Sh x разложение в ряд тейлора: Теория рядов

Теория рядов

Теория рядов
  

Теория рядов. Воробьев Н. Н. 4 изд., перераб. и доп., Наука, Главная редакция физико-математической литературы, М., 1979, — 408 с.

В книге излагаются основы теории числовых рядов и функциональных рядов, в том числе степенных рядов и рядов Фурье. Первая часть курса составлена в точном соответствии с разделом «Ряды» программы по высшей математике для инженерно-технических специальностей высших учебных заведений. Ее можно использовать не только как учебное пособие для слушателей курса лекций, но и при самостоятельной работе над предметом. Вторая часть представляет собой цикл очерков, посвященных более глубоким вопросам теории рядов,



Оглавление

ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ
Часть I
ГЛАВА 1. ПРОГРЕССИИ
§ 2. Геометрические прогрессии
§ 3. Бесконечные прогрессии; их сходимость и расходимость
§ 4. Элементарные преобразования прогрессий
§ 5. Функциональные прогрессии: область сходимости; равномерная сходимость
§ 6. Почленное интегрирование прогрессий
§ 7. Почленное дифференцирование прогрессий
§ 8. Прогрессии с комплексными членами
ГЛАВА 2. ЧИСЛОВЫЕ РЯДЫ. ОСНОВНЫЕ ПОНЯТИЯ. ОСНОВНЫЕ ТЕОРЕМЫ О СХОДИМОСТИ
§ 2. Определение числового ряда и его сходимости
§ 3. Остаток ряда
§ 4. Принцип сходимости Коши
§ 5. Критерий Коши сходимости рядов
§ 6. Необходимый признак сходимости ряда
§ 7. Желательность систематической теории
§ 8. Свойства сходящихся рядов, подобные свойствам сумм
§ 9. Дальнейшие свойства рядов
ГЛАВА 3. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ
§ 1. Признаки сходимости рядов
§ 2. Признаки сравнения
§ 3. Интегральный признак сходимости Маклорена — Коши
§ 4. Применения интегрального признака сходимости
§ 5. Сравнительная оценка различных признаков сходимости
§ 6. Признак сходимости Даламбера
§ 7. Признак сходимости Коши
§ 8. Чувствительность признаков сходимости Даламбера и Коши
ГЛАВА 4. ЗНАКОПЕРЕМЕННЫЕ РЯДЫ
§ 2. Абсолютная сходимость и расходимость
§ 3. Возможность переставлять члены в абсолютно сходящихся рядах
§ 4. Условно сходящиеся знакопеременные ряды
§ 5. Умножение абсолютно сходящихся рядов
§ 6. Признак сходимости Лейбница
§ 7. Существенность условий признака сходимости Лейбница
ГЛАВА 5. ФУНКЦИОНАЛЬНЫЕ РЯДЫ
§ 2. Область сходимости функционального ряда
§ 3. Сходимость последовательности функций. Основные определения
§ 4. Предел последовательности непрерывных функций
§ 5. Переход к пределу под знаком интеграла
§ 6. Переход к пределу под знаком производной
§ 7. Определение равномерной сходимости функционального ряда и признак Вейерштрасса
§ 8. Непрерывность суммы равномерно сходящегося ряда с непрерывными членами
§ 9. Почленное интегрирование функциональных рядов
§ 10. Почленное дифференцирование функциональных рядов
ГЛАВА 6. СТЕПЕННЫЕ РЯДЫ. ОБЩИЕ ВОПРОСЫ
§ 2. Теорема Абеля
§ 3. Круг сходимости ряда
§ 4. Вещественный степенной ряд и его интервал сходимости
§ 5. Равномерная сходимость ряда в круге его сходимости
§ 6. Вещественные ряды
§ 7. Комплексные ряды
§ 8. Разложение функций в степенные ряды
§ 9. Формула Тейлора
§ 10. Ряды Тейлора и Маклорена
ГЛАВА 7. СТЕПЕННЫЕ РЯДЫ. ПРИМЕРЫ И ПРИЛОЖЕНИЯ
§ 2. Разложения в ряды Маклорена гиперболических функций ch x и sh x
§ 3. Разложения в ряды Маклорена тригонометрических функций cos x и sin x
§ 4. Показательная функция с комплексным значением показателя
§ 5. Формулы Эйлера
§ 6. Тригонометрические функции от комплексного значения аргумента
§ 7. Гиперболические функции от комплексного значения аргумента
§ 8. Вычисление значений функций при помощи ряда Маклорена
§ 9. Биномиальный ряд
§ 10. Приложения биномиального ряда
§ 11. Разложение в ряд Маклорена логарифмической функции
§ 12. Приближенное вычисление определенных интегралов при помощи степенных рядов
§ 13. Приближенное интегрирование дифференциальных уравнений при помощи степенных рядов
ГЛАВА 8. ОРТОГОНАЛЬНЫЕ И ОРТОНОРМАЛЬНЫЕ СИСТЕМЫ ФУНКЦИЙ
§ 2. Векторы и функции
§ 3. Нормированные и ортогональные функции
§ 4. Нормированные и ортогональные системы функций
§ 5. Нормировка систем функций
§ 6. Разложение по системам функций
ГЛАВА 9. РЯДЫ ФУРЬЕ
§ 1. Ряды и коэффициенты Фурье
§ 2. Условия Дирихле и теорема о разложении функции в ряд Фурье
§ 3. Разложение периодических функций в ряд Фурье
§ 4. Физическое истолкование разложения функции в тригонометрический ряд Фурье
§ 5. Разложение функции f(x) = x
§ 6. Сдвиг сегмента разложения
§ 7. Изменение длины сегмента разложения
§ 8. Четные и нечетные функции
§ 9. Разложение четной функции в ряд Фурье
§ 10. Разложение нечетной функции в ряд Фурье
§ 11. Разложение ряд Фурье функций на сегменте от 0 до пи
§ 12. Комплексная форма записи ряда Фурье
§ 13. Разложение в комплексный ряд Фурье
§ 14. Характер сходимости рядов Фурье
ГЛАВА 10. УРАВНЕНИЕ СВОБОДНЫХ МАЛЫХ КОЛЕБАНИЙ СТРУНЫ С ЗАКРЕПЛЕННЫМИ КОНЦАМИ
§ 2. Начальные и граничные условия
§ 3. Метод разделения переменных
§ 4. Использование граничных условий. Собственные функции и собственные значения
§ 5. Использование начальных условий
ГЛАВА 11. ИНТЕГРАЛ ФУРЬЕ
§ 1. Представление функций интегралом Фурье
§ 2. Простейшие достаточные условия представимости функции интегралом Фурье
§ 3. Интеграл Фурье для четных функций
§ 4. Интеграл Фурье для нечетных функций
§ 5. Комплексная форма интеграла Фурье
§ 6. Понятие о преобразовании Фурье
§ 7. Косинус-преобразование Фурье
§ 8. Синус-преобразование Фурье
§ 9. Спектральная функция
Часть II
§ 1. Признак сходимости Куммера
§ 2. Признак сходимости Раабе
§ 3. Признак сходимости Бертрана
§ 4. Признак сходимости Гаусса
§ 5. Сходимость знакопеременных рядов
§ 6. Признак сходимости Дирихле
ГЛАВА 13. ДВОЙНЫЕ РЯДЫ
§ 1. Определение двойного ряда
§ 2. Сходимость двойных рядов
§ 3. Критерии сходимости двойных рядов. Теорема Маркова
§ 4. Свойства двойных рядов и признаки сходимости
§ 5. Абсолютная сходимость двойных рядов
§ 6. Двойные функциональные ряды
§ 7. Двойные степенные ряды
§ 8. Разложение функций двух переменных в двойные ряды Тейлора и Маклорена
§ 9. Ортогональные и ортонормальные системы функций от двух переменных
§ 10. Двойные ряды Фурье
ГЛАВА 14. СУММИРОВАНИЕ СХОДЯЩИХСЯ РЯДОВ
§ 2. Линейные преобразования рядов
§ 3. Теорема Абеля и почленное дифференцирование и интегрирование рядов
§ 4. Последовательности разностей
§ 5. Преобразование рядов по Эйлеру
§ 6. Преобразование рядов по Куммеру
ГЛАВА 15. СУММИРОВАНИЕ РАСХОДЯЩИХСЯ РЯДОВ
§ 1. Расходящиеся геометрические прогрессии
§ 2. Суммирующие функции
§ 3. Суммирование по Пуассону — Абелю
§ 4. Линейность и регулярность суммирования по Пуассону — Абелю
§ 5. Суммируемость рядов по Пуассону — Абелю и их абсолютная сходимость
§ 6. Теорема Таубера
§ 7. Суммирование по Чезаро
§ 8. Соотношение между сходимостью по Чезаро и по Пуассону — Абелю
§ 9. Суммирование по Эйлеру
ГЛАВА 16. СХОДИМОСТЬ РЯДОВ ФУРЬЕ
§ 2. Исследование двух интегралов
§ 3. Исследование одного класса интегралов
§ 4. Доказательство теоремы Дирихле
§ 5. Теорема Фурье
§ 6. Коэффициенты Фурье разрывных функций
§ 7. Скорость сходимости рядов Фурье
§ 8. Улучшение сходимости рядов Фурье по методу выделения особенностей
§ 9. О равномерной сходимости рядов Фурье
§ 10. Неравномерная сходимость последовательностей непрерывных функций
§ 11. Поведение рядов Фурье функций в точках их разрыва. Явление Гиббса
§ 12. Экстремальное свойство сумм Фурье
§ 13. Суммирование рядов Фурье по Чезаро. Теорема Фейера
§ 14. Равенство Парсеваля
§ 15. Теорема Вейерштрасса
ГЛАВА 17. ПРИМЕНЕНИЕ РЯДОВ ФУРЬЕ В ТЕОРИИ ИЗГИБА БАЛОК
§ 2. Изгиб балки
§ 3. Свободно опертая балка
§ 4. Первая возможность ограничиться двукратным дифференцированием
§ 5. Случай сосредоточенной нагрузки
§ 6. Прогиб балки от распределенной нагрузки
§ 7. Прогиб от сосредоточенного момента
§ 8. Статически неопределимая балка
§ 9. Сложный изгиб балки
§ 10. Балка на упругом основании
§ 11. Вторая возможность ограничиться двукратным дифференцированием. Потенциальная энергия изгиба балки
§ 12. Потенциальная энергия изгиба балки в случае нескольких нагрузок
§ 13. Функции прогиба с ортогональными вторыми производными
§ 14. Свободно опертая нагруженная балка
§ 15. Работа продольных сил при сложном изгибе балки
§ 16. Общий случай изгиба балки
§ 17. Общий случай изгиба свободно опертой балки
§ 18. Изгиб симметрично нагруженной балки, жестко заделанной по концам
§ 19.
Функция прогиба симметрично загруженной балки с жестко заделанными концами

Лекция 15. Ряд Тейлора.

Ряд Тейлора.

Рядом Тейлора называется степенной ряд вида (предполагается, что функция является бесконечно дифференцируемой).

Рядом Маклорена называется ряд Тейлора при , то есть ряд .

Теорема. Степенной ряд является рядом Тейлора для своей суммы.

Доказательство. Пусть и степенной ряд сходится в интервале . Подставим в разложение , получим.

Так как степенной ряд сходится равномерно внутри интервала сходимости, мы можем его дифференцировать почленно. Полученный ряд будет сходиться в том же интервале, так как радиус сходимости при дифференцировании не меняется. Его вновь можно дифференцировать почленно и т.д. Вычислим коэффициенты в степенных рядах, полученных почленным дифференцированием. =,

, , ,

, , ,

Продолжая этот процесс, получим . Это – коэффициенты ряда Тейлора. Поэтому степенной ряд есть ряд Тейлора.

Следствие. Разложение функции в степенной ряд единственно.

Доказательство. По предыдущей теореме коэффициенты разложения функции в степенной ряд определяются однозначно, поэтому разложение функции в степенной ряд единственно.

Запишем разложения в ряд Маклорена основных элементарных функций, вычисляя коэффициенты разложения по формуле , где .

,

(интегрируя предыдущую формулу)

, .

Пусть записано разложение функции в степенной ряд. Возникает вопрос, всегда ли это разложение (степенной ряд) сходится именно к этой функции, а не к какой-либо другой.

Теорема. Для того чтобы ряд Тейлора сходился к той функции, по которой он построен, необходимо и достаточно, чтобы остаточный член формулы Тейлора стремился к нулю при .

Доказательство. Запишем формулу Тейлора, известную из 1 семестра

Необходимость. Обозначим Sn – частичную сумму ряда Тейлора .

.

Если ряд Тейлора сходится к , то . Но по формуле Тейлора . Следовательно, .

Достаточность. Если , то , а — частичная сумма ряда Тейлора. Поэтому ряд Тейлора сходится именно к функции .

Теорема. Пусть все производные функции ограничены в совокупности одной константой. Тогда ряд Тейлора сходится к функции .

Доказательство. Оценим остаточный член формулы Тейлора

, так как показательная функция растет медленнее, чем n!. Поэтому (по предыдущей теореме) ряд Тейлора сходится к функции .

В качестве примера применения теоремы рассмотрим разложение в ряд Маклорена функций sin x, cos x. Эти ряды сходятся к функциям, так как их производные ограничены в совокупности единицей на всей оси.

В разложении функции ex на отрезке [a, b] все производные функции ограничены константой eb, поэтому ряд для функции ex сходится к ней на любом конечном отрезке.

Ряды для функций sh x, ch x можно получить линейной комбинацией экспонент, следовательно, ряды для этих функций сходятся к ним на всей оси.

Рассмотрим разложение в ряд функции . Предположим, что ряд сходится к функции . Можно, дифференцируя ряд почленно, установить справедливость соотношения (выведите его в качестве упражнения). Решая это дифференциальное уравнение, получим .

исчисление — разложение Тейлора $\sinh(x)$

Задавать вопрос

спросил

Изменено 7 лет, 3 месяца назад

Просмотрено 7к раз

$\begingroup$ 9{2n+1}}{(2n+1)!}$$

Остаются нечетные степени, и синус является нечетной функцией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *