Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{1}{\sqrt{n}}\arctg\frac{\pi}{\sqrt{2n-1}}$. Для начала определим, является ли этот ряд положительным, т.е. верно ли неравенство $u_n≥ 0$. Сомножитель $\frac{1}{\sqrt{n}}> 0$, это ясно, а вот что насчёт арктангенса? С арктангесом ничего сложного: так как $\frac{\pi}{\sqrt{2n-1}} >0$, то и $\arctg\frac{\pi}{\sqrt{2n-1}}>0$. Вывод: наш ряд является положительным. Применим признак сравнения для исследования вопроса сходимости этого ряда.
Для начала выберем ряд, с которым станем сравнивать. Если $n\to\infty$, то $\frac{\pi}{\sqrt{2n-1}}\to 0$. Следовательно, $\arctg\frac{\pi}{\sqrt{2n-1}}\sim\frac{\pi}{\sqrt{2n-1}}$. Почему так? Если посмотреть таблицу в конце этого документа , то мы увидим формулу $\arctg x\sim x$ при $x\to 0$. Мы эту формулу и использовали, только в нашем случае $x=\frac{\pi}{\sqrt{2n-1}}$.
Заменим в выражении $\frac{1}{\sqrt{n}}\arctg\frac{\pi}{\sqrt{2n-1}}$ арктангенс на дробь $\frac{\pi}{\sqrt{2n-1}}$. \infty \frac{n}{6n+1} $
Ряд положительный, записываем общий член:
$$ a_n = \frac{n}{6n+1} $$
Вычисляем предел при $ n \to \infty $:
$$ \lim _{n \to \infty} \frac{n}{6n+1} = \frac{\infty}{\infty} = $$
Выносим за скобку $ n $ в знаменателе, а затем выполняем на него сокращение:
$$ = \lim_{n \to \infty} \frac{n}{n(6+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{6 + \frac{1}{n}} = \frac{1}{6} $$
Так как получили, что $ \lim_{n\to \infty} a_n = \frac{1}{6} \neq 0 $, то необходимый признак Коши не выполнен и ряд следовательно расходится.
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
2.2 Необходимый признак сходимости рядов
Применение рядов в любой прикладной задаче предполагает исследование этого ряда на сходимости. Решение этого вопроса начинается с применения необходимого признака сходимости ряда, сформулированного в теореме: если данный ряд сходится, то предел общего члена ряда при неограниченном возрастании номераn равен нулю, т. е. .
Обратное утверждение, вообще говоря, неверно: из равенства нулю предела общего члена при n→∞ еще не следует сходимость этого ряда. Справедливость этого положения видна на примере гармонического ряда . Для него выполняется необходимый признак сходимости, однако гармонический ряд расходится.
Непосредственно из теоремы вытекает достаточной признак расходимости ряда: если предел общего члена числового ряда при неограниченном увеличении n не равен нулю, то данный ряд расходится.
С помощью этого признака иногда легко установить расходимость ряда. Примеры таких рядов приведены ниже.
Пример 1. Дан ряд: Исследовать его на сходимость.
Решение. Общий член ряда . Предел его приn→∞ не существует. Ряд расходится.
Пример 2. Исследовать на сходимость ряд .
Решение. Так как , то ряд расходится.
2.3. Достаточные признаки сходимости рядов с положительными членами
Литература: [5], Ч. 3, гл. 15, §§ 15.2, 15.3
Ряд , у которого все члены ─ положительные числа, называется положительным рядом. Рассматрим некоторые достаточные признаки сходимости и расходимости положительных рядов, наиболее часто применяемые на практике.
2.3.1. Признак сравнения
Пусть ряды иположительные, а члены первого ряда, начиная с некоторого номера, не превосходят соответствующих членов второго ряда, т.е.. Тогда, если сходится рядс большими членами, то сходится и рядс меньшими членами. Если же рядс меньшими членами расходится, то расходится и рядс большими членами.
Для сравнения с исследуемыми рядами часто применяются следующие ряды:
1) ряд геометрической прогрессии , который сходится прии расходится при;
2) гармонический ряд , который расходится;
3) обобщённый гармонический ряд , который сходится прии расходится при.
Пример 1. Исследовать ряд на сходимость.
Решение. Данный ряд сравним с расходящимся гармоническим рядом. Между членами этих рядов очевидно соотношение . Так как гармонический ряд расходится, то расходится и данный ряд.
Пример 2. Исследовать на сходимость ряд .
Решение. Возьмём сходящийся ряд убывающей геометрической прогрессии . Очевидно, что. Поэтому согласно теореме сравнения из сходимости ряда с большими членами следует сходимость ряда.
Пример 3. Исследовать на сходимость ряд .
Решение. Возьмём ряд … Очевидно, что все члены этого ряда, начиная с третьего удовлетворяют условию. Так как рядсходится (как ряд убывающей геометрической прогрессии), то данный ряд также сходится.
2.3.2. Предельный признак сравнения
Этот признак применяется на практике гораздо чаще, чем рассмотренный выше признак сравнения и формулируется следующим образом: если существует конечный отличный от нуля предел отношения общих членов положительных рядов при n→∞ (), то эти ряды ведут себя одинаково в смысле сходимости (т. е. либо оба сходятся, либо оба расходятся).
Если , то из сходимости рядаследует сходимость ряда(обратное неверно). Если, то из расходимости рядаследует расходимость ряда.
Предельный признак сравнения положительных рядов особенно удобно применять, когда общий член ряда представляет собой дробно-рациональную функцию от n.
Пример 1. Исследовать на сходимость ряд .
Решение. Сравнение с гармоническим рядом по обычному признаку сравнения вопрос о сходимости не решает, так как при, но ввиду расходимости рядачто-либо сказать о ряденевозможно.
Воспользуемся предельным признаком сравнения.
.
Здесь для раскрытия неопределённости при вычислении предела применено правило Лопиталя.
Так как предел конечен и не равен нулю, то исследуемый ряд ведёт себя так же, как и ряд, т.е. расходится.
Пример 2. Исследовать на сходимость ряд .
Решение. Сравним данный ряд с рядом , который, как известно, сходится (как обобщённый гармонический ряд при).
.
Исследуемый ряд так же сходится.
Замечание. Если, как в примере 2, общий член ряда представляет собой дробно-рациональную функцию относительно отn, то общий член ряда для сравнения удобно брать в виде , гдеm − разность между степенями многочленов знаменателя и числителя .
Пример 3. Исследовать на сходимость ряд .
Решение. Сравним данный ряд с гармоническим .
.
Отсюда, так как предел конечен, то исследуемый ряд ведёт себя так же, как и гармонический, т.е. расходится.
Калькулятор сходимости серии— Обмен файлами
Этот сценарий находит сходимость или расхождение бесконечных рядов, вычисляет сумму, предоставляет график частичной суммы и вычисляет радиус и интервал сходимости степенного ряда. Включены следующие тесты: тест дивергенции (тест n-го члена), интегральный тест (тест Маклорена-Коши), тест сравнения, тест предельного сравнения, тест отношения (тест отношения Даламбера), тест корня (тест корня Коши), тест чередующихся рядов. (критерий Лейбница), критерий абсолютной сходимости, критерий p-серии, критерий геометрического ряда, критерий Раабе, критерий Бертрана, критерий Ермакова, критерий конденсации Коши и критерий степенного ряда. Тест степенных рядов использует тест отношений, тест корня и теорему Коши-Адамара для расчета радиуса и интервала сходимости степенных рядов. Все тесты имеют графики частичной суммы, кроме теста Power Series. Этот сценарий поможет учащимся исчисления (II или III) с главой «Бесконечные ряды», учащимся, изучающим дифференциальные уравнения, с решениями для рядов и учащимся, изучающим реальный анализ, с расширенными тестами сходимости.
В основном списке (упомянутом выше) 15 тестов сходимости. Тест абсолютной сходимости имеет второй список с 3 тестами сходимости: абсолютная сходимость с интегральным тестом, абсолютная сходимость с тестом сравнения и абсолютная сходимость с тестом предельного сравнения. Всего имеется 17 тестов сходимости. Все тесты на сходимость требуют ввода выражения бесконечной последовательности, выбранного номера теста (из 15) и начального k для 12 тестов — это все, что требуется для выполнения этих тестов. Тест абсолютной сходимости имеет дополнительные входные данные из списка Тест абсолютной сходимости (из 3): Абсолютная сходимость с интегральным тестом, Абсолютная сходимость с тестом сравнения и Абсолютная сходимость с тестом предельного сравнения. 2 сравнительных теста и 2 предельных сравнительных теста имеют 2 дополнительных входа: является ли выражение сравнения сходящимся или расходящимся, и, наконец, выражение сравнения. Чтобы ввести входные данные, ответьте на вопросы в нижней части командного окна после запуска скрипта. Слева от заголовка приведен пример снимка экрана с тестом чередующихся серий (описание теоремы и теста чередующихся серий закомментировано, чтобы вместить всю информацию).
Я написал этот скрипт, потому что никто другой этого не делал, и я предположил, что он может получить значительное количество загрузок. Я изучил и протестировал этот сценарий с помощью книг по бесконечным сериям, интернет-исследований и обширно с ~ 22 книгами по математическому анализу. Первоначально я предназначал этот сценарий для студентов, но он стал настолько мощным, точным, простым и надежным, что профессор скачал его. Если у кого-то есть вопросы или комментарии по этому сценарию, включая возможности трудоустройства, не стесняйтесь обращаться ко мне!
[1] Дэниел Д. Бонар, Майкл Дж. Хури. «Настоящая бесконечная серия». Первоначально опубликовано Математической ассоциацией Америки в 2006 г., авторское право (2006 г.) и переиздание (2018 г.) в США принадлежат Американскому математическому обществу. Провиденс, Род-Айленд. ISBN: 9781470447823
[2] TJ IA. Бромвич. «Введение в теорию бесконечных рядов». Alpha Editions, www.alphaedis.com (2020). ISBN: 9789354038747
Цитировать как
Дэвид Казенав (2023). Калькулятор сходимости серий (https://www.mathworks.com/matlabcentral/fileexchange/72141-series-convergence-calculator), MATLAB Central File Exchange. «> а б
удалить
Этот калькулятор для расчета суммы ряда взят от ООО «Вольфрам Альфа». Все права принадлежат владельцу!
Сумма ряда
OnSolver.com позволяет найти сумму ряда онлайн. Помимо нахождения суммы числовой последовательности онлайн, сервер находит частичную сумму ряда онлайн. Это полезно для анализа, когда сумма ряда онлайн должна быть представлена и найдена как решение пределов частичных сумм ряда. По сравнению с другими сайтами www.OnSolver.com имеет огромное преимущество, так как можно найти сумму не только числового, но и функционального ряда, которая позволит определить область сходимости исходного ряда, используя самые известные методы. Согласно теории необходимым условием сходимости числовой последовательности является равенство нулю предела общего члена ряда при стремлении переменной к бесконечности. Однако этого условия недостаточно для определения сходимости числовых рядов в режиме онлайн. Если ряд не сходится, OnSolver.com укажет на это соответствующим сообщением. Для определения сходимости ряда найдено множество достаточных критериев сходимости или расходимости ряда. Наиболее популярными и часто используемыми из них являются критерии Даламбера, Коши, Раабе; сравнение числовых рядов, а также интегральный критерий сходимости числовых рядов. Особое место среди числового ряда занимают такие, в которых знаки слагаемых строго чередуются, а абсолютные значения числового ряда монотонно спадают.