Двоичная система счисления
☰
В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)
Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.
В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.
Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.
Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.
Перевод чисел из двоичной системы счисления в десятичную
Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.
В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:
1476 = 1000 + 400 + 70 + 6
Можно пойти еще дальше и разложить так:
1476 = 1 * 103 + 4 * 102 + 7 * 101 + 6 * 100
Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 — это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.
Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:
10001001 = 1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20
Если посчитать сумму составляющих, то в итоге мы получим десятичное число, соответствующее 10001001:
1*27 + 0*26 + 0*25 + 0*24 + 1*23 + 0*22 + 0*21 + 1*20 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137
Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:
100010012 = 13710
Почему двоичная система счисления так распространена?
Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.
Перевод десятичного числа в двоичное
Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:
77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)
Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:
1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77
inf1.info
Двоичная система счисления
Главная / Ассемблер / Для чайников / Системы счисления /Чисто технически было бы очень сложно сделать компьютер, который бы «понимал» десятичные числа. А вот сделать компьютер, который понимает двоичные числа достаточно легко. Двоичное число оперирует только двумя цифрами – 0 и 1. Несложно сопоставить с этими цифрами два состояния – вЫключено и включено (или нет напряжения – есть напряжение). Процессор – это микросхема с множеством выводов. Если принять, что отсутствие напряжения на выводе – это 0 (ноль), а наличие напряжения на выводе – это 1 (единица), то каждый вывод может работать с одной двоичной цифрой. Сейчас мы говорим о процессоре очень упрощённо, потому что мы изучаем не процессоры, а системы исчисления. Об устройстве процессора вы можете почитать здесь: Структура процессора.
Конечно, это касается не только процессоров, но и других составляющих компьютера, например, шины данных или шины адреса. И когда мы говорим, например, о разрядности шины данных, мы имеем ввиду количество выводов на шине данных, по которым передаются данные, то есть о количестве двоичных цифр в числе, которое может быть передано по шине данных за один раз. Но о разрядности чуть позже.
Итак, процессор (и компьютер в целом) использует двоичную систему, которая оперирует всего двумя цифрами: 0 и 1. И поэтому основание двоичной системы равно 2. Аналогично, основание десятичной системы равно 10, так как там используются 10 цифр.
Каждая цифра в двоичном числе называется бит
(или разряд). Четыре бита – это полубайт (или тетрада), 8 бит – байт, 16 бит – слово, 32 бита – двойное слово. Запомните эти термины, потому что в программировании они используются очень часто. Возможно, вам уже приходилось слышать фразы типа слово данных или байт данных. Теперь, я надеюсь, вы понимаете, что это такое.Отсчёт битов в числе начинается с нуля и справа. То есть в двоичном числе самый младший бит (нулевой бит) является крайним справа. Слева находится старший бит. Например, в слове старший бит – это 15-й бит, а в байте – 7-й. В конец двоичного числа принято добавлять букву b. Таким образом вы (и ассемблер) будете знать, что это двоичное число. Например,
101 – это десятичное число 101b – это двоичное число, которое эквивалентно десятичному числу 5.
Ноль, он и в Африке ноль. Здесь вопросов нет. Но что дальше. А дальше разряды двоичного числа заполняются по мере увеличения этого числа. Для примера рассмотрим тетраду. Тетрада (или полубайт) имеет 4 бита.
Двоичное | Десятичное | Пояснения |
0000 | 0 | — |
0001 | 1 | В младший бит устанавливается 1. |
0010 | 2 | В следующий бит (бит 1) устанавливается 1, предыдущий бит (бит 0) очищается. |
0011 | 3 | В младший бит устанавливается 1. |
0100 | 4 | В следующий бит (бит 2) устанавливается 1, младшие биты (бит 0 и 1) очищаются. |
0101 | 5 | В младший бит устанавливается 1. |
0110 | 6 | Продолжаем в том же духе… |
0111 | 7 | … |
1000 | 8 | … |
1001 | 9 | … |
1010 | 10 | … |
1011 | 11 | … |
1100 | 12 | … |
1101 | 13 | … |
1110 | 14 | … |
1111 | 15 | … |
Итак, мы видим, что при формировании двоичных чисел разряды числа заполняются нулями и единицами в определённой последовательности:
Если младший равен нулю, то мы записываем туда единицу. Если в младшем бите единица, то мы переносим её в старший бит, а младший бит очищаем. Тот же принцип действует и в десятичной системе:
0…9 10 – очищаем младший разряд, а в старший добавляем 1Всего для тетрады у нас получилось 16 комбинаций. То есть в тетраду можно записать 16 чисел от 0 до 15. Байт – это уже 256 комбинаций и числа от 0 до 255. Ну и так далее. На рис. 2.2 показано наглядно представление двоичного числа (двойное слово).

Рис. 2.2. Двоичное число.
www.av-assembler.ru
Двоичная система счисления
Для каждой счетной системы можно составить таблицы сложения и других арифметических действий. В двенадцатеричной системе 5+8=11, а Зх4=10. В семеричной системе 3+6=12, а 5х3=21. Нам это может показаться странным, поскольку мы не используем подобные системы. Но если мы проводим все расчеты в рамках одной из таких систем, мы видим, что система также отвечает поставленным целям. Человечество остановилось на
Однако в отдельных случаях и для конкретных целей может оказаться, что какая-то система счета является гораздо более функциональной, нежели другие. Это справедливо в случае системы, основанной на 2, то есть двоичной системы.
Выражение 10 в двоичной системе равно 2 в десятеричной системе. Следовательно, в такой системе только две цифры, 0 и 1.
Перевод числа из двоичной системы в десятеричную не составляет труда. Рассмотрим, например, выражение 11001 в двоичной системе. Оно эквивалентно $(1\times2^4)+(1\times2^3)+(0\times2^2)+(0\times2^1)+(1\times2^0)$, или 16+8+0+0+1, или 25, что соответствует эквиваленту, приведенному в таблице.
Этот процесс можно упростить, если принять во внимание, что число 2, возведенное в степень, умножается либо на 0, и тогда результат тоже будет равен нулю и его можно не учитывать, либо на 1, и тогда это просто 2, возведенное в какую-то степень.
Таким образом, мы можем проставить порядковый номер справа налево, как это показано ниже:
Каждое маленькое число — это степень числа 2, определяемая положением цифры в числе, представленном в двоичной системе. Следует учитывать только те показатели степени, которые стоят против единиц. Показатели, стоящие против нулей, можно опускать. Используя такой подход, можно записать число 11001 как $2^4+2^3+2^0$, или 16+8+1, или 25.
Большие числа, такие как 1 110 010 100 001 001, можно переводить в десятеричную систему таким же образом.
Поскольку единицам соответствуют позиции 0, 3, 8, 10, 13, 14 и 15, то число будет равняться $2^{15}+2^{14}+2^{13}+2^{10}+2^8+2^3+2^0$, или $32 768+16 384+8 192+1 024+256+8+1$, или $58 633$.
Обратный перевод из двоичной системы в десятеричную не очень сложен, но более длителен. Предположим, число 1562 выражено в десятеричной системе. В двоичную систему его можно перевести следующим образом:
Наибольшее число, соответствующее двойке, возведенной в степень, и меньшее 1562, — это $2^{10}$ (или 1024). Если мы вычтем 1024 из 1562, у нас останется 538. Теперь наибольшее число, соответствующее двойке, возведенной в степень, и меньшее 538, — это $2^9$ (или 512). После вычитания этой величины из 538 у нас остается 26. Ближайшее и меньшее число теперь — $2^4$ (или 16). После вычитания остается 10. Теперь ближайшее число — это $2^3$ (или 8). После вычитания остается 2 или $2^0$. Таким образом, $1562=2^{10}+2^9+2^4+2^3+2^1$.
Теперь надо только правильно расставить по местам показатели степени справа налево. Единицы будут стоять на 1, 3, 4, 9 и 10-й позициях. На остальных позициях мы поставим нули. Таким образом, мы получаем число 11 000 011 010, двоичный эквивалент числа 1562 в десятеричной системе.
В двоичной системе очень простые таблицы сложения и умножения:
И это весь список.
Таким образом, в двоичной системе:
Правильность этих вычислений можно, при желании, проверить, учитывая, что числа 11, 110 и 1001 в двоичной системе равны соответственно 3, 6 и 9 в десятеричной системе.
Теперь представьте себе, что у вас есть счетная электронная машина с набором переключателей (например, полупроводниковых). Каждый переключатель может находиться в одной из двух позиций — «включено» (когда ток проходит через переключатель) или «выключено» (когда ток не проходит через переключатель).
Теперь предположим, что положение «включено» соответствует 1, а положение «выключено» соответствует 0. В этом случае счетную машину можно спроектировать таким образом, чтобы переключение электрического сигнала различными переключателями подчинялось правилам сложения, умножения и другим действиям с единицами и нулями в двоичной системе.
Такая машина будет так быстро производить переключение и производить вычисления с такой скоростью, что сможет выполнить за считанные секунды такой объем вычислений, на который человеку потребовалось бы не меньше месяца.
Материалы по теме:
Поделиться с друзьями:
Загрузка…matemonline.com
Двоичная система — это… Что такое Двоичная система?
Двоичная система счисления — это позиционная система счисления с основанием 2. В этой системе счисления натуральные числа записываются с помощью всего лишь двух символов (в роли которых обычно выступают цифры 0 и 1).
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:
- Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток — нет тока, индукция магнитного поля больше пороговой величины или нет и т. д.
- Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину индукции магнитного поля, потребуется ввести два пороговых значения, что не будет способствовать помехоустойчивости и надёжности хранения информации.
- Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения — основных действий над числами.
- Возможно применение аппарата алгебры логики для выполнения побитовых операций над числами.
В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует один двоичный логический элемент (инвертор с логикой на входе) с двумя состояниями (открыт, закрыт).
1 + 0 = 1 1 + 1 = 10 10 + 10 = 100
Таблица умножения двоичных чисел
0 • 0 = 0 0 • 1 = 0 1 • 0 = 0 1 • 1 = 1
Использование двоичной системы при измерении дюймами
При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 715/16″, 311/32″ и т. д.
Преобразование чисел
Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:
512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1 называется двоичной точкой.
Преобразование двоичных чисел в десятичные
Допустим, вам дано двоичное число 110011. Какому числу оно эквивалентно? Чтобы ответить на этот вопрос, прежде всего запишите данное число следующим образом:
512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | ||||
32 | +16 | +2 | +1 |
Затем, начиная с двоичной точки, двигайтесь влево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110011 равнозначно 51.
Либо .
Преобразование методом Горнера
Для того, что бы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева-направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+1=23 >> 23*2+1=47 То есть в десятичной системе это число будет записано как 47.
Преобразование десятичных чисел к ближайшей степени двойки, неменьшей этого числа
Ниже приведена функция, возвращающая число, неменьшее аргумента, и являющееся степенью двух.
unsigned int to_deg_2(unsigned int num){ int i; if ( num == 1 ) return 2; for( num-=1,i=1; i < sizeof(unsigned int)*8; i*=2 ) num = num|(num>>i); return num+1; }
Преобразование десятичных чисел в двоичные
Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :
19 /2 = 9 с остатком 1 9 /2 = 4 c остатком 1 4 /2 = 2 с остатком 0 2 /2 = 1 с остатком 0 1 /2 = 0 с остатком 1
Итак, мы делим каждое частное на 2 и записываем в остаток 1 или 0. Продолжать деление надо пока в делимом не будет 1. Ставим числа из остатка друг за другом, начиная с конца. В результате получаем число 19 в двоичной записи (начиная с конца): 10011.
Другие системы счисления
В статье «Системы счисления (продолжение)»[1] описываются преимущества и недостатки 4-ричной системы счисления по сравнению с двоичной в компьютерах, созданных Хитогуровым.
См. также
Ссылки
- ↑ http://potan.livejournal.com/91399.html Системы счисления (продолжение)
Wikimedia Foundation. 2010.
dic.academic.ru
Двоичная система счисления
<<Назад | Содержание | Далее>>
Двоичная (бинарная) система счисления имеет основание 2. Ее алфавит – цифры 0 и 1. Для перевода числа из двоичной системы счисления в десятичную также справедливо правило (6). Представим в десятичном виде число 1101(2), или, что то же самое, &1101 (& — амперсант, — этим символом принято указывать то, что следующая за ним запись двоичная).
1101(2)=1*23+1*22+0*21+1*20=1*8+1*4+0*2+1*1=13(10)
Рис. 14. Перевод числа из двоичной СС в десятичную. |
Но двоичная система имеет некоторые приятные особенности, т.к. коэффициентами при степенях двойки в ней могут быть только либо нули (и тогда можно просто игнорировать разряд числа, имеющий значение “0”), либо единицы (умножение на “1” также можно опустить).
Т.е. достаточно просуммировать “два в соответствующей степени” только в тех позициях двоичного числа, в которых находятся единицы. Степень же, в которую нужно возводить число 2, равна номеру позиции.
Арифметические операции в любой позиционной системе счисления также имеют общую логику.
Таблица 4.
1 |
|
“Круглые” числа в двоичной СС |
||
&101 |
= 5(10) |
&1 |
= 20 |
= 1 |
+ 1 |
|
&10 |
= 21 |
= 2 |
&110 |
= 6(10) |
&100 |
= 22 |
= 4 |
+ 1 |
|
&1000 |
= 23 |
= 8 |
&111 |
= 7(10) |
&10000 |
= 24 |
= 16 |
Каждый разряд двоичного числа имеет информационную емкость 1 бит. На основании одного двоичного разряда можно закодировать только два десятичных числа — &0=0(10), &1=1(10), на основании двух двоичных разрядов можно закодировать уже четыре десятичных числа – &00=0(10), &01=1(10) , &10=2(10), &11=3(10) , тремя двоичными разрядами можно представить восемь десятичных чисел и т.д. в соответствии с формулой Хартли (2).
Таблица 5.
|
20 |
десятичное |
|
22 |
21 |
20 |
десятичное |
|
1 |
1 |
|
1 |
1 |
1 |
7 |
|
0 |
0 |
|
1 |
1 |
0 |
6 |
|
|
|
|
1 |
0 |
1 |
5 |
21 |
20 |
десятичное |
|
1 |
0 |
0 |
4 |
1 |
1 |
3 |
|
0 |
1 |
1 |
3 |
1 |
0 |
2 |
|
0 |
1 |
0 |
2 |
0 |
1 |
1 |
|
0 |
0 |
1 |
1 |
0 |
0 |
0 |
|
0 |
0 |
0 |
0 |
Мы видим, что добавление каждого следующего разряда вдвое увеличивает количество двоичных комбинаций. Графически это может быть представлено так:
Рис. 15. Каждый следующий разряд двоичного числа удваивает количество возможных комбинаций из нулей и единиц.
Таблицу степеней числа 2 от 20 до 210 следует знать наизусть.
Таблица 6.
N |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
2N |
1 |
2 |
4 |
8 |
16 |
32 |
64 |
128 |
256 |
512 |
1024 |
Открытие двоичного способа представления чисел приписывают китайскому императору Фо Ги, жизнь которого относится к 4-му тысячелетию до новой эры. Известный немецкий математик Лейбниц (1646-1716) в 1697 г. разработал правила двоичной арифметики. Он подчеркивал, что «вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот, является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок».
Блестящие предсказания Лейбница сбылись только через 2,5 столетия, когда именно двоичная система счисления нашла применение в качестве универсального способа кодирования информации в компьютерах.
<<Назад | Содержание | Далее>>
inf5.ru
Что такое двоичная система счисления? Как перевести десятичное число в двоичное? :: SYL.ru
С двоичной системой счисления мы сталкиваемся при изучении компьютерных дисциплин. Ведь именно на базе этой системы построена работа процессора и некоторые виды шифрования. Существуют специальные алгоритмы для записи десятичного числа в двоичной системе и наоборот. Если знать принцип построения системы, оперировать в ней будет несложно.

Принцип построения системы из нулей и единиц
Двоичная система счисления построена с использованием двух цифр: ноль и один. Почему именно эти цифры? Это связано с принципом построения сигналов, которые используются в работе процессора. На самом низком уровне сигнал принимает только два значения: «ложь» и «истина». Поэтому было принято отсутствие сигнала, «ложь», обозначать нулем, а наличие его, «истину», единицей. Такое сочетание легко реализовать технически. Числа в двоичной системе формируются так же, как и в десятичной. Когда разряд достигает своей верхней границы, он обнуляется, и добавляется новый разряд. По такому принципу осуществляется переход через десяток в десятичной системе. Таким образом, числа состоят из сочетаний нулей и единиц, и это сочетание называется «двоичная система счисления».
Запись числа в системе | |||
В десятичной | В двоичной | В десятичной | В двоичной |
0 | 0 | 5 | 101 |
1 | 1 | 6 | 110 |
2 | 10 | 7 | 111 |
3 | 11 | 8 | 1000 |
4 | 100 | 9 | 1001 |
Как двоичное число записать в виде десятичного?
Существуют онлайн-сервисы, которые осуществляют перевод числа в двоичную систему и наоборот, но лучше уметь делать это самостоятельно. Двоичная система при переводе обозначается нижним индексом 2, например, 1012. Каждое число в любой системе можно представить в виде суммы чисел, например: 1428 = 1000 + 400 + 20 + 8 – в десятичной системе. Так же представляется число в двоичной. Возьмем произвольное число 101 и рассмотрим его. В нем 3 разряда, поэтому раскладываем число по порядку таким способом: 1012=1×22+0×21+1×20=4+1=510, где индекс 10 обозначает десятичную систему.

Как записать простое число в двоичной системе?
Очень легко осуществить перевод в двоичную систему счисления с помощью деления числа на два. Делить необходимо до тех пор, пока это будет возможно выполнить нацело. Например, возьмем число 871. Начинаем делить, обязательно записывая остаток:
871:2=435 (остаток 1)
435:2=217 (остаток 1)
217:2=108 (остаток 1)
108:2=54 (остаток 0) и так далее до конца.
Ответ записывается по полученным остаткам по направлению от конца к началу: 87110=1011001112. Проверить правильность вычислений можно с помощью обратного перевода, описанного ранее.

Для чего нужно знать правила перевода?
Двоичная система счисления применяется в большинстве дисциплин, связанных с микропроцессорной электроникой, кодированием, передачей и шифрованием данных, в различных направлениях программирования. Знания основ перевода из любой системы в двоичную помогут программисту разрабатывать различные микросхемы и осуществлять управление работой процессора и других подобных систем программным способом. Двоичная система счисления также необходима для реализации способов передачи пакетов данных по зашифрованным каналам и создания на их основе программных проектов типа «Клиент-сервер». В школьном курсе информатики основы перевода в двоичную систему и наоборот являются базовым материалом для изучения программирования в будущем и создания простейших программ.
www.syl.ru
Двоичная система счисления — это… Что такое Двоичная система счисления?
Системы счисления в культуре | |
---|---|
Индо-арабская система счисления | |
Арабская Индийские Тамильская Бирманская | Кхмерская Лаоская Монгольская Тайская |
Восточноазиатские системы счисления | |
Китайская Японская Сучжоу Корейская | Вьетнамская Счётные палочки |
Алфавитные системы счисления | |
Абджадия Армянская Ариабхата Кириллическая | Греческая Эфиопская Еврейская Катапаяди |
Другие системы | |
Вавилонская Египетская Этрусская Римская | Аттическая Кипу Майская |
Позиционные системы счисления | |
Десятичная система счисления (10) | |
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60 | |
Нега-позиционная система счисления | |
Симметричная система счисления | |
Смешанные системы счисления | |
Фибоначчиева система счисления | |
Непозиционные системы счисления | |
Единичная (унарная) система счисления | |
Список систем счисления |
Двоичная система счисления — позиционная система счисления с основанием 2.
Двоичные цифры
В этой системе счисления числа записываются с помощью двух символов (0 и 1).
История
- В 1605 году Френсис Бэкон описал систему, буквы алфавита которой могут быть сведены к последовательностям двоичных цифр, которые в свою очередь могут быть закодированы как едва заметные изменения шрифта в любых случайных текстах. Важным шагом в становлении общей теории двоичного кодирования является замечание о том, что указанный метод может быть использован применительно к любым объектам.[7] (См. Шифр Бэкона)
- Современная двоичная система была полностью описана Лейбницем в XVII веке в работе Explication de l’Arithmétique Binaire[8]. В системе счисления Лейбница были использованы цифры 0 и 1, как и в современной двоичной системе. Как человек, увлекающийся китайской культурой, Лейбниц знал о книге Перемен и заметил, что гексаграммы соответствуют двоичным числам от 0 до 111111. Он восхищался тем, что это отображение является свидетельством крупных китайских достижений в философской математике того времени.[9]
- В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в MIT, в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника.
- В ноябре 1937 года Джордж Штибиц, впоследствии работавший в Bell Labs, создал на базе реле компьютер «Model K» (от англ. «Kitchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами. Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа. Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман, Джон Мокли и Норберт Винер, впоследствии писавшие об этом в своих мемуарах.
Запись двоичных чисел
Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Положительные целые числа (без знака) записываются в виде:
где:
- — представляемое число, первый индекс — основание системы кодирования (размерность множества цифр a={0,1}), второй индекс — основание весовой показательной функции b (в двоично-десятичном кодировании b=10),
- — запись числа, строка цифровых знаков,
- — обозначение основания системы кодирования и основания системы счисления,
- — количество цифр (знаков) в числе x2,2,
- — порядковый номер цифры,
- — цифры числа x2,2 из множества a={0,1}, в двоичной системе счисления основание системы кодирования равно 2,
- — основание показательной весовой функции, основание системы счисления,
- — весовая показательная функция, создающая весовые коэффициенты.
Количество записываемых кодов (чисел) зависит от основания системы кодирования — c, определяется в комбинаторике и равно числу размещений с повторениями:
где:
Количество записываемых кодов (чисел) от основания показательной функции — b не зависит.
Основание показательной функции — b определяет диапазон представляемых числами x2,b величин и разреженность представляемых чисел на числовой оси.
Целые числа являются частными суммами степенного ряда:
в котором коэффициенты an берутся из множества R=a{0,1}, X=2, n=k, а верхний предел в частных суммах ограничен с до — n-1.
Целые числа со знаком записываются в виде:
где:
- — знак числа из множества z={+,-}, у положительных целых чисел знак зачастую опускается.
Дробные числа записываются в виде:
где:
- — число цифр дробной части числа,
- — весовые коэффициенты из множества ,
- основание системы кодирования равно 2,
- — основание показательной весовой функции, основание системы счисления.
Следует отметить, что число может быть записано в двоичном коде, а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование, в котором десятичные цифры записываются в двоичном виде, а система счисления — десятичная.
Сложение, вычитание и умножение двоичных чисел
Таблица сложения
Пример сложения «столбиком» (14 + 5 = 19):
1 | ↖ | ||||
---|---|---|---|---|---|
+ | 1 | 1 | 1 | 0 | |
1 | 0 | 1 | |||
1 | 0 | 0 | 1 | 1 |
Таблица вычитания
— | 0 | 1 |
---|---|---|
0 | 0 | 1 |
1 | (заём из старшего разряда) 1 | 0 |
Таблица умножения
Пример умножения «столбиком» (14 × 5 = 70):
× | 1 | 1 | 1 | 0 | |||
1 | 0 | 1 | |||||
+ | 1 | 1 | 1 | 0 | |||
1 | 1 | 1 | 0 | ||||
1 | 0 | 0 | 0 | 1 | 1 | 0 |
Преобразование чисел
Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:
512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.
Преобразование двоичных чисел в десятичные
Допустим, вам дано двоичное число 110001. Для перевода в десятичное просто запишите его справа налево как сумму по разрядам следующим образом:
.Можно записать это в виде таблицы следующим образом:
512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | ||||
+32 | +16 | +1 |
Точно так же, начиная с двоичной точки, двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа.
Таким образом, двоичное число 110001 равнозначно десятичному 49.
Преобразование методом Горнера
Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+1=23 >> 23*2+1=47 То есть в десятичной системе это число будет записано как 47. Перевод дробных чисел методом Горнера 1) 0,11012=0,X10 (рассматриваем цифры в обратном порядке)
1:2=0,5
0,5+0=0,5
0,5:2=0,25
0,25+1=1,25
1,25:2=0,625
0,625+1=1,625
1,625:2=0,8125
Ответ: 0,11012= 0,812510
2) 0,3568=0,X10 (рассматриваем цифры в обратном порядке)
6:8=0,75
0,75+5=5,75
5,75:8=0,71875
0,71875+3=3,71875
3,71875:8=0,46484375
Ответ: 0,3568=0,4648437510
3) 0,A6E16=0,X10 (рассматриваем цифры в обратном порядке)
14:16=0,875
0,875+6=6,875
6,875:16=0,4296875
0,4296875+10=10,4296875
10,4296875:16=0,65185546875
Ответ: 0,A6E16=0,6518554687510
Преобразование десятичных чисел в двоичные
Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :
19 /2 = 9 с остатком 1 9 /2 = 4 c остатком 1 4 /2 = 2 без остатка 0 2 /2 = 1 без остатка 0 1 /2 = 0 с остатком 1
Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижнее число будет самым левым и.т.д. В результате получаем число 19 в двоичной записи: 10011.
Преобразование дробных двоичных чисел в десятичные
Нужно перевести число 1011010,101 в десятичную систему. Запишем это число следующим образом:
Или по таблице:
64 | 32 | 16 | 8 | 4 | 2 | 1 | 0.5 | 0.25 | 0.125 |
1 | 0 | 1 | 1 | 0 | 1 | 0. | .1 | 0 | 1 |
+64 | +16 | +8 | +2 | +0.5 | +0.125 |
Преобразование дробных десятичных чисел в двоичные
Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:
- Вначале переводится целая часть десятичной дроби в двоичную систему счисления;
- Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления;
- В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления;
- Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага.
Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.
Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:
0,116 • 2 = 0,232
0,232 • 2 = 0,464
0,464 • 2 = 0,928
0,928 • 2 = 1,856
0,856 • 2 = 1,712
0,712 • 2 = 1,424
0,424 • 2 = 0,848
0,848 • 2 = 1,696
0,696 • 2 = 1,392
0,392 • 2 = 0,784
и т. д.
Получим: 206,11610=11001110,00011101102
Применения
В цифровых устройствах
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:
- Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) — нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
- Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора, что не будет способствовать помехоустойчивости и надёжности хранения информации.[источник не указан 770 дней]
- Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения — основных действий над числами.
В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра, то есть двоичный триггер с двумя состояниями (0,1).
В английской системе мер
При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 715/16″, 311/32″ и т. д.
Интересные факты
См. также
Примеры чисел-степеней двойки
Степень | Значение |
---|---|
0 | 1 |
1 | 2 |
2 | 4 |
3 | 8 |
4 | 16 |
5 | 32 |
6 | 64 |
7 | 128 |
8 | 256 |
9 | 512 |
10 | 1024 |
11 | 2048 |
12 | 4096 |
13 | 8192 |
14 | 16384 |
15 | 32768 |
16 | 65536 |
17 | 131072 |
18 | 262144 |
19 | 524288 |
20 | 1048576 |
21 | 2097152 |
22 | 4194304 |
23 | 8388608 |
24 | 16777216 |
25 | 33554432 |
26 | 67108864 |
27 | 134217728 |
28 | 268435456 |
29 | 536870912 |
30 | 1073741824 |
31 | 2147483648 |
32 | 4294967296 |
33 | 8589934592 |
34 | 17179869184 |
35 | 34359738368 |
36 | 68719476736 |
37 | 137438953472 |
38 | 274877906944 |
39 | 549755813888 |
40 | 1099511627776 |
41 | 2199023255552 |
42 | 4398046511104 |
43 | 8796093022208 |
44 | 17592186044416 |
45 | 35184372088832 |
46 | 70368744177664 |
47 | 140737488355328 |
48 | 281474976710656 |
49 | 562949953421312 |
50 | 1125899906842624 |
51 | 2251799813685248 |
Примечания
- ↑ Sanchez, Julio & Canton, Maria P. (2007), «Microcontroller programming: the microchip PIC», Boca Raton, Florida: CRC Press, с. 37, ISBN 0-8493-7189-9
- ↑ W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
- ↑ Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3
- ↑ Experts ‘decipher’ Inca strings. Архивировано из первоисточника 18 августа 2011.
- ↑ Carlos Radicati di Primeglio, Gary Urton Estudios sobre los quipus. — P. 49.
- ↑ Dale Buckmaster (1974). «The Incan Quipu and the Jacobsen Hypothesis». Journal of Accounting Research 12 (1): 178-181. Проверено 2009-12-24.
- ↑ Bacon, Francis, «The Advancement of Learning», vol. 6, London, сс. Chapter 1, <http://home.hiwaay.net/~paul/bacon/advancement/book6ch2.html>
- ↑ http://www.leibniz-translations.com/binary.htm Leibniz Translation.com EXPLANATION OF BINARY ARITHMETIC
- ↑ Aiton, Eric J. (1985), «Leibniz: A Biography», Taylor & Francis, сс. 245–8, ISBN 0-85274-470-6
Ссылки
dic.academic.ru