Степень окисления pb: Степень окисления свинца (Pb), формула и примеры

Таблица менделеева — Электронный учебник K-tree

Электронный учебник

Периодический закон, открытый Д. И. Менделеевым был выражен в таблице. Периодическая таблица химических элементов, или таблица менделеева.

1

H

1.008

2

He

4.003

3

Li

6.938

4

Be

9.012

5

B

10.806

6

C

12.01

7

N

14.006

8

O

15.999

9

F

18.998

10

Ne

20.18

11

Na

22.99

12

Mg

24.304

13

Al

26.982

14

Si

28.084

15

P

30.974

16

S

32.059

17

Cl

35.446

18

Ar

39.948

19

K

39.098

20

Ca

40.078

21

Sc

44.956

22

Ti

47.867

23

V

50.942

24

Cr

51. 996

25

Mn

54.938

26

Fe

55.845

27

Co

58.933

28

Ni

58.693

29

Cu

63.546

30

Zn

65.38

31

Ga

69.723

32

Ge

72.63

33

As

74.922

34

Se

78.971

35

Br

79.901

36

Kr

83.798

37

Rb

85.468

38

Sr

87.62

39

Y

88.906

40

Zr

91.224

41

Nb

92.906

42

Mo

95.95

44

Ru

101.07

45

Rh

102.906

46

Pd

106.42

47

Ag

107.868

48

Cd

112.414

49

In

114.818

50

Sn

118.71

51

Sb

121.76

52

Te

127.6

53

I

126.904

54

Xe

131.293

55

Cs

132.905

56

Ba

137.327

57

La

138.905

72

Hf

178. 49

73

Ta

180.948

74

W

183.84

75

Re

186.207

76

Os

190.23

77

Ir

192.217

78

Pt

195.084

79

Au

196.967

80

Hg

200.592

81

Tl

204.382

82

Pb

207.2

83

Bi

208.98

58

Ce

140.116

59

Pr

140.908

60

Nd

144.242

62

Sm

150.36

63

Eu

151.964

64

Gd

157.25

65

Tb

158.925

66

Dy

162.5

67

Ho

164.93

68

Er

167.259

69

Tm

168.934

70

Yb

173.045

71

Lu

174.967

90

Th

232.038

91

Pa

231.036

92

U

238.029

В таблице менделеева колонки называются группами, строки называются периодами. Элементы в группах как правило имеют одинаковые электронные конфигурации внешних оболочек, например, благородные газы — последняя группа, имеют законченную электронную конфигурацию.

Как заполняется электронная конфигурация элементов подробно описано в статье

Скачать таблицу менделеева в хорошем качестве

© 2015-2022 — K-Tree.ru • Электронный учебник
По любым вопросам Вы можете связаться по почте [email protected]

Копия материалов, размещённых на данном сайте, допускается только по письменному разрешению владельцев сайта.

Хлорид свинца(IV), химические свойства, получение

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ГольмийГольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИридийИридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Роль степени окисления Pb прекурсора в формировании 2D микропластин перовскита

У вас не включен JavaScript. Пожалуйста, включите JavaScript чтобы получить доступ ко всем функциям сайта или получить доступ к нашему страница без JavaScript.

Из журнала:

Наномасштаб


Роль степени окисления Pb прекурсора в формировании двумерных перовскитовых микропластин†

Лео Сахайя Дафна Антоний, и Сьерд Ван Донген, и Джанлука Гримальди, ab Саймон Мэтью, c Лукас Хельмбрехт, и Арно ван дер Вейден, и Джулиана Борхерт, эф Имме Щуринга, и Бруно Эрлер, и Виллем Л. Нордуин объявление и Эстер Аларкон-Льядо * и

Принадлежности автора

* Соответствующие авторы

и АМОЛЬФ, Научный парк 104, 1098 XG Амстердам, Нидерланды
Электронная почта: [email protected]

б Секция оптоэлектроники, Кавендишская лаборатория, Кембриджский университет, Кембридж, Великобритания

в Гомогенный, супрамолекулярный и биологический катализ, Институт молекулярных наук Вант-Гоффа, Амстердамский университет, 1090 GD Амстердам, Нидерланды

д Институт молекулярных наук Вант-Гоффа, Амстердамский университет, 1090 GD Амстердам, Нидерланды

е Университет Фрайбурга, факультет устойчивой системной инженерии – INATECH, 79110 Фрайбург-им-Брайсгау, Баден-Вюртемберг, Германия

ф Fraunhofer-Institut für Solare Energiesysteme ISE, Novel Solar Cell Concepts Freiburg, 79110 Freiburg im Breisgau, Земля Баден-Вюртемберг, Германия

Аннотация

rsc.org/schema/rscart38″> Двумерные (2D) галогениды свинца перовскиты представляют собой захватывающий класс материалов, которые в настоящее время широко исследуются для фотогальваники и других оптоэлектронных приложений. Их ионная природа делает их идеальными кандидатами для обработки растворов как в тонкие пленки, так и в наноструктурированные кристаллы. Понимание того, как формируются двумерные кристаллы перовскита галогенида свинца, является ключом к полному контролю над их физическими свойствами, что может открыть новые физические явления и устройства. Здесь мы исследуем влияние степени окисления Pb исходного неорганического предшественника на рост чистой фазы ( n = 1) – перовскит Поппера 2D BA 2 PbI 4 в одностадийном синтезе. Мы изучаем различные пути кристаллизации при воздействии на порошки PbO 2 и PbI 2 органогалогенидного раствора BAI : IPA, комбинируя оптическую микроскопию in situ , спектроскопию высокого разрешения в УФ-видимом времени и высокоэффективная жидкостная хроматография. До сих пор работы с использованием PbO 2 для синтеза 3D LHP вводят предшествующий этап для восстановления PbO 2 либо в PbO, либо в PbI 2 . В этой работе мы обнаружили, что BA 2 PbI 4 образуется непосредственно при воздействии на PbO 2 БАВ : IPA без необходимости использования внешнего восстановителя. Мы объясняем это явление самопроизвольным восстановлением/окислением PbO 2 /BAI, которое происходит в условиях, богатых йодом. Мы наблюдаем различия в конечной морфологии (прямоугольники против восьмиугольников) и скорость роста нанокристаллов, которую мы объясняем различными химическими процессами и комплексами йодо-плюмбата, задействованными в каждом случае. Таким образом, эта работа охватывает горизонт пригодных для использования предшественников свинца и предлагает новую поворотную ручку для управления ростом кристаллов в одностадийном синтезе LHP.

Варианты загрузки Пожалуйста, подождите…

Дополнительные файлы

  • Дополнительная информация PDF (19303K)
  • Дополнительная информация Почтовый индекс (49176K)
  • Дополнительная информация Почтовый индекс (2541K)

Информация о товаре

ДОИ
https://doi. org/10.1039/D2NR06509F

Тип изделия
Бумага

Отправлено
21 ноя 2022

Принято
23 фев 2023

Впервые опубликовано
02 мар 2023

Эта статья находится в открытом доступе

Скачать цитату

Наномасштаб , 2023, предварительная статья

BibTexEndNoteMEDLINEProCiteReferenceManagerRefWorksRIS

Разрешения

Запросить разрешения

Социальная активность

Поиск статей по автору

Лео Сахайя Дафна Энтони

Сьорд ван Донген

Джанлука Гримальди

Саймон Мэтью

Лукас Хельмбрехт

Арно ван дер Вейден

Джулиана Борхерт

Имме Шуринга

Бруно Эрлер

Виллем Л. Нордуин

Эстер Аларкон-Льядо

Эта статья еще не цитировалась.

Прожектор

Объявления

свинец | Определение, использование, свойства и факты

ведущий

Посмотреть все СМИ

Ключевые люди:
Георг Рафаэль Доннер
Похожие темы:
обработка свинца общий провод Месторождение типа долины Миссисипи свинец-207 свинец-206

См. все связанные материалы →

свинец (Pb) , мягкий серебристо-белый или сероватый металл в группе 14 (IVa) периодической таблицы. Свинец очень податлив, пластичен, плотен и является плохим проводником электричества. Известный в древности и считающийся алхимиками старейшим из металлов, свинец очень прочен и устойчив к коррозии, о чем свидетельствует продолжающееся использование свинцовых водопроводных труб, установленных древними римлянами. Символ Pb для свинца является аббревиатурой латинского слова свинец, свинец .

+2,80284
Element Properties
atomic number 82
atomic weight 207.19
melting point 327.5 °C (621.5 °F)
boiling point 1,744 ° C (3171,2 °F)
плотность 11,29 г/см 3 при 20 °C (68 °F)
степени окисления
electron configuration [Xe]4 f 14 5 d 10 6 s 2 6 p 2 or 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 4 d 10 4 f 14 5 s 2 5 p 6 5 d 10 6 s 2 6 p 2

Occurrence and distribution

Свинец часто упоминается в ранних библейских рассказах. Вавилоняне использовали металл в качестве пластин для записи надписей. Римляне использовали его для изготовления таблеток, водопроводных труб, монет и даже кухонной утвари; действительно, в результате последнего употребления отравление свинцом было признано во времена Августа Цезаря. Соединение, известное как свинцовые белила, по-видимому, было приготовлено в качестве декоративного пигмента по крайней мере еще в 200 г. до н. э. Современные разработки относятся к разработке в конце 1700-х годов месторождений в районе Миссури-Канзас-Оклахома в Соединенных Штатах.

По весу свинец имеет почти такое же содержание в земной коре, как и олово. В космосе на 10 6 атомов кремния приходится 0,47 атома свинца. Космическое изобилие сравнимо с изобилием цезия, празеодима, гафния и вольфрама, каждый из которых считается достаточно дефицитным элементом.

Хотя свинца не так уж много, процессы естественной концентрации привели к значительным месторождениям, имеющим коммерческое значение, особенно в Соединенных Штатах, а также в Канаде, Австралии, Испании, Германии, Африке и Южной Америке. Значительные месторождения находятся в США в западных штатах и ​​долине Миссисипи. Редко встречающийся в природе в свободном виде, свинец присутствует в нескольких минералах, но все они имеют второстепенное значение, за исключением сульфида PbS (галенит или свинцовый блеск), который является основным источником производства свинца во всем мире. Свинец также содержится в англезите (PbSO 4 ) и церуссит (PbCO 3 ). К началу 21 века Китай, Австралия, США, Перу, Мексика и Индия были ведущими мировыми производителями свинца в концентрате.

Викторина «Британника»

Викторина «118 названий и символов периодической таблицы»

Свинец может быть извлечен путем обжига руды и последующей плавки в доменной печи или путем прямой плавки без обжига. Дополнительная очистка удаляет примеси, присутствующие в слитках свинца, произведенных любым способом. Почти половина всего рафинированного свинца извлекается из переработанного лома. (Для промышленного производства см. обработка свинца.)

Использование металла

Известна только монокристаллическая модификация с плотноупакованной металлической решеткой. Свойства, которые обуславливают множество применений элементарного свинца, включают его пластичность, легкость сварки, низкую температуру плавления, высокую плотность и способность поглощать гамма-излучение и рентгеновское излучение. Расплавленный свинец является отличным растворителем и собирателем элементарного серебра и золота. Конструкционные применения свинца ограничены его низкой прочностью на растяжение и усталостной прочностью, а также его тенденцией к течению даже при небольшой нагрузке.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

В свежем виде свинец быстро окисляется, образуя тускло-серое покрытие, ранее считавшееся субоксидом свинца, Pb 2 O, но теперь признанным смесью свинца и монооксида свинца, PbO, который защищает металл от дальнейшей коррозии. Точно так же, хотя свинец растворим в разбавленной азотной кислоте, соляная или серная кислоты разрушают его только поверхностно, поскольку нерастворимый хлорид (PbCl 2 ) или сульфатные (PbSO 4 ) покрытия препятствуют продолжению реакции. Из-за этой общей химической стойкости значительное количество свинца используется в кровельных работах, в качестве покрытий для электрических кабелей, проложенных в земле или под водой, а также в качестве облицовки водопроводных труб и трубопроводов и конструкций для транспортировки и обработки агрессивных веществ.

Элементарный свинец также может быть окислен до иона Pb 2+ ионами водорода, но нерастворимость большинства солей Pb 2+ делает свинец устойчивым к воздействию многих кислот. Окисление в щелочных условиях легче осуществить, и ему способствует образование растворимых частиц свинца в степени окисления +2. Оксид свинца (PbO 2 , со свинцом в виде иона Pb 4+ ) относится к числу более сильных окислителей в кислом растворе, но сравнительно слаб в щелочном растворе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *