Проверка простоты числа перебором делителей. Язык Python
Простые числа — это натуральные числа больше единицы, которые делятся нацело только на единицу и на себя. Например, число 3 простое, так как нацело делится только на 1 и 3. Число 4 сложное, так как нацело делится не только на 1 и 4, но также на число 2.
Алгоритм перебора делителей заключается в последовательном делении заданного натурального числа на все целые числа, начиная с двойки и заканчивая значением меньшим или равным квадратному корню из тестируемого числа. Таким образом, в данном алгоритме используется цикл, счетчик итераций которого последовательно принимает значения ряда натуральных чисел от 2 до корня из исследуемого числа.
Перебор делителей применяется в том числе для определения, является ли натуральное число простым, или оно является сложным, то есть составным. Касаемо данной задачи, если хотя бы один делитель делит исследуемое число без остатка, то оно является составным.
from math import sqrt n = int(input()) prime = True i = 2 while i <= sqrt(n): if n % i == 0: prime = False break i += 1 if prime: print("Простое число") else: print("Составное число")
В программе мы сначала предполагаем, что введенное число n является простым, и поэтому присваиваем переменной prime значение True
. Далее в цикле перебираются делители (переменная i ) от 2-х до квадратного корня из числа n. Как только встречается первый делитель, на который n делится без остатка, меняем значение prime на False
и прерываем работу цикла, так как дальнейшее тестирование числа на простоту смысла не имеет.
Если после выполнения цикла prime осталась истиной, сработает ветка if
условного оператора. В случае False
, поток выполнения заходит в ветку else
.
Если знать о такой особенности циклов в Python как возможность иметь ветку else
, то код можно упростить, избавившись от переменной prime и ее проверки условным оператором после завершения работы цикла.
from math import sqrt n = int(input()) i = 2 while i <= sqrt(n): if n % i == 0: print("Составное число") break i += 1 else: print("Простое число")
Ветка else
при циклах (как while
, так и for
) срабатывает, если в основном теле цикла не происходило прерывания с помощью break
. Если break
сработал, то тело else
выполняться не будет. При использовании таких конструкций также следует помнить, что если условие в заголовке цикла сразу возвращает ложь (то есть тело цикла не должно выполняться ни разу), код тела
все-равно будет выполнен.
Программы выше будут определять числа 0 и 1 как простые. Это неправильно. Данные числа не являются ни простыми, ни сложными. Для проверки ввода пользователя, можно воспользоваться условным оператором или зациклить запрос числа, пока не будет введено корректное значение:
n = 0 while n < 2: n = int(input())
Рассмотрим функцию, которая определяет, является ли число простым:
from math import sqrt def is_prime(n): i = 2 while i <= sqrt(n): if n % i == 0: return False i += 1 if n > 1: return True a = int(input()) if is_prime(a): print("Простое число") else: print("Число НЕ является простым")
Здесь нет необходимости в прерывании работы цикла с помощью break
, так как оператор return
выполняет выход из тела всей функции.
Если цикл полностью отработал, выполнится выражение return True
, находящееся ниже цикла. Оно помещено в тело условного оператора, чтобы исключить возврат «истины», когда в функцию передаются числа 0 или 1. В этом случае функция вернет объект None
.
Программа не защищена от ввода отрицательного числа. При этом будет генерироваться ошибка на этапе извлечения квадратного корня.
Нарисуем блок-схему тестирования числа на простоту (без дополнительных проверок и оператора break
):
from math import sqrt n = int(input()) prime = True i = 2 while i <= sqrt(n) and prime is True: if n % i == 0: prime = False i += 1 if prime: print("Простое число") else: print("Составное число")
Больше задач в PDF
Формула частоты в физике
Формула частоты в физикеОпределение
Частота — это физический параметр, которые используют для характеристики периодических процессов. Частота равна количеству повторений или свершения событий в единицу времени.
Чаще всего в физике частоту обозначают буквой $\nu ,$ иногда встречаются другие обозначения частоты, например $f$ или $F$.
Частота (наряду со временем) является самой точно измеряемой величиной. {-1}=Гц.\]
Герц — это единица измерения частоты периодического процесса, при которой за время равное одной секунде происходит один цикл процесса. Единица измерения частоты периодического процесса получила свое наименование в честь немецкого ученого Г. Герца.
Частота биений, которые возникают при сложении двух колебаний, происходящих по одной прямой с разными, но близкими по величине частотами (${\nu }_1\ и\ {\nu }_2$) равна:\[{\nu =\nu }_1-\ {\nu }_2\left(3\right).\]
Еще одно величиной характеризующей колебательный процесс является циклическая частота (${\omega }_0$), связанная с частотой как:
\[{\omega }_0=2\pi \nu \left(4\right).\]
Циклическая частота измеряется в радианах, деленных на секунду:
\[\left[{\omega }_0\right]=\frac{рад}{с}.\]
Частота колебаний тела, имеющего массу$\ m,$ подвешенного на пружине с коэффициентом упругости $k$ равна:
\[\nu =\frac{1}{2\pi \sqrt{{m}/{k}}}\left(5\right). \]
Формула (4) верна для упругих, малых колебаний. Кроме того масса пружины должна быть малой по сравнению с массой тела, прикрепленного к этой пружине.
Для математического маятника частоту колебаний вычисляют как: длина нити:
\[\nu =\frac{1}{2\pi \sqrt{{l}/{g}}}\left(6\right),\]
где $g$ — ускорение свободного падения; $\ l$ — длина нити (длина подвеса) маятника.
Физический маятник совершает колебания с частотой:
\[\nu =\frac{1}{2\pi \sqrt{{J}/{mgd}}}\left(7\right),\]
где $J$ — момент инерции тела, совершающего колебания относительно оси; $d$ — расстояние от центра масс маятника до оси колебаний.
Формулы (4) — (6) приближенные. Чем меньше амплитуда колебаний, тем точнее значение частоты колебаний, вычисляемых с их помощью.
Формулы для вычисления частоты дискретных событий, частота вращения
дискретных колебаний ($n$) — называют физическую величину, равную числу действий (событий) в единицу времени. Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:
\[n=\frac{1}{\tau }\left(8\right).\]
Единицей измерения частоты дискретных событий является обратная секунда:
\[\left[n\right]=\frac{1}{с}.\]
Секунда в минус первой степени равна частоте дискретных событий, если за время, равное одной секунде происходит одно событие.
Частотой вращения ($n$) — называют величину, равную количеству полных оборотов, которое совершает тело в единицу времени. Если $\tau $ — время, затрачиваемое на один полный оборот, то:
\[n=\frac{1}{\tau }\left(9\right).\]
Примеры задач с решением
Пример 1
Задание. Колебательная система совершила за время равное одной минуте ($\Delta t=1\ мин$) 600 колебаний. Какова частота этих колебаний?
Решение. Для решения задачи воспользуемся определением частоты колебаний: Частота, в этом случае — это число полных колебаний, совершающихся за единицу времени.
\[\nu =\frac{N}{\Delta t}\left(1.1\right).\]
Прежде чем переходить к вычислениям, переведем время в единицы системы СИ: $\Delta t=1\ мин=60\ с$. Вычислим частоту:
\[\nu =\frac{600}{60}=10\ \left(Гц\right).\]
Ответ. $\nu =10Гц$
Пример 2
Задание. На рис.1 изображен график колебаний некоторого параметра $\xi \ (t)$, Какова амплитуда и частота колебаний этой величины?
Решение. Из рис.1 видно, что амплитуда величины $\xi \ \left(t\right)={\xi }_{max}=5\ (м)$. Из графика получаем, что одно полное колебание происходит за время, равное 2 с, следовательно, период колебаний равен:
\[T=2\ \left(c\right).\]
Частота — величина обратная периоду колебаний, значит:
\[\nu =\frac{1}{T}=0,5\ \left(Гц\right).\]
Ответ. 1) ${\xi }_{max}=5\ (м)$. 2) $\nu =0,5$ Гц
Читать дальше: формулы математического маятника.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
1 | Найти точное значение | грех(30) | |
2 | Найти точное значение | грех(45) | |
3 | Найти точное значение | грех(30 градусов) | |
4 | Найти точное значение | грех(60 градусов) | |
5 | Найти точное значение | загар (30 градусов) | |
6 | Найти точное значение | угловой синус(-1) | |
7 | Найти точное значение | грех(пи/6) | |
8 | Найти точное значение | cos(pi/4) | |
9 | Найти точное значение | грех(45 градусов) | |
10 | Найти точное значение | грех(пи/3) | |
11 | Найти точное значение | арктан(-1) | |
12 | Найти точное значение | cos(45 градусов) | |
13 | Найти точное значение | cos(30 градусов) | |
14 | Найти точное значение | желтовато-коричневый(60) | |
15 | Найти точное значение | csc(45 градусов) | |
16 | Найти точное значение | загар (60 градусов) | |
17 | Найти точное значение | сек(30 градусов) | |
18 | Найти точное значение | cos(60 градусов) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | грех(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | загар (45 градусов) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 градусов) | |
25 | Найти точное значение | сек(45 градусов) | |
26 | Найти точное значение | csc(30 градусов) | |
27 | Найти точное значение | грех(0) | |
28 | Найти точное значение | грех(120) | |
29 | Найти точное значение | соз(90) | |
30 | Преобразовать из радианов в градусы | пи/3 | |
31 | Найти точное значение | желтовато-коричневый(30) | |
32 | 92|||
35 | Преобразовать из радианов в градусы | пи/6 | |
36 | Найти точное значение | детская кроватка(30 градусов) | |
37 | Найти точное значение | арккос(-1) | |
38 | Найти точное значение | арктан(0) | |
39 | Найти точное значение | детская кроватка(60 градусов) | |
40 | Преобразование градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2 шт. )/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | тан(пи/2) | |
45 | Найти точное значение | грех(300) | |
46 | Найти точное значение | соз(30) | |
47 | Найти точное значение | соз(60) | |
48 | Найти точное значение | соз(0) | |
49 | Найти точное значение | соз(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | сек(60 градусов) | |
53 | Найти точное значение | грех(300 градусов) | |
54 | Преобразование градусов в радианы | 135 | |
55 | Преобразование градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5 дюймов)/6 | |
57 | Преобразовать из радианов в градусы | (5 дюймов)/3 | |
58 | Преобразование градусов в радианы | 89 градусов | |
59 | Преобразование градусов в радианы | 60 | |
60 | Найти точное значение | грех(135 градусов) | |
61 | Найти точное значение | грех(150) | |
62 | Найти точное значение | грех(240 градусов) | |
63 | Найти точное значение | детская кроватка(45 градусов) | |
64 | Преобразовать из радианов в градусы | (5 дюймов)/4 | |
65 | Найти точное значение | грех(225) | |
66 | Найти точное значение | грех(240) | |
67 | Найти точное значение | cos(150 градусов) | |
68 | Найти точное значение | желтовато-коричневый(45) | |
69 | Оценить | грех(30 градусов) | |
70 | Найти точное значение | сек(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | КСК(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | загар((5pi)/3) | |
75 | Найти точное значение | желтовато-коричневый(0) | |
76 | Оценить | грех(60 градусов) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3 пи)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | угловой синус(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | КСК(45) | |
83 | Упростить | арктан(квадратный корень из 3) | |
84 | Найти точное значение | грех(135) | |
85 | Найти точное значение | грех(105) | |
86 | Найти точное значение | грех(150 градусов) | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | загар((2pi)/3) | |
89 | Преобразовать из радианов в градусы | пи/4 | |
90 | Найти точное значение | грех(пи/2) | |
91 | Найти точное значение | сек(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | Найти точное значение | угловой синус(0) | |
95 | Найти точное значение | грех(120 градусов) | |
96 | Найти точное значение | желтовато-коричневый ((7pi)/6) | |
97 | Найти точное значение | соз(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразование градусов в радианы | 88 градусов |
Глоссарий: Единицы: Прочность на излом: Ksi-Sqrt (дюйм)
Глоссарий » единицы » Прочность перелома » KSI-SQRT (дюйм)
KSI-SQRT (дюйм) (ksi-sqrt (in) ksi-sqrt (inch) (ksi-sqrt (in) ksi-sqrt (inch) (ksi-sqrt (in) ksi-sqrt (дюйм). твердость . Он также известен как ksi квадратный корень из дюймов, килограмм силы фунт на квадратный дюйм квадратный корень из дюймов. Ksi-Sqrt(inch) (ksi-sqrt(in)) имеет размерность ML -0,5 T -2 , где M — масса, L — длина, а T — время. Его можно преобразовать в соответствующую стандартную единицу СИ Па-кв.м (м), умножив его значение на коэффициент 109.8843.49012.
Обратите внимание, что семь основных измерений: M (масса), L (длина), T (время), Q (температура), N (количество вещества), I (электрический ток) и J (сила света).
Другие единицы в категории вязкости разрушения включают МПа-кв.(метр) (МПа-кв.(м)), Па-кв.(метр) (Па-кв.(м)) и пси-кв.(дюйм) (psi -кв.(дюйм)).
[Калькулятор преобразования единиц измерения]
Дополнительная информация
Н/Д
Связанные страницы
eFunda: Категория электрического блока
eFunda: Категория электрического блока. … Загрузите Palm-версию этого калькулятора преобразования единиц измерения! … Электрический заряд. Название единицы, символ, эквивалент в системе СИ …
eFunda: Вязкость разрушения Категория единицы измерения
ksi-sqrt(in), 1,09884×106 Па-sqrt(м) … Pa-sqrt(м), 1 Па-sqrt( м). ·, psi-sqrt(
0906 Глоссарий eFunda для единиц измерения, категория: момент, крутящий момент, название единицы измерения: фунт-сила-дюйм, символ единицы измерения: фунт-сила-дюйм.
eFunda: C Перечень единиц
Единицы » Площадь » Квадратный фемтометр · Единицы » Длина » Фарлонг (США) · Единицы » Линейный импульс » Фунт-сила-секунда · Единицы » Объемный расход » Кубический дюйм на …
Единица Ступенчатые и дельта-функции
Введение в единичную ступенчатую функцию Хевисайда и дельта-функцию Дирака.