| 1 | Найти точное значение | sin(30) | |
| 2 | Найти точное значение | sin(45) | |
| 3 | Найти точное значение | sin(30 град. ) | |
| 4 | Найти точное значение | sin(60 град. ) | |
| 5 | Найти точное значение | tan(30 град. ) | |
| 6 | Найти точное значение | arcsin(-1) | |
| 7 | Найти точное значение | sin(pi/6) | |
| 8 | cos(pi/4) | ||
| 9 | Найти точное значение | sin(45 град. ) | |
| 10 | Найти точное значение | sin(pi/3) | |
| 11 | Найти точное значение | arctan(-1) | |
| 12 | Найти точное значение | cos(45 град. ) | |
| 13 | Найти точное значение | cos(30 град. ) | |
| 14 | Найти точное значение | tan(60) | |
| 15 | Найти точное значение | csc(45 град. ) | |
| 16 | Найти точное значение | tan(60 град. ) | |
| 17 | Найти точное значение | sec(30 град. ) | |
| 18 | Найти точное значение | cos(60 град. ) | |
| 19 | Найти точное значение | cos(150) | |
| 20 | Найти точное значение | sin(60) | |
| 21 | Найти точное значение | cos(pi/2) | |
| 22 | Найти точное значение | tan(45 град. ) | |
| 23 | Найти точное значение | arctan(- квадратный корень из 3) | |
| 24 | Найти точное значение | csc(60 град. ) | |
| 25 | Найти точное значение | sec(45 град. ) | |
| 26 | Найти точное значение | csc(30 град. ) | |
| 27 | Найти точное значение | sin(0) | |
| 28 | Найти точное значение | sin(120) | |
| 29 | Найти точное значение | cos(90) | |
| 30 | Преобразовать из радианов в градусы | pi/3 | |
| 31 | Найти точное значение | tan(30) | |
| 32 | Преобразовать из градусов в радианы | 45 | |
| 33 | Найти точное значение | cos(45) | |
| 34 | Упростить | sin(theta)^2+cos(theta)^2 | |
| 35 | Преобразовать из радианов в градусы | pi/6 | |
| 36 | Найти точное значение | cot(30 град. ) | |
| 37 | Найти точное значение | arccos(-1) | |
| 38 | Найти точное значение | arctan(0) | |
| 39 | Найти точное значение | cot(60 град. ) | |
| 40 | Преобразовать из градусов в радианы | 30 | |
| 41 | Преобразовать из радианов в градусы | (2pi)/3 | |
| 42 | Найти точное значение | sin((5pi)/3) | |
| 43 | Найти точное значение | sin((3pi)/4) | |
| 44 | Найти точное значение | tan(pi/2) | |
| 45 | Найти точное значение | sin(300) | |
| 46 | Найти точное значение | cos(30) | |
| 47 | Найти точное значение | cos(60) | |
| 48 | Найти точное значение | cos(0) | |
| 49 | Найти точное значение | cos(135) | |
| 50 | Найти точное значение | cos((5pi)/3) | |
| 51 | Найти точное значение | cos(210) | |
| 52 | Найти точное значение | sec(60 град. ) | |
| 53 | Найти точное значение | sin(300 град. ) | |
| 54 | Преобразовать из градусов в радианы | 135 | |
| 55 | Преобразовать из градусов в радианы | 150 | |
| 56 | Преобразовать из радианов в градусы | (5pi)/6 | |
| 57 | Преобразовать из радианов в градусы | (5pi)/3 | |
| 58 | Преобразовать из градусов в радианы | 89 град. | |
| 59 | Преобразовать из градусов в радианы | 60 | |
| 60 | Найти точное значение | sin(135 град. ) | |
| 61 | Найти точное значение | sin(150) | |
| 62 | Найти точное значение | sin(240 град. ) | |
| 63 | Найти точное значение | cot(45 град. ) | |
| 64 | Преобразовать из радианов в градусы | (5pi)/4 | |
| 65 | Найти точное значение | sin(225) | |
| 66 | Найти точное значение | sin(240) | |
| 67 | Найти точное значение | cos(150 град. ) | |
| 68 | Найти точное значение | tan(45) | |
| 69 | Вычислить | sin(30 град. ) | |
| 70 | Найти точное значение | sec(0) | |
| 71 | Найти точное значение | cos((5pi)/6) | |
| 72 | Найти точное значение | csc(30) | |
| 73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
| 74 | Найти точное значение | tan((5pi)/3) | |
| 75 | Найти точное значение | tan(0) | |
| 76 | Вычислить | sin(60 град. ) | |
| 77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
| 78 | Преобразовать из радианов в градусы | (3pi)/4 | |
| 79 | Найти точное значение | sin((7pi)/4) | |
| 80 | Найти точное значение | arcsin(-1/2) | |
| 81 | sin((4pi)/3) | ||
| 82 | Найти точное значение | csc(45) | |
| 83 | Упростить | arctan( квадратный корень из 3) | |
| 84 | Найти точное значение | sin(135) | |
| 85 | Найти точное значение | sin(105) | |
| 86 | Найти точное значение | sin(150 град. ) | |
| 87 | Найти точное значение | sin((2pi)/3) | |
| 88 | Найти точное значение | tan((2pi)/3) | |
| 89 | Преобразовать из радианов в градусы | pi/4 | |
| 90 | Найти точное значение | sin(pi/2) | |
| 91 | Найти точное значение | sec(45) | |
| 92 | Найти точное значение | cos((5pi)/4) | |
| 93 | Найти точное значение | cos((7pi)/6) | |
| 94 | Найти точное значение | arcsin(0) | |
| 95 | Найти точное значение | sin(120 град. ) | |
| 96 | Найти точное значение | tan((7pi)/6) | |
| 97 | Найти точное значение | cos(270) | |
| 98 | Найти точное значение | sin((7pi)/6) | |
| 99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
| 100 | Преобразовать из градусов в радианы | 88 град. |
Калькулятор — sin(35) — Солуматы
Sin, расчет онлайн
Резюме:
Тригонометрическая функция sin для вычисления синуса угла в радианах,
градусов или градианов.
sin online
Описание:
Калькулятор позволяет использовать большинство из тригонометрических функций , есть возможность вычислить синус , косинус и касательная угла через одноименные функции.
Тригонометрическая функция синус отметил синус , позволяет вычислить синус угла онлайн , можно использовать разные угловые единицы: градус, градус и радианы, которые по умолчанию являются угловыми единицами.
- Расчет синуса
- Таблица специальных синусоидальных значений
- Основные свойства
Вычисление синуса угла в радианах
Калькулятор синуса позволяет с помощью функции sin вычислить онлайн синус синус угла в радианах, вы должны сначала
выберите нужную единицу, нажав на кнопку параметров расчетного модуля.
После этого можно приступать к расчетам.
Чтобы вычислить синус онлайн от `pi/6`, введите sin(`pi/6`), после вычисления результат `1/2` возвращается.
Обратите внимание, что функция синуса способна распознавать некоторые специальные углы и делать расчеты со специальными связанными значениями в точной форме.
Вычислить синус угла в градусах
Чтобы вычислить синус угла в градусах, необходимо сначала выбрать нужную единицу измерения нажав на кнопку модуля расчета параметров. После этого можно приступать к вычислениям.
Чтобы вычислить синус 90, введите sin(90). результат 1 возвращается.
Вычислить синус угла в градусах
Чтобы вычислить синус угла в градианах, необходимо сначала выбрать нужную единицу измерения нажав на кнопку модуля расчета параметров. После этого можно приступать к вычислениям.
Чтобы вычислить синус 50, введите sin(50), после вычисления,
возвращается результат `sqrt(2)/2`.
Обратите внимание, что функция синуса способна распознавать некоторые специальные углы и выполнять исчисление со специальными ассоциированными точными значениями.
Синус допускает некоторые специальные значения, которые калькулятор может определить в точных формах. Вот таблица значений общего синуса :
| sin(`2*pi`) | `0` | ||
| sin(`pi`) | `0` | ||
| sin(`pi/90 `2`) | 7 | ||
| sin(`pi/4`) | `sqrt(2)/2` | ||
| sin(`pi/3`) | `sqrt(3)/2` | ||
| sin(`pi/6`) | `1/2` | ||
| sin(`2*pi/3`) | `sqrt(3) /2` | ||
| sin(`3*pi/4`) | `sqrt(2)/2` | ||
| sin(`5*pi/6`) | `1/2` | ||
| sin(`0`) | `0` | ||
| sin(`-2*pi`) | `0` | ||
| sin(`-pi`) 7 0907 8 ` | sin(`pi/2`) | `-1` | |
| sin(`-pi/4`) | `-sqrt(2)/2` | ||
| sin(`-pi/3`) | `-sqrt(3)/2` | ||
| sin(`-pi/6`) | `-1/2` | ||
| sin(`-2*pi/3`) | `-sqrt(3)/2` | ||
| sin( `-3*pi/4`) | `-sqrt(2)/2` | ||
| sin(`-5*pi/6`) | `-1/2` |
`AA x в RR, k в ZZ`,
- `sin(-x)= -sin(x)`
- `sin(x+2*k*pi)=sin(x)`
- `sin(pi-x)=sin(x)`
- `sin(pi+x)=-sin(x)`
- `sin(pi/2-x)=cos(x)`
- `sin(pi/2+x)=cos(x)`
Производная синуса равна cos(x).
Первообразная синуса равна -cos(x).
Функция sine является нечетной функцией, для каждого действительного x `sin(-x)=-sin(x)`. Следствием для кривой, представляющей синусоидальную функцию, является то, что она допускает начало отсчета как точку симметрии.
Калькулятор имеет решатель, который позволяет решать уравнение с синусом вида cos(x)=a . Расчеты для получения результата детализированы, поэтому можно будет решать уравнения типа `грех(х)=1/2` или же `2*sin(x)=sqrt(2)` с этапами расчета.
Синтаксис:
sin(x), где x — мера угла в градусах, радианах или градах.
Примеры:
sin(`0`), возвращает 0
Производный синус:
можно использовать калькулятор производной, который позволяет вычислить производную функции синуса
производная sin(x) является производной(`sin(x)`)=`cos(x)`
Синус первообразной :
Калькулятор первообразной позволяет вычислить первообразную функции синуса.
Первопроизводная sin(x) есть первопроизводная(`sin(x)`)=`-cos(x)`
Предел синуса :
Калькулятор предела позволяет вычислить пределы функции синуса.
предел sin(x) is limit(`sin(x)`)
Обратная функция синуса :
обратная функция синуса является функцией арксинуса, обозначенной как arcsin.
Графический синус :
Графический калькулятор может отображать синусоидальную функцию в заданном интервале.
Свойство функции синуса:
Функция синуса является нечетной функцией.
Расчет онлайн с синусом (sine)
См. также
Список связанных калькуляторов:
- Арккосинус : arccos.
Функция arccos позволяет вычислять арккосинус числа.
Функция arccos является обратной функцией функции косинуса. - Арксинус : арксинус. Функция arcsin позволяет вычислить арксинус числа. Функция arcsin является обратной функцией функции синуса.
- Арктангенс: арктангенс. Функция арктангенса позволяет вычислить арктангенс числа. Функция арктангенса является обратной функцией функции тангенса.
- Тригонометрический калькулятор: simple_trig. Калькулятор, который использует тригонометрическую формулу для упрощения тригонометрического выражения.
- Косинус: cos. Кос-тригонометрическая функция вычисляет косинус угла в радианах, градусов или градианов.
- Косеканс: косеканс Тригонометрическая функция sec позволяет вычислить секанс угла, выраженного в радианах, градусах или градусах.
- Котангенс : котан. Тригонометрическая функция котана для вычисления котана угла в радианах, градусов или градианов.
- Тригонометрическое расширение: expand_trigo.
Калькулятор позволяет получить тригонометрическое разложение выражения. - Тригонометрическая линеаризация : linearization_trigo. Калькулятор, позволяющий линеаризовать тригонометрическое выражение.
- Упростить калькулятор: упростить. Калькулятор, который может упростить алгебраическое выражение онлайн.
- Секанс : сек. Тригонометрическая функция sec позволяет вычислить секанс угла, выраженного в радианах, градусах или градусах.
- Синус : синус. Тригонометрическая функция sin для вычисления греха угла в радианах, градусов или градианов.
- Тангенс: коричневый. Тригонометрическая функция тангенса для вычисления тангенса угла в радианах, градусов или градианов.
Напоминания о курсах, калькуляторы, упражнения и игры: Тригонометрические функции, Вещественные функции
Вычислить sin 35° sin 55° — cos 35° cos 55°
треугольник. Это одна из широко используемых тем математики, которая используется в повседневной жизни.
t включает в себя операции над прямоугольным треугольником, т.е. треугольником, один из углов которого равен 90°. Есть некоторые термины, которые мы должны знать, прежде чем идти дальше. Эти термины,
- Гипотенуза — это сторона, противоположная прямому углу в прямоугольном треугольнике. Это самая длинная сторона прямоугольного треугольника. На рисунке 1 сторона AC является гипотенузой.
- Перпендикуляр – перпендикуляр треугольника, соответствующий особо острому углу θ, является стороной, противоположной углу θ. На рисунке 1 сторона AB — это перпендикуляр, соответствующий углу θ.
- Основание – это сторона, примыкающая к особо острому углу θ. На рис. 1 сторона ВС является основанием, соответствующим углу θ.
Рисунок 1
Как было сказано ранее, тригонометрия отображает соотношение между углами и сторонами прямоугольного треугольника. Эти отношения представлены стандартными соотношениями и задаются следующим образом:
- Синус (sin) – синус угла θ есть отношение длины перпендикуляра, соответствующего углу θ, к длине гипотенуза треугольника.

sin θ = перпендикуляр/гипотенуза = p/h
- Косинус (cos) – косинус угла θ есть отношение длины основания, соответствующего углу θ, к длине гипотенузы треугольника.
cos θ = основание/гипотенуза = b/h
- Тангенс (tan) – тангенс угла θ есть отношение длины перпендикуляра, соответствующего углу θ, к длине основание для определенного угла треугольника.
тангенс θ = перпендикуляр/основание = p/b
- Котангенс (кот) – обратная величина тангенса.
cot θ = 1/tan θ = основание/перпендикуляр = b/p
- Секанс (сек) – обратная величина косинуса.
сек θ = 1/cos θ = гипотенуза/основание = h/b
- Косеканс (косек) :- это величина, обратная синусу.
cosec θ = 1/sin θ = гипотенуза/перпендикуляр = h/p
Тригонометрические функции дополнительных углов
Одно из соотношений тригонометрии включает в себя понятие дополнительных углов.
Дополнительные углы — это набор из двух углов, скажем, x и y, таких, что при сложении их получается 90 90 398 ° 90 399 . Следовательно, мы можем сказать, что x = 90 ° – y. Существует специальное дополнительное соотношение между тригонометрическими отношениями, приведенными ниже и детская кроватка
tan(90° – x) = cot x
cot(90° – x) = tan x
Между sec и cosec
sec(90° – x) = cosec x
cosec(90 ° – x) = sec x
Для решения приведенного выше выражения нам понадобится это дополнительное соотношение между тригонометрическими отношениями.
Вычислить sin 35° sin 55° – cos 35° cos 55°
Решение:
sin 35° sin 55° – cos 35° cos 55°
= sin (90° – 9043) sin 55° – cos (90° – 55°) cos 55°
= cos 55° sin 55° – sin 55° cos 55° (по дополнительному соотношению sin(90° – x) = cos x и cos(90° – x) = sin x )
= 0
Примеры задач
Вопрос 1: Если sec 36° = a, найдите значение tan 54°.
Решение:
сек 36° = a
cos 36° = 1/ сек 36° (поскольку sec θ = cos θ) cos 2 36°) = √(1 – (1/a) 2 )
= √(1 – 1/a 2 )
cot 36° = cos 36°/sin 36°
= (1/a)/(√(1 – 1/a 2 ) )
= 1/(a 2 – 1)
cot 36° = cot (90° – 54°) = tan 54° = 1/(a 2 – 1)
Вопрос 2: В ΔABC докажите, что sin (A + B)/2 = cos C/2.
Решение:
Известно, A + B + C = 180°
= A + B =180° – C
∴ (A + B)/2 = (180° – C) /2 = 90° – C/2
Взяв синус в обеих частях уравнения,
sin (A + B)/2 = sin (90° – C/2) = cos C/2
Вопрос 3: Если cos 20° = m и cos 70° = n, найти значение m 2 + n 2 .
Решение:
COS 20 ° = M
COS (90 ° — 70 °) = M
SIN 70 ° = M
SIN 2 70 ° = M 2 ->> (> 2 70 ° = M 2 ->> (> 2 70 ° = м 2
-> 2 70 ° = м 2-> 2
70 °.

)
)
)
)
)
)
)
)
)
Функция arccos позволяет вычислять арккосинус числа.
Функция arccos является обратной функцией функции косинуса.
Калькулятор позволяет получить тригонометрическое разложение выражения.
