ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠ°ΡΡ Π΄ΡΠΎΠ±ΠΈ?
Π‘Π°ΠΌΡΠ΅ ΡΡΠ°ΡΡΠ΅ ΡΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ ΠΎ ΡΠ°ΠΊΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²Π»Π΅Π½ΠΈΡΡ , ΠΊΠ°ΠΊ Π΄ΡΠΎΠ±Ρ, ΡΡΡΠ½ΡΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ»ΠΈ Π² Π΄ΡΠ΅Π²Π½Π΅ΠΌ ΠΠ³ΠΈΠΏΡΠ΅. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΠΈΡ Π±ΡΠ»ΠΎ ΡΠΎ, ΡΡΠΎ Ρ Π½ΠΈΡ Π±ΡΠ»ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠ»ΡΠΊΠΎ Π²ΠΈΠ΄Π° 1\2, 2\3,1\3, ΠΏΡΠΈ ΡΡΠΎΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π΄Π²ΠΎΠΉΠΊΠΈ ΡΠΈΡΠ»Π°, Π΄Π΅Π»ΠΈΠΌΠΎΠ³ΠΎ ΠΎΠ½ΠΈ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ, Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊ ΠΏΡΠΈΠΌΠ΅ΡΡ, Π²ΠΌΠ΅ΡΡΠΎ Π΄ΡΠΎΠ±ΠΈ 5\6, ΠΏΠΈΡΠ°Π»ΠΈ 1\2 +1\3.
ΠΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ°ΠΊΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ Π±ΡΠ»ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΡΠ½ΡΠ΅ ΡΠ°Π·Π½ΡΡ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΠΏΡΡΠ°Π»ΠΈΡΡ Π²ΡΠ²Π΅ΡΡΠΈ ΠΎΠ±ΡΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π°. Π’Π°ΠΊ ΠΏΠΎΡΠ²ΠΈΠ»Π°ΡΡ ΡΠ΅ΡΡΠΈΠ΄Π΅ΡΡΡΠ΅ΡΠΈΡΠ½Π°Ρ, Π½ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Ρ Π½Π΅ΠΉ ΡΠΎΠΆΠ΅ Π±ΡΠ»ΠΎ ΠΎΡΠ΅Π½Ρ ΡΡΡΠ΄Π½ΠΎ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΅Ρ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ Π΄ΠΎΠ»Π³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ Π² ΠΠ°Π²ΠΈΠ»ΠΎΠ½Π΅ ΠΈ ΠΡΠ΅ΡΠΈΠΈ. Π‘ΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π»Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠ°Ρ ΠΡΡ, Π΅Ρ ΡΡΡΡ Π² Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° 12, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π΅Ρ ΡΠΈΠΌΠ»ΡΠ½Π΅. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠΎΡΠ½Π΅Π΅ ΠΎΠ΄Π½Ρ Π΄ΠΎΠ»Ρ, Π½Π°Π·ΡΠ²Π°Π»ΠΈ ΡΠ½ΡΠΈΠ΅ΠΉ. Π‘Π°ΠΌΠΎΠΉ Π±Π»ΠΈΠ·ΠΊΠΎΠΉ ΠΏΠΎ ΡΠ²ΠΎΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΈΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π±ΡΠ»Π° Π΄ΡΠΎΠ±Ρ, ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ Π² ΠΠ½Π΄ΠΈΠΈ, ΡΠ°Π·Π½ΠΈΡΠ° ΠΎΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π±ΡΠ»Π° Π² ΡΠΎΡΠΌΠ°ΡΠ΅ Π·Π°ΠΏΠΈΡΠΈ, Π±Π΅Π· ΡΡΡΡΠΎΡΠΊΠΈ, ΠΈ ΡΠ°ΠΊΠ°Ρ Π΄ΡΠΎΠ±Ρ Π±ΡΠ»Π° ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΠ°, Π² Π²Π΅ΡΡ Π½Π΅ΠΉ ΡΠ°ΡΡΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΠ»ΡΡ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ, Π° Π² Π½ΠΈΠΆΠ½Π΅ΠΉ Π΄Π΅Π»ΠΈΠΌΠΎΠ΅. Π’Π° Π·Π°ΠΏΠΈΡΡ, ΠΊΠΎΡΠΎΡΡΡ ΠΈ ΠΏΠΎ ΡΠ΅ΠΉ Π΄Π΅Π½Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π±ΡΠ»Π° ΠΏΡΠΈΠ΄ΡΠΌΠ°Π½Π° Π°ΡΠ°Π±Π°ΠΌΠΈ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄ΡΠΎΠ±Ρ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΈ Π²ΠΈΠ΄Ρ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
ΠΡΠΎΠ±Ρ β ΡΠΈΡΠ»ΠΎ, ΡΠΎΡΡΠΎΡΡΠ΅Π΅ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠ°Π²Π½ΡΡ Π΄ΠΎΠ»Π΅ΠΉ.
ΠΠΎ ΡΡΡΠΈ Π΄ΡΠΎΠ±Ρ β ΡΡΠΎ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π½Π° Π΄ΡΡΠ³ΠΎΠ΅. ΠΡΠ΄Π΅Π»ΡΡΡ Π΄Π²Π° Π²ΠΈΠ΄Π°: ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ ΠΈ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅.
ΠΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½Π°Ρ Π΄ΡΠΎΠ±Ρ β ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΠΎΡΡΠΎΡΡΠ°Ρ ΠΈΠ· ΡΠ΅Π»ΡΡ ΡΠΈΡΠ΅Π». ΠΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅, ΠΈΠΌΠ΅Ρ Π΄Π²Π° ΡΠΈΠΏΠ° Π·Π°ΠΏΠΈΡΠΈ ΠΊ ΠΏΡΠΈΠΌΠ΅ΡΡ:
- 1\5- ΡΠ°Π·Π΄Π΅Π»Π΅Π½Π° Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ, ΡΠΈΡΠ°Π΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄Π½Π° ΠΏΡΡΠ°Ρ;
- \[\frac{1}{5}\] β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ:
- Π§ΠΈΡΠ»ΠΈΡΠ΅Π»Ρ β ΡΠΈΡΠ»ΠΎ, Π½Π°Ρ ΠΎΠ΄ΡΡΠ΅Π΅ΡΡ Π² Π²Π΅ΡΡ Π½Π΅ΠΉ Π³ΡΠ°Π½ΠΈΡΠ΅ Π΄ΡΠΎΠ±ΠΈ;
- ΠΠ½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ β ΡΠΈΡΠ»ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ Π² Π½ΠΈΠΆΠ½Π΅ΠΉ Π³ΡΠ°Π½ΠΈΡΠ΅ Π΄ΡΠΎΠ±ΠΈ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ: 1\5, Π³Π΄Π΅ 1- ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ, 5- Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΠΏΡΠΎΡΠ΅ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄ΡΠΎΠ±Ρ ΠΏΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΏΡΠΎΡΡΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ. Π’ΠΎΡΡ ΡΠ°Π·ΡΠ΅Π·Π°Π½ Π½Π° 5 ΠΊΡΡΠΊΠΎΠ², Π΅ΡΠ»ΠΈ ΠΌΡ Π²Π·ΡΠ»ΠΈ Π΄Π²Π° ΠΈ Π½ΠΈΡ ΡΠΎ ΡΡΠΎ 2\5 (Π΄Π²Π΅ ΠΏΡΡΡΠ΅ ΡΠ°ΡΡΠΈ ΡΠΎΡΡΠ°).
ΠΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π° ΡΠΈΠΏΠ° ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ ΠΈ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅.
ΠΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΡΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π΄ΡΠΎΠ±Ρ Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. Π’Π°ΠΊΠΎΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π΄Π°Π½Π½ΡΠΉ ΡΠΈΠΏ Π΄ΡΠΎΠ±ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ» Π½Π΅ Π·ΡΡ, Π²Π΅Π΄Ρ ΡΠ°ΠΊ Π»ΠΎΠ³ΠΈΡΠ½Π΅Π΅ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π΅Π΅, ΠΊΠΎΠ³Π΄Π° ΡΠ°ΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ ΡΠ΅Π»ΠΎΠ³ΠΎ.
ΠΠ΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π°Ρ Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΠ³Π΄Π° ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. ΠΡΠΎΠ±ΠΈ, Ρ ΠΊΠΎΡΠΎΡΡΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ, ΡΠΎΠΆΠ΅ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅.
Π‘ΠΌΠ΅ΡΠ°Π½Π½Π°Ρ Π΄ΡΠΎΠ±Ρ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΠΊΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΌΠ΅ΡΠ°Π½Π½Π°Ρ Π΄ΡΠΎΠ±Ρ, ΡΠ°ΠΊΠΎΠΉ Π²ΠΈΠ΄, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π΄ΡΠΎΠ±Ρ, ΡΠΎΡΡΠΎΡΡΡΡ ΠΈΠ· Π΄Π²ΡΡ ΡΠ°ΡΡΠ΅ΠΉ ΡΠ΅Π»ΠΎΠΉ ΠΈ Π΄ΡΠΎΠ±Π½ΠΎΠΉ. ΠΡΠΈΠΌΠ΅Ρ β \[4 \frac{3}{5}\], Π³Π΄Π΅ ΡΠ΅ΡΡΡΠ΅ ΡΡΠΎ ΡΠ΅Π»Π°Ρ ΡΠ°ΡΡΡ, Π° 3\5 Π΄ΡΠΎΠ±Π½Π°Ρ. Π’Π°ΠΊΠΎΠΉ ΡΠΈΠΏ Π΄ΡΠΎΠ±ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ, ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° Π΄ΡΠΎΠ±Π΅ΠΉ.
ΠΠ΅ΡΡΡΠΈΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ. Π Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΌ, ΠΎΡΠ½ΠΎΡΡΡ Π΄ΡΠΎΠ±ΠΈ ΠΊΠΎΡΠΎΡΡΠ΅ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ ΠΈΠΌΠ΅ΡΡ 10 Π² Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. Π ΠΏΡΠΈΠΌΠ΅ΡΡ \[\frac{5}{10}, \frac{6}{100}\] ΠΈ ΡΠ΄. Π’Π°ΠΊΠΈΠ΅, ΡΠ°ΠΊ ΠΆΠ΅ ΠΌΠΎΠ³ΡΡ ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄ ΡΡΡΠΎΡΠ½ΠΎΠΉ Π·Π°ΠΏΠΈΡΠΈ, 0,5 ΠΈ 0,06. ΠΡΠΈ ΡΡΠΎΠΌ Π² ΡΠ°ΠΊΠΎΠΉ Π·Π°ΠΏΠΈΡΠΈ ΡΠ΅Π»Π°Ρ ΡΠ°ΡΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΠΎΡ Π΄ΡΠΎΠ±Π½ΠΎΠΉ Π·Π½Π°ΠΊΠΎΠΌ Π·Π°ΠΏΡΡΠΎΠΉ.
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΠΉ ΠΈ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ. Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌΠ°Ρ Π΄ΡΠΎΠ±Ρ, ΡΡΠΎ ΡΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎ.
ΠΠ΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠ°Ρ Π΄ΡΠΎΠ±Ρ, Π΅ΡΠ»ΠΈ ΡΠ°ΠΊΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π½Π΅Π»ΡΠ·Ρ.
Π‘ΠΎΡΡΠ°Π²Π½Π°Ρ Π΄ΡΠΎΠ±Ρ, ΠΌΠ½ΠΎΠ³ΠΎΡΡΠΎΠ²Π½Π΅Π²Π°Ρ ΠΈΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΈΠΌΠ΅ΡΡΠ΅Π΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΡΡ Π΄ΡΠΎΠ±ΠΈ. ΠΡΠΈΠΌΠ΅Ρ \[\frac{\frac{3}{7}}{-31}\]
Π Π°Π²Π½ΡΠ΅ ΠΈ Π½Π΅ΡΠ°Π²Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ. ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΡΠΊΠ°Π·Π°ΡΡ, ΡΠ²Π»ΡΡΡΡΡ Π΄ΡΠΎΠ±ΠΈ ΡΠ°Π²Π½ΡΠΌΠΈ ΠΈΠ»ΠΈ Π½Π΅Ρ, Π½ΡΠΆΠ½ΠΎ ΠΈΡ ΡΡΠ°Π²Π½ΠΈΡΡ.
Π Π°Π²Π½ΡΠ΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ \[\frac{a}{d} \frac{c}{b}\] β ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ²Π΅ΡΡΠΈ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠ°ΠΊΠΎΠ³ΠΎ Π²Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π°*b=d*c , Π΅ΡΠ»ΠΈ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π½Π΅ Π²Π΅ΡΠ½ΠΎ ΡΠΎ Π΄Π°Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ Π±ΡΠ΄ΡΡ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ Π½Π΅ΡΠ°Π²Π½ΡΠΌΠΈ.
ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ.
ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ, Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ, ΠΏΡΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠ°ΠΊΠΈΠΌΠΈ Π΄ΡΠΎΠ±ΡΠΌΠΈ ΡΡΠ°Π²ΠΈΡΡΡ Π·Π½Π°ΠΊ +, ΠΏΡΠΈΠΌΠ΅Ρ \[+\frac{6}{9}\].
ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ, ΡΡΠΈΡΠ°ΡΡΡΡ Π΄ΡΠΎΠ±ΠΈ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΌΠΈΠ½ΡΡ, ΠΏΡΠΈΠΌΠ΅Ρ \[-\frac{6}{9}\].
Π‘ΡΠΎΠΈΡ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΡΠΎ Π΄Π²Π΅ Π΄ΡΠΎΠ±ΠΈ Π²ΠΈΠ΄Π° \[-\frac{6}{9} \text { ΠΈ }+\frac{6}{9}\] ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌΠΈ. {2}-4}{a+2}, \frac{a}{2}, \frac{3 a+7}{5} \]
ΠΡΠ»ΠΈ Π² ΡΠ°ΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π±ΡΠΊΠ²Ρ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΡΠΈΡΠ»Π°ΠΌΠΈ, ΡΠΎ ΠΎΠ½Π° ΡΡΠ°Π·Ρ ΡΡΠ°Π½Π΅Ρ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ.
ΠΠ΄Π½ΠΎΡΠ»Π΅Π½ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π΅ ΡΠΈΡΠ»Π°, ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈ ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠΡΠΈΠΌΠ΅Ρ: Π².
ΠΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ β ΡΡΠΎ ΡΡΠΌΠΌΠ° ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½ΠΎΠ². ΠΡΠΈΠΌΠ΅Ρ: 7Π°+6Π²
ΠΡΠΎΠ±ΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅ ΠΏΡΡΠΌΡΡ .
ΠΡΠ»ΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΡΡΠΌΡΡ , ΡΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ Π½Π° Π½Π΅ΠΉ Π±ΡΠ΄ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Ρ ΡΠΏΡΠ°Π²Π° ΠΎΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ»Π΅Π²Π°.
ΠΠ΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠΎ, Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ ΡΡΠΎ Π²ΡΠ΅ ΡΠ΅ ΠΆΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Ρ ΡΠΈΡΠ»Π°ΠΌΠΈ:
- Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅;
- Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅;
- ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅;
- Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅;
- ΠΠ΅Π»Π΅Π½ΠΈΠ΅.
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π΄ΡΠΎΠ±ΠΈ
Π§ΡΠΎΠ±Ρ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΈΠ»ΠΈ Π²ΡΡΠ΅ΡΡΡ Π΄ΡΠΎΠ±ΠΈ, Π΄ΡΠΎΠ±Ρ ΠΎΠ±ΡΠ·Π°Π½Π° ΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΡΡΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Ρ ΠΈΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠΌΠΈ
ΠΡΠΈΠΌΠ΅ΡΡ:
\[ \frac{4}{9}+\frac{5}{9}=\frac{4+5}{9} ; \text { ΠΈ } \frac{4}{9}-\frac{5}{9}=\frac{5-4}{9}. \]
Π§ΡΠΎ ΠΆΠ΅ ΠΊΠ°ΡΠ°Π΅ΡΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΡΠ°Π·Π½ΠΎΠΉ ΡΠ°ΡΡΡΡ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ (ΠΠ½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ), ΡΠΎ ΡΡΡ ΡΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Ρ Π½ΠΈΠΌΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΈΡΠ»Ρ.
ΠΡΠΈΠΌΠ΅ΡΡ: \[\frac{4}{9}+\frac{5}{8}=\frac{4+5}{9 \cdot 8}\], ΡΠΎΡΠ½ΠΎ ΡΠ°ΠΊ ΠΆΠ΅ ΠΈ Π΄Π»Ρ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ.
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ°ΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅, ΠΊΠ°ΠΊ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ, Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ½Π°ΡΠ°Π»Π° Ρ ΠΈΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠΌΠΈ, Π° ΠΏΠΎΡΠ»Π΅ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ.
ΠΡΠΈΠΌΠ΅Ρ:
ΠΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ Π΄ΡΠΎΠ±ΠΈ Π½Π° ΡΠΈΡΠ»ΠΎ, Π² ΡΠ°ΠΊΠΎΠΉ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΡΡΠΎ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΎΡΡΠ°ΡΡΡΡ ΡΠ΅ΠΌ ΠΆΠ΅.
ΠΡΠΈΠΌΠ΅Ρ: \[\frac{4}{9} \cdot 6=\frac{4 \cdot 6}{9}\];
Π§ΡΠΎ ΠΆΠ΅ ΠΊΠ°ΡΠ°Π΅ΡΡΡ Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° Π΄ΡΡΠ³ΡΡ, Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΠ΅ΡΠ²Π°Ρ Π΄ΡΠΎΠ±Ρ ΠΎΡΡΠ°ΡΡΡΡ Π² Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅, Π° Π²ΡΠΎΡΠ°Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΡΠ°ΡΠΈΠ²Π°Π΅ΡΡΡ. Π’ΠΎ Π΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΌΡ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ°, Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π²ΡΠΎΡΠΎΠΉ, ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² Π²Π΅ΡΡ Π½Π΅ΠΉ ΡΠ°ΡΡΠΈ Π΄ΡΠΎΠ±ΠΈ, Π° Π² Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π²ΡΠΎΡΠΎΠΉ.
ΠΡΠΈΠΌΠ΅Ρ: \[\frac{4}{9} \backslash \frac{5}{8}=\frac{4 \cdot 8}{9 \cdot 5}\].
Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
Π§ΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠΌΠΈ (Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ), Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΄Π΅Π»Π°ΡΡ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΡΡΠ°Π» ΠΎΠ±ΡΠΈΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΡΡΠ°Π²Π½ΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π³Π΄Π΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ°ΠΌ ΠΈ Π΄ΡΠΎΠ±Ρ Π±ΠΎΠ»ΡΡΠ΅.
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΡΠ½ΠΎΠ²Π½ΡΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ Π΄ΡΠΎΠ±ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ β Β«ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π΅Π»ΠΈΡΡ ΠΈ ΡΠΌΠ½ΠΎΠΆΠ°ΡΡ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ ΡΡΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π΅ ΠΏΠΎΠΌΠ΅Π½ΡΠ΅ΡΡΡ.Β»
ΠΡΠ΅ ΠΎΠ΄Π½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈΠ³ΠΎΠ΄ΠΈΡΡΡ Π½Π°ΠΌ Π΄Π»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±ΠΈ ΡΡΠΎ ΠΠΠ.
ΠΠΠ β Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ.
ΠΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠΊΠ°Π·Π°Π½Π½ΡΡ ΡΠΈΡΠ΅Π».
ΠΡΠΈΠΌΠ΅Ρ: Π΅ΡΠ»ΠΈ Π²Π·ΡΡΡ ΡΠΈΡΠ»ΠΎ 3, ΡΠΎ ΠΎΠ½ΠΎ ΡΡΠ°Π½Π΅Ρ ΠΎΠ±ΡΠΈΠΌ Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΌ Π΄Π»Ρ ΡΠΈΡΠ΅Π» 6 ΠΈ 9. ΡΠ°ΠΊ ΠΊΠ°ΠΊ 9=3*3 Π° 6=3*2.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΠ²ΠΊΠ»ΠΈΠ΄Π° Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΠΠ (Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ)
ΠΠ΅ Π²ΡΠ΅Π³Π΄Π°, ΡΡ ΠΎΠ΄Ρ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡΡ ΠΊΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ΠΌ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π΅ΡΠ»ΠΈ ΡΠΈΡΠ»Π° ΠΊΡΡΠΏΠ½ΡΠ΅, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ Π΄Π»Ρ Π²ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΠΠ.
Π‘ΡΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΡΠ°ΠΊΠΎΠ²Π°: Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΠΠ ΡΠΈΡΠ΅Π» Π° ΠΈ b (Π³Π΄Π΅ ΠΎΠ½ΠΈ ΡΠ΅Π»ΡΠ΅ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΊ ΡΠΎΠΌΡ ΠΆΠ΅ a Π±ΠΎΠ»ΡΡΠ΅ b), Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΡΠ΄ Π΄Π΅Π»Π΅Π½ΠΈΠΉ Ρ ΠΎΡΡΠ°ΡΠΊΠΎΠΌ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΡΠ΄ ΡΠ°Π²Π΅Π½ΡΡΠ², Π³Π΄Π΅ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΡΡΡ Π² ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΅ΡΠ»ΠΈ rk+1=0, ΠΏΡΠΈ ΡΡΠΎΠΌ rk=ΠΠΠ(a, b)
ΠΡΠΈΠΌΠ΅Ρ. Π Π°ΡΡΡΠΈΡΠ°Π΅ΠΌ ΠΠΠ Π΄Π»Ρ 28 ΠΈ 64.
ΠΠ°ΠΊ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ:
Π Π°ΡΠΏΠΈΡΠ΅ΠΌ ΠΏΡΠΎΡΡΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ ΠΏΠΎΠ΄ΡΠ΅ΡΠΊΠ½Π΅ΠΌ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅
Π (28) = 2 * 2 * 7
Π (64) = 2 * 2 * 2 * 2 * 2 * 2
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΠΏΡΠΎΡΡΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΈ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΎΡΠ²Π΅Ρ
ΠΠΠ (28; 64) = 2 * 2 = 4
ΠΡΠ²Π΅Ρ: ΠΠΠ (28; 64) = 4
ΠΡΠΎΡΠΌΠΈΡΡ ΠΏΠΎΠΈΡΠΊ ΠΠΠ ΠΌΠΎΠΆΠ½ΠΎ Π² ΡΡΡΠΎΡΠΊΡ, ΠΊΠ°ΠΊ ΠΌΡ ΡΠ΄Π΅Π»Π°Π»ΠΈ Π²ΡΡΠ΅ ΠΈΠ»ΠΈ Π² ΡΡΠΎΠ»Π±ΠΈΠΊ, ΠΊΠ°ΠΊ Π½Π° ΠΊΠ°ΡΡΠΈΠ½ΠΊΠ΅.
Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ Π΄ΡΠΎΠ±Ρ, ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΅Ρ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎ, Π½Π΅ ΡΠ°Π²Π½ΠΎΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ°ΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΡΡΠ°Π½Π΅Ρ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ, ΡΠ°Π²Π½ΠΎ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ: Π²ΠΎΠ·ΡΠΌΡΠΌ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ \[\frac{12}{44}\] ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅ΠΌ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΠΌ ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° 2, ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΡΠ°ΠΊΠ°Ρ Π΄ΡΠΎΠ±Ρ \[\frac{12}{44} \backslash 2=\frac{12 \backslash 2}{44 \backslash 2}=\frac{6}{22}\].
ΠΠ΅Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΅ΡΠ°ΡΡ ΡΠ°ΠΌΠΎΠΌΡ?
ΠΠ°ΡΠΈ ΡΠΊΡΠΏΠ΅ΡΡΡ ΠΏΠΎΠΌΠΎΠ³ΡΡ!
ΠΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ
| ΠΎΡ 300 β½ |
Π Π΅ΡΠ΅ΡΠ°Ρ
| ΠΎΡ 500 β½ |
ΠΡΡΡΠΎΠ²Π°Ρ
| ΠΎΡ 1 000 β½ |
ΠΠ΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΡΠΉ Π²ΠΈΠ΄ Π΄ΡΠΎΠ±ΠΈ, ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊ ΡΠ°ΠΊΠΎΠΌΡ Π²ΠΈΠ΄Ρ
ΠΠ±ΡΡΠ½ΠΎ ΡΠ΅Π»ΡΡ ΡΠ°ΠΊΠΈΡ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΈΠΉ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ· ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° Π΄ΡΠΎΠ±ΠΈ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΡΠΉ. Π ΠΏΡΠΈΠΌΠ΅ΡΡ Π΄ΡΠΎΠ±Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»Π°ΡΡ Ρ Π½Π°Ρ Π²ΡΡΠ΅, \[\frac{6}{22}\] ΠΏΡΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠΈ Π½Π° Π΄Π²Π°, ΠΊΠ°ΠΊ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ Π²ΡΠ΅ Π΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ.
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ Π΄ΡΠΎΠ±Ρ ΠΊ Π²ΠΈΠ΄Ρ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΠΉ, Π½ΡΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΈΠΈ ΠΏΠΎ Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΠΠ. Π ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Ρ ΠΠΠ Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ ΠΎΠΊΠ°ΠΆΡΡΡΡ ΠΏΡΠΎΡΡΡΠ΅ ΡΠΈΡΠ»Π°, Π° Π΄ΡΠΎΠ±Ρ Π±ΡΠ΄Π΅Ρ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΠΉ.
\[ \frac{a}{d}=\frac{a \backslash \text { ΠΠΠ }(a, d)}{d \backslash \text { ΠΠΠ }(a, d)} \]
ΠΠ· Π²ΡΡΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΊ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΠΌΡ Π²ΠΈΠ΄Ρ Π·Π½Π°ΡΠΈΡ, Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° ΠΈΡ ΠΠΠ.
ΠΡΠΈΠΌΠ΅Ρ: Π²Π΅ΡΠ½ΡΠΌΡΡ ΠΊ Π½Π°ΡΠ΅ΠΌΡ ΠΏΡΠΈΠΌΠ΅ΡΡ Π΄ΡΠΎΠ±ΠΈ \[\frac{12}{44}\], Π΄Π»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΅Π΅ ΠΊ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΠΌΡ Π²ΠΈΠ΄Ρ Π½ΡΠΆΠ½ΠΎΠΉ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ ΡΠΈΡΠ΅Π» 12 ΠΈ 44. ΡΠ°ΠΊΠΈΠΌ ΡΠΈΡΠ»ΠΎΠΌ ΠΠΠ Π΄Π»Ρ Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΡΡΠ° 4.
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ: \[\frac{12}{44}=\frac{12 \backslash 4}{44 \backslash 4}=\frac{3}{11}\].
ΠΠ»Ρ ΡΠ΅Π³ΠΎ Π½ΡΠΆΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅? Π’Π°ΠΊΠΈΠ΅ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΈΠΈ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ, Π² ΡΠ»ΡΡΠ°ΡΡ ΡΠ°Π±ΠΎΡΡ Ρ Π±ΠΎΠ»ΡΡΠΈΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ.
Π‘ΡΠΎΠΈΡ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡΡ Π½Π΅Π³Π»Π°ΡΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΡΡΡΡ Π΅Π³ΠΎ Π² ΡΠΎΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΡΡΠΎ-ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΡΠΎΡΠ΅ Π½ΡΠΆΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ. ΠΠΎΡΡΠΎΠΌΡ, Π³ΠΎΠ²ΠΎΡΡ ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠΈ Π΄ΡΠΎΠ±ΠΈ, ΠΈΠΌΠ΅Π΅ΡΡΡ Π² Π²ΠΈΠ΄Ρ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΠΎΠΌΡ Π²ΠΈΠ΄Ρ, Π° Π½Π΅ ΠΏΡΠΎΡΡΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
- ΠΠ°ΠΉΡΠΈ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π±ΡΠ΄Π΅Ρ ΠΎΠ±ΡΠΈΠΌ Π΄Π»Ρ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ;
- Π Π°Π·Π΄Π΅Π»ΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° Π½Π΅Π³ΠΎ.
ΠΡΠΈΠΌΠ΅ΡΡ:
ΠΠ°Π½Π° ΡΠ°ΠΊΠ°Ρ Π΄ΡΠΎΠ±Ρ: \[\frac{182}{195}\]. ΡΠΎΠΊΡΠ°ΡΠΈΠΌ Π΅Ρ.
ΠΠ°ΠΉΠ΄ΡΠΌ ΡΠ°ΠΊΠΎΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ, ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΠΠ²ΠΊΠ»ΠΈΠ΄Π°.
195 = 182 *1+13
182=13*14
ΠΠ· ΡΠ΅Π³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΠΠ(182,195)=13
ΠΠΎΡΡΠΎΠΌΡ Π΄Π»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±ΠΈ \[\frac{182}{195}\], ΡΠ°Π·Π΄Π΅Π»ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ 182 ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ 195 Π½Π° 13 ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: \[\frac{182}{195}=\frac{182 \backslash 13}{195 \backslash 13}=\frac{14}{25}\]
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΌΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΡΡ Π΄ΡΠΎΠ±Ρ ΡΠ°Π²Π½ΡΡ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ.
ΠΡΠΎΡΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±.
ΠΡΠΎΡΠΎΠΉ ΡΠΏΠΎΡΠΎΠ± ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° ΠΏΡΠΎΡΡΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ·ΠΆΠ΅ Π²ΡΠ΅ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΡΠ±ΠΈΡΠ°ΡΡΡΡ.
ΠΡΠΈΠΌΠ΅Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ: \[\frac{123}{154}\] Π΄Π»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄ΡΠΎΠ±ΠΈ Π² Π²ΠΈΠ΄Π΅ ΠΏΡΠΎΡΡΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ
\[ \frac{182}{195}=\frac{2 \cdot 7 \cdot 13}{3 \cdot 5 \cdot 13} \]
ΠΠ°ΡΠ΅ΠΌ ΡΠ±Π΅ΡΡΠΌ Π²ΡΠ΅ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ, ΠΊΠ°ΠΊ Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ ΡΠ°ΠΊ ΠΈ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅, \[\frac{182}{195}=\frac{2 \cdot 7 \cdot 13}{3 \cdot 5 \cdot 13}=\frac{2 \cdot 7}{3 \cdot 5}=\frac{14}{15}\]
Π’ΡΠ΅ΡΠΈΠΉ ΡΠΏΠΎΡΠΎΠ± ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±ΠΈ.
Π’ΡΠ΅ΡΠΈΠΉ ΡΠΏΠΎΡΠΎΠ± β ΡΠΏΠΎΡΠΎΠ± ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΡΠΈΠΌΠ΅Π½ΡΡ ΡΠ°ΠΊΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±, ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΡΡΠ°ΠΏΠ½ΠΎ, ΡΠΎΠΊΡΠ°ΡΠ°Ρ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· Π½Π° ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΡΠΉ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠΈΠΌΠ΅Ρ: \[\frac{18000}{22000}\]
ΠΡΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠΈ ΡΠ°ΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ ΡΡΠ°Π·Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΡ, ΡΡΠΎ ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄Π΅ΡΡΡΡΡ Π½Π° 1000 Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ°ΠΊΠΎΠ³ΠΎ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ:
\[ \frac{18000}{22000}=\frac{18000 \backslash 1000}{22000 \backslash 1000}=\frac{18}{22} \]
Π‘Π»Π΅Π΄ΡΡΡΠΈΠΌ ΡΡΠ°ΠΏΠΎΠΌ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΎΠ±Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ, ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄Π΅Π»ΡΡΡΡ Π½Π° 2, ΠΏΠΎΠ»ΡΡΠΈΠΌ Π½Π΅ΡΠΎΠΊΡΠ°ΡΠΈΠΌΡΡ Π΄ΡΠΎΠ±Ρ.
\[ \frac{18}{22}=\frac{18000 \backslash 2}{22000 \backslash 2}=\frac{9}{11} \]
ΠΠ°ΠΊ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ Π½Π΅ ΡΠ°ΠΊΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ, Π³Π»Π°Π²Π½ΠΎΠ΅ ΠΏΠΎΠ΄ΠΎΠ±ΡΠ°ΡΡ ΡΠ΄ΠΎΠ±Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ±.
Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ
Π’Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ Π²ΡΡΠ΅, ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ, ΡΡΠΎ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° ΠΎΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ. ΠΡΠ»ΠΈΡΠΈΠ΅ Π² ΡΠΎΠΌ, ΡΡΠΎ Π² Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠΈΠΌ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ ΠΈ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½.
{2-1}}=\frac{8}{x}\]Π Π΅ΡΠ΅Π½ΠΈΠ΅:
- 8 β ΡΠΎΡ ΡΠ°ΠΌΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠΈΠΌ
- Π₯ ΠΈ x2 Π΄Π΅Π»ΠΈΠΌ Π½Π° x ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΠΎΡΠ²Π΅Ρ.
ΠΡΠΎΠ±ΠΈ Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°ΠΌΠΈ: ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅.
ΠΠ»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ Π²ΠΈΠ΄ΠΎΠ², ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΄Π²Π° ΠΏΡΠ°Π²ΠΈΠ»Π°:
- Π‘ΠΎΠΊΡΠ°ΡΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π² Π²Π·ΡΡΡΠΉ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΡΠΎΡΠ½ΠΎ ΡΠ°ΠΊΠΈΠΌ ΠΆΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ;
- Π‘ΠΎΠΊΡΠ°ΡΠΈΡΡΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π²Π΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½, Π²Π·ΡΡΡΠΉ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, Π½Π΅Π»ΡΠ·Ρ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°ΡΡΡ.
ΠΡΠΈΠΌΠ΅Ρ: \[\frac{x-c}{x(x-c)}=\frac{1}{x}\]
ΠΡΠ½Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΏΡΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠΈ.
ΠΡΠ²Π°ΡΡ ΡΠ»ΡΡΠ°ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΏΡΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠΈ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°ΠΌΠΈ, ΠΈΡ Π½Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ , Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½ΡΠΆΠ½ΠΎ ΡΠ±ΡΠ°ΡΡ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΠ»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ Π²ΡΠ½Π΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠΆΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΈΡ 4:
- Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ ΡΠΈΡΠ»ΠΎ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΡΠΈΡΠ»Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π°;
- Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°ΠΊΠΆΠ΅ Π½Π°ΠΉΡΠΈ Π±ΡΠΊΠ²Π΅Π½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ, Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½Π΅, ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ;
- Π²ΡΠ½ΠΎΡΠΈΠΌ Π±ΡΠΊΠ²Π΅Π½Π½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ Π±ΡΠ» Π½Π°ΠΉΠ΄Π΅Π½, Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ;
- ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌ ΡΠ°Π±ΠΎΡΡ Ρ ΠΎΡΡΠ°Π²ΡΠΈΠΌΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°ΠΌΠΈ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ .
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ Π½Π° ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎ ΠΎΡΠ΅ΡΠ΅Π΄ΠΈ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° Π½Π° ΠΎΠ΄Π½ΠΎΡΠ»Π΅Π½.
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΏΡΠΈΠΌΠ΅Ρ:
\[\frac{6 x+42 a}{7 a+x}=\frac{6(x+7 a)}{7 a+x}=\frac{6}{7}\]
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠΎΠ΄Π²Π΅Π΄ΡΠΌ ΠΈΡΠΎΠ³ΠΈ. ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ»ΠΎ ΡΡΡΠ΄Π½ΠΎΡΡΠ΅ΠΉ Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΡΠΎΠΈΡ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ:
- Π‘ΠΎΠΊΡΠ°ΡΠ°Ρ Π΄ΡΠΎΠ±Ρ Π²Π°ΠΌ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π΄Π»Ρ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, Π΅ΡΠ»ΠΈ ΡΠ΅ΡΡ ΠΈΠ΄Π΅Ρ ΠΎΠ± Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΡ Π΄ΡΠΎΠ±ΡΡ , Π½ΠΎ ΠΈ ΠΠΠ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ ;
- Π Π°Π·Π΄Π΅Π»ΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ\Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ;
- ΠΡΠ»ΠΈ Π΄ΡΠΎΠ±Ρ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠ°Ρ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠ½Π΅ΡΡΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ;
- Π‘ΡΠΎΠΈΡ Ρ ΠΎΡΠΎΡΠΎ Π²ΡΡΡΠΈΡΡ Π²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ.
- ΠΡΠ΅Π³Π΄Π° ΠΏΡΠΎΠ²Π΅ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ
- ΠΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
- ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ
- ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ
ΠΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΡΠ»ΠΈ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ, ΡΠΎ ΠΏΡΠΎ ΡΡΠΈ Π΄ΡΠΎΠ±ΠΈ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡΡ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄ΡΠΎΠ±ΠΈ
Β ΠΈ Β
ΠΈΠΌΠ΅ΡΡ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΒ 7.
ΠΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ Π΄Π»Ρ Π΄Π²ΡΡ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ.
ΠΡΠΎΠ±ΠΈ, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΡΠ°Π·Π½ΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ
ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ β ΡΡΠΎ Π·Π°ΠΌΠ΅Π½Π° Π΄Π°Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ, ΠΈΠΌΠ΅ΡΡΠΈΡ ΡΠ°Π·Π½ΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ, Π½Π° ΡΠ°Π²Π½ΡΠ΅ ΠΈΠΌ Π΄ΡΠΎΠ±ΠΈ, Ρ ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ.
ΠΡΠΎΠ±ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΡΡΠΎ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, Π»ΠΈΠ±ΠΎ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ β ΡΡΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΉ Π΄Π°Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ. Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ Π΄ΡΠΎΠ±ΠΈ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½ΡΠΆΠ½ΠΎ:
- ΠΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ, Π΅ΡΠ»ΠΈ ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ.
- ΠΠ°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΉ Π΄Π°Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ. ΠΠΌΠ΅Π½Π½ΠΎ ΠΠΠ ΠΈ ΡΡΠ°Π½Π΅Ρ ΠΈΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
- Π Π°Π·Π΄Π΅Π»ΠΈΡΡ ΠΠΠ Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ Π΄Π°Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ. ΠΡΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΌΡ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π΄Π°Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ. ΠΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ β ΡΡΠΎ ΡΠΈΡΠ»ΠΎ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Π΄ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ»Π΅Π½Ρ Π΄ΡΠΎΠ±ΠΈ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ Π΅Ρ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
- Π£ΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠΈΠΌΠ΅Ρ. ΠΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄ΡΠΎΠ±ΠΈΒ Β ΠΈΒ .
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
- ΠΠ°Ρ
ΠΎΠ΄ΠΈΠΌ ΠΠΠ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΉ Π΄Π°Π½Π½ΡΡ
Π΄ΡΠΎΠ±Π΅ΠΉ:
ΠΠΠ (8, 12) = 24.
- ΠΠ°Ρ
ΠΎΠ΄ΠΈΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ:
24 : 8 = 3Β (Π΄Π»ΡΒ )
ΠΈ
24 : 12 = 2Β (Π΄Π»ΡΒ ).
- Π£ΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ ΡΠ»Π΅Π½Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° ΡΠ²ΠΎΠΉ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ:
ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ Π² Π±ΠΎΠ»Π΅Π΅ ΠΊΡΠ°ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΠ΅, ΡΠΊΠ°Π·ΡΠ²Π°Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΡΡΠ΄ΠΎΠΌ Ρ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ (ΡΠ²Π΅ΡΡ Ρ ΡΠΏΡΠ°Π²Π° ΠΈΠ»ΠΈ ΡΠ²Π΅ΡΡ Ρ ΡΠ»Π΅Π²Π°) ΠΈ Π½Π΅ Π·Π°ΠΏΠΈΡΡΠ²Π°Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ:
Π ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΡΡΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠ² ΡΠ»Π΅Π½Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π²ΡΠΎΡΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ, Π° ΡΠ»Π΅Π½Ρ Π²ΡΠΎΡΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ β Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ.
ΠΡΠΈΠΌΠ΅Ρ. ΠΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄ΡΠΎΠ±ΠΈΒ Β ΠΈΒ :
Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ±ΡΠ΅Π³ΠΎ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΉ.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ, Π²ΡΡΠΈΡΠ°Π½ΠΈΠΈ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π΄ΡΠΎΠ±Π΅ΠΉ, Ρ ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π·Π½ΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ.
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ
ΠΠ°Π½Π½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π²Π°ΠΌ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΡΠΎΡΡΠΎ Π²Π²Π΅Π΄ΠΈΡΠ΅ Π΄Π²Π΅ Π΄ΡΠΎΠ±ΠΈ ΠΈ Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΊΠ½ΠΎΠΏΠΊΡ ΠΡΠΈΠ²Π΅ΡΡΠΈ
.
ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΡΠΈΡΠ»Π°ΠΌ
ΠΠ»Π³Π΅Π±ΡΠ° Π Π΅ΡΠ°ΡΠ΅Π»ΠΈ
ΠΠ½ΡΡΡΡΠΊΡΠΈΠΈ: Π‘ΠΎΠΊΡΠ°ΡΠΈΡΠ΅ Π΄ΡΠΎΠ±Ρ Π΄ΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ (ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅Π³ΠΎ) ΡΠ»Π΅Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°. ΠΠ²Π΅Π΄ΠΈΡΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ (ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ΅Π»ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ), ΠΈ ΡΠ΅ΡΠ°ΡΠ΅Π»Ρ ΡΠ°Π³ Π·Π° ΡΠ°Π³ΠΎΠΌ ΠΏΠΎΠΊΠ°ΠΆΠ΅Ρ, ΠΊΠ°ΠΊ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ Π΄ΡΠΎΠ±Ρ Π΄ΠΎ Π΅Π΅ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅Π³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ.
ΠΠ²Π΅Π΄ΠΈΡΠ΅ Π΄ΡΠΎΠ±Ρ, ΠΊΠΎΡΠΎΡΡΡ Ρ ΠΎΡΠΈΡΠ΅ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ =
ΠΠ΄Π΅Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΄ΡΠΎΠ±ΠΈ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΡΠ»Π΅Π½Ρ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Π²Π·ΡΡΡ Π΄ΡΠΎΠ±Ρ ΠΈ Π²ΡΡΠ°Π·ΠΈΡΡ Π΅Π΅ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ Π΅Π΅ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ, ΠΈΠΌΠ΅Ρ Π΄ΡΠΎΠ±Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΡΠΎ ΠΈ ΠΈΡΡ ΠΎΠ΄Π½Π°Ρ Π΄ΡΠΎΠ±Ρ, Π½ΠΎ Π²ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΠΎΠ±ΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ΠΌ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΡΠΏΡΠΎΡΡΠΈΠ»ΠΈ. ΠΡΠΎ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ΠΌ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ (ΠΠΠ) ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ΠΌ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, Π° Π·Π°ΡΠ΅ΠΌ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Ρ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΡΠΎΠ±ΠΈ.
β ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: Π‘ΠΎΠΊΡΠ°ΡΠΈΡΠ΅ ΡΡΡ Π΄ΡΠΎΠ±Ρ Π΄ΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ ΡΠ»Π΅Π½ΠΎΠ².
\[\ΡΡΠ°ΠΊΡΠΈΡ{165}{1575}\]
ΠΠΎ-ΠΏΠ΅ΡΠ²ΡΡ , ΠΌΡ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΠΠΠ Π΄Π»Ρ \(n_1 = 165\) ΠΈ \(n_2 = 1575\). 1 = 3 \cdot 5 = 15 \]
Π’Π΅ΠΏΠ΅ΡΡ Π²ΡΠ΅, ΡΡΠΎ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, ΡΡΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ Π΄ΡΠΎΠ±Ρ Π½Π° 15: \[\frac{165}{1575} = \frac{165/15}{1575/15} = \frac{11}{105} \]
ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄ΡΠΎΠ±ΠΈ Π² Π΅Π΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ , ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π΅Π΅ Π½Π΅Π»ΡΠ·Ρ Π΅ΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΡΠΏΡΠΎΡΡΠΈΡΡ.
ΠΠΎΠΏΡΠΎΡ Π² ΡΠΎΠΌ, ΠΏΠΎΡΠ΅ΠΌΡ ΠΌΡ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌ Π΄ΡΠΎΠ±ΠΈ Π΄ΠΎ ΠΌΠ΅Π½ΡΡΠΈΡ ΡΠ»Π΅Π½ΠΎΠ²? Π§ΡΠΎ ΠΆ, ΠΎΡΠ²Π΅Ρ ΠΏΡΠΎΡΡ. ΠΠ°ΠΊ ΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΠΏΡΠΎΡΡΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ. ΠΠ°ΡΠ΅ΠΌ ΡΠ°Π±ΠΎΡΠ°ΡΡ Ρ Π³ΡΠΎΠΌΠΎΠ·Π΄ΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΡΡ, Π΅ΡΠ»ΠΈ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ Π΅Π΅ ΠΊ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡΠ΅?
ΠΠ»Ρ Π΄ΡΡΠ³ΠΈΡ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠ² Π°Π»Π³Π΅Π±ΡΡ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΠΏΡΠΎΠ±ΠΎΠ²Π°ΡΡ Π½Π°Ρ ΡΠ°Π·Π΄Π΅Π» Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠ°ΡΠ΅Π»ΠΈ ΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ , Π³Π΄Π΅ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ Π΅ΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠ².
ΠΠ»Π³Π΅Π±ΡΠ° Π Π΅ΡΠ°ΡΠ΅Π»Ρ ΠΠ°Π·ΠΎΠ²ΡΠΉ ΠΏΠ°ΠΊΠ΅Ρ Π°Π»Π³Π΅Π±ΡΡ Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°ΠΊΡΠΈΠΈ ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΡΠ΅ΡΠΌΠΈΠ½Π°ΠΌ Π€ΡΠ°ΠΊΡΠΈΠΈ ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΡΠΏΡΠΎΡΠ΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠΏΠ΅ΡΠ°ΡΠΈΠΈ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ — Tiger Algebra Solver
ΠΠ²Π΅Π΄ΠΈΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π·Π°Π΄Π°ΡΡ
ΠΠ²ΠΎΠ΄ Ρ ΠΊΠ°ΠΌΠ΅ΡΡ Π½Π΅ ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π½!
ΠΡΠΎΠ±Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΌΠ΅Π½ΡΡΡΡ ΡΠ°ΡΡΡ ΡΠ΅Π»ΠΎΠ³ΠΎ ΠΈ ΠΎΠ±ΡΡΠ½ΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΌΠ΅Π½ΡΡΡΡ ΡΠ°ΡΡΡ, Π½Π°ΠΏΠΈΡΠ°Π½Π½ΡΡ Π½Π°Π΄ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠ΅Π»ΠΎΠ΅. Π§ΡΠΎΠ±Ρ Π²ΡΡΠ°Π·ΠΈΡΡ Π΄ΡΠΎΠ±Ρ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΈΡΠ»ΠΎΠΌ, Π΄Π΅Π»ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠΈΠΏΠ° Π΄ΡΠΎΠ±Π΅ΠΉ:
ΠΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ
Π§ΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΡΡ.ΠΠ΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ
Π§ΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΡΡ.Π‘ΠΌΠ΅ΡΠ°Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ
Π¦Π΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΡΡ. ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΉ Π΄ΡΠΎΠ±ΡΡ.
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΈΡ
ΠΈ ΡΠ΅Ρ
ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ: .
ΠΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠΎΡΠ΅ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ Π»ΡΠ±ΡΠ΅ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π° ΠΈ/ΠΈΠ»ΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ Π² Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ:
- Π§ΡΠΎΠ±Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π² Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π½Π°Π΄ . ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠ°Π» Π±Ρ.
- Π§ΡΠΎΠ±Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ Π² Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ, ΡΠΌΠ½ΠΎΠΆΡΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ (Π½ΠΈΠΆΠ½Π΅Π΅ ΡΠΈΡΠ»ΠΎ) Π½Π° ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ (ΡΠΈΡΠ»ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΠ»ΠΈ ΡΠ»Π΅Π²Π° ΠΎΡ Π΄ΡΠΎΠ±ΠΈ), ΠΏΡΠΈΠ±Π°Π²ΡΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ (Π²Π΅ΡΡ Π½Π΅Π΅ ΡΠΈΡΠ»ΠΎ) ΠΈ Π·Π°ΠΏΠΈΡΠΈΡΠ΅ ΡΡΠΌΠΌΠ° ΠΏΠΎ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π² Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ ΠΌΡ Π΄ΠΎΠ»ΠΆΠ½Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ , Π½Π° ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ , ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ . ΠΠ°ΡΠ΅ΠΌ ΠΌΡ Π΄ΠΎΠ±Π°Π²ΠΈΠ»ΠΈ Π±Ρ ΡΡΠΎ ΠΊ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ , ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ , ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΏΠΎΠΌΠ΅ΡΡΠΈΠ»ΠΈ Π±Ρ Π½Π°Π΄ ΠΈΡΡ ΠΎΠ΄Π½ΡΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ , ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ .
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ±ΡΠ΅Π΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
ΠΠ±ΡΠ΅Π΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ 4 ΡΠ°Π³Π° Π΄Π»Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
- Π£ΠΏΡΠΎΡΡΠΈΡΠ΅ Π΄ΡΠΎΠ±ΠΈ, ΡΠΌΠ΅Π½ΡΡΠΈΠ² ΠΈΡ , Π΅ΡΠ»ΠΈ ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. Π Π°Π·Π΄Π΅Π»ΠΈΡΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ (Π²Π΅ΡΡ Π½Π΅Π΅ ΡΠΈΡΠ»ΠΎ) ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ (Π½ΠΈΠΆΠ½Π΅Π΅ ΡΠΈΡΠ»ΠΎ) Π½Π° ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ (gcf). ΠΠΠ Π½Π°Π±ΠΎΡΠ° ΡΠΈΡΠ΅Π» β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· ΠΎΡΡΠ°ΡΠΊΠ° ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π½Π°Π±ΠΎΡΠ°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΠΈ Π±Π΅Π· ΠΎΡΡΠ°ΡΠΊΠ°, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° Π½Π°, ΡΡΠΎΠ±Ρ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ Π΅Π³ΠΎ Π΄ΠΎ . ΠΡΡΠ³ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: , ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΌΠ΅Π½ΡΡΠΈΡΡΡ Π΄ΠΎ .
- ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄ΡΠΎΠ±Π΅ΠΉ. ΠΡΡΡ Π΄Π²Π° ΡΠΏΠΎΡΠΎΠ±Π° Π½Π°ΠΉΡΠΈ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ:
1. Π£ΠΌΠ½ΠΎΠΆΠΈΡΡ Π²Π΅ΡΡ ΠΈ Π½ΠΈΠ· ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄ΡΡΠ³ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ,
2. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅ (lcm) Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ Π΅Π³ΠΎ ΠΊΠ°ΠΊ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΡΡΡ Π΄Π²Π° ΡΠΏΠΎΡΠΎΠ±Π° Π½Π°ΠΉΡΠΈ lcm: ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΊΡΠ°ΡΠ½ΡΡ ΡΠΈΡΠ΅Π» (ΡΠ΅ΡΠ°ΡΠ΅Π»Ρ ΡΠΊΠΎΡΠΎ ΠΏΠΎΡΠ²ΠΈΡΡΡ!) ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΏΡΠΎΡΡΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. - Π‘Π»ΠΎΠΆΠΈΡΠ΅ ΠΈΠ»ΠΈ Π²ΡΡΡΠΈΡΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ. ΠΠ° ΡΡΠΎΠΌ ΡΡΠ°ΠΏΠ΅ Π΄ΡΠΎΠ±ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΡΠΎ Π΅ΡΡΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠΎΡΡΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΈΠ»ΠΈ Π²ΡΡΠ΅ΡΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ ΠΈ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π½Π°Π΄ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ Π½Π°ΡΠ»ΠΈ Π½Π° ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΠ°Π³Π°Ρ . ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠ°Π» Π±Ρ.
- Π£ΠΏΡΠΎΡΡΠΈΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ, ΡΠΌΠ΅Π½ΡΡΠΈΠ², Π΅ΡΠ»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΊΠ°ΠΊ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π²ΡΡΠ΅ Π² ΡΠ°Π³Π΅ 1. ΠΡΠ»ΠΈ Π±Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π±ΡΠ», Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΡ Π±Ρ ΡΠΌΠ΅Π½ΡΡΠΈΠ»ΠΈ Π΅Π³ΠΎ Π΄ΠΎ .
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ±ΡΠ΅Π΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 4 ΡΠ°Π³ΠΎΠ²:
- Π£ΠΏΡΠΎΡΡΠΈΡΠ΅ Π΄ΡΠΎΠ±ΠΈ, ΡΠΎΠΊΡΠ°ΡΠΈΠ² ΠΈΡ , Π΅ΡΠ»ΠΈ ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. Π Π°Π·Π΄Π΅Π»ΠΈΡΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ (Π²Π΅ΡΡ Π½Π΅Π΅ ΡΠΈΡΠ»ΠΎ) ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ (Π½ΠΈΠΆΠ½Π΅Π΅ ΡΠΈΡΠ»ΠΎ) Π½Π° ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ (gcf). ΠΠΠ Π½Π°Π±ΠΎΡΠ° ΡΠΈΡΠ΅Π» β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· ΠΎΡΡΠ°ΡΠΊΠ° ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π½Π°Π±ΠΎΡΠ°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΠΈ Π±Π΅Π· ΠΎΡΡΠ°ΡΠΊΠ°, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π½Π° Π½Π°, ΡΡΠΎΠ±Ρ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ Π΅Π³ΠΎ Π΄ΠΎ . ΠΡΡΠ³ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: , ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΌΠ΅Π½ΡΡΠΈΡΡΡ Π΄ΠΎ .
- Π£ΠΌΠ½ΠΎΠΆΡΡΠ΅ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ (Π²Π΅ΡΡ Π½ΠΈΠ΅ ΡΠΈΡΠ»Π°). ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠ°Π½Π΅Ρ
- Π£ΠΌΠ½ΠΎΠΆΡΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ (Π½ΠΈΠΆΠ½ΠΈΠ΅ ΡΠΈΡΠ»Π°). ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠ°Π» Π±Ρ.
- Π£ΠΏΡΠΎΡΡΠΈΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ, ΡΠΌΠ΅Π½ΡΡΠΈΠ², Π΅ΡΠ»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΊΠ°ΠΊ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π²ΡΡΠ΅ Π² ΡΠ°Π³Π΅ 1. ΠΡΠ»ΠΈ Π±Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π±ΡΠ», Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΡ Π±Ρ ΡΠΌΠ΅Π½ΡΡΠΈΠ»ΠΈ Π΅Π³ΠΎ Π΄ΠΎ .
ΠΠ΅Π»Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ΅Π»Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΎΡΠ΅Π½Ρ ΠΏΠΎΡ ΠΎΠΆΠ΅ Π½Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ, Π½ΠΎ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ°Π³, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΌΡ ΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ β ΡΠΈΡΠ»Π°, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΡ Π±ΡΠ΄Π΅ΠΌ Π΄Π΅Π»ΠΈΡΡ Π΄ΡΡΠ³ΡΡ Π΄ΡΠΎΠ±Ρ, β ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π΅Π³ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ. ΠΡΡΡΠ΄Π° ΠΌΡ ΠΏΡΠΎΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π΄ΡΠΎΠ±ΠΈ Π²ΠΌΠ΅ΡΡΠ΅.
ΠΠ±ΡΠ΅Π΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ 5 ΡΠ°Π³ΠΎΠ² Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
- Π£ΠΏΡΠΎΡΡΠΈΡΠ΅ Π΄ΡΠΎΠ±ΠΈ, ΡΠΎΠΊΡΠ°ΡΠΈΠ² ΠΈΡ , Π΅ΡΠ»ΠΈ ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ.