье. (Бугров)

Теорема 1. Пусть функция ƒ(x) периода 2π имеет непрерывную производную ƒ ( s) (x) порядка s, удовлетворяющей на всей действительной оси неравенству:

│ ƒ (s) (x)│≤ M s ; (5)

тогда коэффициенты Фурье функции ƒ удовлетворяют неравенству

(6)

Доказательство. Интегрируя по частям и учитывая, что

ƒ(-π) = ƒ(π), имеем


Интегрируя правую часть (7) последовательно, учитывая, что производные ƒ ΄ , …, ƒ (s-1) непрерывны и принимают одинаковые значения в точках t = -π и t = π, а также оценку (5), получим первую оценку (6).

Вторая оценка (6) получается подобным образом.

Теорема 2. Для коэффициентов Фурье ƒ(x) имеет место неравенство

(8)

Доказательство. Имеем

Многие процессы, происходящие в природе и технике, обладают свойством повторяться через определенные промежутки времени. Такие процессы называются периодическими и математически описываются периодическими функциями. К таким функциям относятся sin (x ) , cos (x ) , sin (wx ), cos (wx ) . Сумма двух периодических функций, например, функция вида , вообще говоря, уже не является периодической. Но можно доказать, что если отношение w 1 / w 2 – число рациональное, то эта сумма есть периодическая функция.

Простейшие периодические процессы – гармонические колебания – описываются периодическими функциями sin (wx ) и cos (wx ). Более сложные периодические процессы описываются функциями, составными либо из конечного, либо из бесконечного числа слагаемых вида sin (wx ) и cos (wx ).

3.2. Тригонометрический ряд. Коэффициенты Фурье

Рассмотрим функциональный ряд вида:

Этот ряд называется тригонометрическим ; числа а 0 , b 0 , a 1 , b 1 2 , b 2 …, a n , b n ,… называются коэффициентами тригонометрического ряда. Ряд (1) часто записывается следующим образом:

. (2)

Так как члены тригонометрического ряда (2) имеют общий период
, то и сумма ряда, если он сходится, также является периодической функцией с периодом
.

Допустим, что функция f (x ) есть сумма этого ряда:

. (3)

В таком случае говорят, что функция f (x ) раскладывается в тригонометрический ряд. Предполагая, что этот ряд сходится равномерно на промежутке
, можно определить его коэффициенты по формулам:

,
,
. (4)

Коэффициенты ряда, определенные по этим формулам, называются коэффициентами Фурье.

Тригонометрический ряд (2), коэффициенты которого определяются по формулам Фурье (4), называются рядом Фурье , соответствующим функции f (x ).

Таким образом, если периодическая функция f (x ) является суммой сходящегося тригонометрического ряда, то этот ряд является ее рядом Фурье.

3.3. Сходимость ряда Фурье

Формулы (4) показывают, что коэффициенты Фурье могут быть вычислены для любой интегрируемой на промежутке

-периодической функции, т. е. для такой функции всегда можно составить ряд Фурье. Но будет ли этот ряд сходиться к функцииf (x ) и при каких условиях?

Напомним, что функция f (x ), определенная на отрезке [ a ; b ] , называется кусочно-гладкой, если она и ее производная имеют не более конечного числа точек разрыва первого рода.

Следующая теорема дает достаточные условия разложимости функции в ряд Фурье.

Теорема Дирихле. Пусть
-периодическая функцияf (x ) является кусочно-гладкой на
. Тогда ее ряд Фурье сходится кf (x ) в каждой ее точке непрерывности и к значению 0,5(f (x +0)+ f (x -0)) в точке разрыва.

Пример1.

Разложить в ряд Фурье функцию f (x )= x , заданную на интервале
.

Решение. Эта функция удовлетворяет условиям Дирихле и, следовательно, может быть разложена в ряд Фурье. Применяя формулы (4) и метод интегрирования по частям
, найдем коэффициенты Фурье:

Таким образом, ряд Фурье для функции f (x ) имеет вид.

Лекция №60

6.21. Ряды Фурье для чётных и нечётных функций.

Теорема: Для любой чётной функции её ряд Фурье состоит только из косинусов.

Для любой нечётной функции:
.

Доказательство : Из определения четной и нечетной функции следует, что если ψ(x) – четная функция, то

.

Действительно,

так как по определению четной функции ψ(- x) = ψ(x).

Аналогично можно доказать, что если ψ(x) – нечетная функция, то

Если в ряд Фурье разлагается нечетная функция ƒ(x), то произведение ƒ(x) ·coskxесть функция также нечетная, а ƒ(x) ·sinkx– четная; следовательно,

(21)

т. е. ряд Фурье нечетной функции содержит «только синусы».

Если в ряд Фурье разлагается четная функция, то произведение ƒ(x)·sinkxесть функция нечетная, а ƒ(x) ·coskx– четная, то:

(22)

т. е. ряд Фурье четной функции содержит «только косинусы».

Полученные формулы позволяют упрощать вычисления при разыскании коэффициентов Фурье в тех случаях, когда заданная функция является четной или нечетной, а также получать разложение в ряд Фурье функции, заданной на части промежутка .

Во многих задачах функция
задается в интервале
. Требуется представить данную функцию в виде бесконечной суммы синусов и косинусов углов, кратных числам натурального ряда, т.е. необходимо произвести разложение функции в ряд Фурье. Обычно в таких случаях поступают следующим образом.

Чтобы разложить заданную функцию по косинусам, функцию
доопределяют в интервале
четным образом, т.е. так, что в интервале

. Тогда для «продолженной» четной функции справедливы все рассуждения предыдущего параграфа, и, следовательно, коэффициенты ряда Фурье определяются по формулам

,

В этих формулах, как видим, фигурируют значения функции
, лишь заданные в интервале
. Чтобы разложить функцию
, заданную в интервале
, по синусам, необходимо доопределить эту функцию в интервале
нечетным образом, т.е. так, что в интервале

.

Тогда вычисление коэффициентов ряда Фурье нужно вести по формулам

.

Теорема 1. Функцию заданную на промежутке можно бесконечным числом способов разложить в тригонометрический ряд Фурье, в частности по cos или по sin.

Замечание. Функция
, заданная в интервале
может быть доопределена в интервале
любым образом, а не только так, как было сделано выше. Но при произвольном доопределении функции разложение в ряд Фурье будет более сложным, чем то, которое получается при разложении по синусам или косинусам.

Пример. Разложить в ряд Фурье по косинусам функцию
, заданную в интервале
(рис.2а).

Решение. Доопределим функцию
в интервале
четным образом (график симметричен относительно оси
)

,

Так как
, то

при

,

при


6. 22. Ряд Фурье для функции, заданной на произвольном промежутке

До сих пор мы рассматривали функцию, заданную в интервале
, считая ее вне этого интервала периодической, с периодом
.

Рассмотрим теперь функцию
, период которой равен 2l , т.е.
на интервале
, и покажем, что в этом случае функция
может быть разложена в ряд Фурье.

Положим
, или
. Тогда при измененииот –l доl новая переменнаяизменяется от
дои, следовательно, функциюможно рассматривать как функцию, заданную в интервале от
дои периодическую вне этого промежутка, с периодом
.

Итак,
.

Разложив
в ряд Фурье, получим

,

.

Переходя к старым переменным, т.е. полагая

, получим
,
и
.

То есть ряд Фурье для функции
, заданной в интервале
, будет иметь вид:

,

,


.

Если функция
четная, то формулы для определения коэффициентов ряда Фурье упрощаются:

,

,


.

В случае, если функция
нечетная:

,

,


.

Если функция
задана в интервале
, то ее можно продолжить в интервале
либо четным, либо нечетным образом. В случае четного продолжения функции в интервале

,

.

В случае нечетного доопределения функции в интервале
коэффициенты ряда Фурье находятся по формулам

,


.

Пример . Разложить в ряд Фурье функцию

по синусам кратных дуг.

Решение . График заданной функции представлен на рис.3. Продолжим функцию нечетным образом (рис.4), т.е. будем вести разложение по синусам.

Все коэффициенты

,

Введем замену
. Тогда при
получим
, при
имеем
.

Таким образом

.

6.23. .Понятие о разложении в ряд Фурье непериодических функций

Функцию, заданную в основной области (-ℓ, ℓ), можно периодически продолжить за основную область с помощью функционального соотношения ƒ(x+2 ℓ) = ƒ(x).

Для непериодической функции ƒ(x) (-∞

φ(x)=
(2.18)

Формула (2.18) будет верна на всей оси -∞

ƒ(x)=
(2.19)

Формула (2.19) будет верна только на конечном промежутке (-ℓ, ℓ), так как на этом промежутке ƒ(x) и φ(x) совпадают.

Таким образом, непериодическую функцию можно разложить в ряд Фурье на конечном промежутке.

Фурье разбросан онлайн


на сегменте

Введите:

{ кусочно-определенная функция здесь

График:

из до

Приблизительно:

от до

Примеры разложения в ряды Фурье

  • Кусочно-определенные и кусочно-непрерывные функции
  •  1 - х на -pi 
  •  х при -2 
  • Элементарные функции
  •  журнал(1 + х) 
  •  эксп(х) 

Что умеет калькулятор рядов Фурье?

Вы вводите функцию и период.

  • Преобразование Фурье (FT)
  • Различные виды и записи серий:
    • Тригонометрический ряд Фурье
    • Комплексный ряд Фурье
  • Находки:
    • Коэффициенты Фурье функции f : $a_0$, $a_n$, $b_n$
    • Амплитуда n-го гармонического колебания $A_n$
    • Комплексный спектр периодического сигнала $\dot A_n$
    • Начальная фаза n-го колебания $θ_n$
    • Угловая частота первой (или основной) гармоники $ω$
  • Графики:
    • Функция
    • Частичные суммы Фурье

Узнайте больше о серии Фурье .

Приведенные выше примеры также содержат:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубических корня cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • экспоненциальные функции и показатели exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x), гиперболический арктангенс ath(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции: секанс
    sec(x), косеканс csc(x), арксеканс asec(x), арккосеканс acsc(x), гиперболический секанс sech(x), гиперболический косеканс csch(x), гиперболический арксикансек asech(x), гиперболический арккосеканс acsch(x)
  • функции округления:
    округлить до пола(x), округлить до потолка(x)
  • знак числа:
    знак(х)
  • для теории вероятностей:
    функция ошибок erf(x) (интеграл вероятности), Функция Лапласа laplace(x)
  • Факториал х :
    х! или факториал(х)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x) 95
    — возведение в степень
    х + 7
    — дополнение
    х — 6
    — вычитание
    Реальные числа
    вставка как 7,5 , № 7,5
    Константы
    Пи
    — число Пи
    и
    — основание натурального логарифма
    я
    — комплексный номер
    оо
    — символ бесконечности

    Калькулятор преобразования Фурье | Лучший калькулятор рядов Фурье

    Введение в калькулятор преобразования Фурье

    Калькулятор рядов Фурье представляет собой онлайн-приложение, используемое для вычисления коэффициентов Фурье любой переменной функции. Этот онлайн-инструмент основан на ряде коэффициентов Фурье.

    Что такое калькулятор рядов Фурье

    Калькулятор интеграла Фурье — это онлайн-инструмент, который помогает нам разлагать функции, зависящие от пространства, на функцию времени. Он используется для оценки функций реальных переменных. Калькулятор Фурье используется для оценки коэффициентов Фурье в режиме онлайн . Этот инструмент также показывает графическое представление результатов переменной функции.

    С другой стороны, если вы хотите решить сложные функции дифференциального уравнения, онлайн-калькулятор преобразования Лапласа поможет в этом типе преобразования. 9(3*x))

    • Прежде всего, выберите количество коэффициентов переменной функции для расчета и введите их в поле Число коэффициентов.
    • Во-вторых, введите нижний предел интегрирования в данное поле.
    • В-третьих, введите верхний предел интегрирования (общий диапазон) в необходимое поле.
    • Затем введите функцию реальной переменной, такой как x.
    • А если функция в чанках, введите в нужное поле верхнюю границу первого интервала и добавьте функцию из этой точки в следующий интервал.
    • А если функция в чанках, введите в нужное поле верхнюю границу первого интервала и добавьте функцию из этой точки в следующий интервал.
    • А если чанков больше, то ввести в нужное поле верхний конец следующего подинтервала, и ввести функцию от этой точки до следующего интервала.
    • Если на предыдущем шаге в заданных полях имеется больше повторений чанка, то Калькулятор рядов Фурье позволяет добавить до 4 подинтервалов.

    Вывод:

    Через несколько секунд откроется новое окно, показывающее коэффициенты ряда Фурье A n и A n для заданной функции, а также некоторое статистическое и графическое представление решение.

    Теперь нажмите на результаты, если хотите увидеть графическое представление функции и ранее рассчитанный ряд Фурье.

    Теперь введите «df(x)/dx», чтобы получить аналитические результаты производной переменной функции.

    Теперь добавьте интегралы [a, b]», чтобы получить начальные значения функции в введенном интервале.

    Как найти калькулятор интеграла Фурье?

    Чтобы найти калькулятор косинусного преобразования Фурье или калькулятор синус расчет коэффициентов ряда Фурье , просто выполните следующие шаги:

    • Прежде всего, откройте домашний экран вашего браузера по умолчанию
    • Теперь введите в строку поиска ключевое слово калькулятора, то есть интегральный калькулятор Фурье.
    • Теперь дождитесь результатов поиска.
    • Теперь выберите Интегральный калькулятор из предложений Google.
    • И вы получите онлайн-калькулятор преобразования Фурье.

    После открытия этого инструмента с сайта, теперь нажмите на калькулятор преобразования Фурье с шагами для оценки вашей проблемы. Теперь просто добавьте значения в обязательные поля, чтобы получить результаты.

    Преимущества использования калькулятора рядов Фурье с шагами

    Калькулятор интеграла Фурье с шагами имеет удивительные преимущества для пользователей и студентов. Это дает вам точное руководство в решении коэффициентов данной переменной функции из ряда Фурье . Этот калькулятор косинусного преобразования Фурье бесплатен и доступен в Интернете. Он предоставляет пользователям бесплатные услуги без какой-либо абонентской платы и обеспечивает точные результаты. Калькулятор преобразования Фурье с шагами имеет следующие преимущества:

    • Калькулятор рядов Фурье с пошаговыми функциями помогает сэкономить время.
    • Этот калькулятор может оценивать пределы различных функций или значения sin/cos.
    • Помогает найти определенные интегралы функции времени по частоте.
    • Калькулятор интеграла Фурье — надежный инструмент.
    • Дает точные результаты.
    • Этот инструмент быстрый и простой в использовании.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *