Tgx dx: Неопределенный интеграл \int tgx dx | Вычислить интеграл – Интеграл тангенса, tgx

Список интегралов от тригонометрических функций — Википедия

Материал из Википедии — свободной энциклопедии

Ниже приведён список интегралов (первообразных функций) от тригонометрических функций. В списке везде опущена аддитивная константа интегрирования.

Константа c{\displaystyle c} не равняется нулю.

Содержание

  • 1 Интегралы, содержащие только синус
  • 2 Интегралы, содержащие только косинус
  • 3 Интегралы, содержащие только тангенс
  • 4 Интегралы, содержащие только секанс
  • 5 Интегралы, содержащие только косеканс
  • 6 Интегралы, содержащие только котангенс
  • 7 Интегралы, содержащие только синус и косинус
  • 8 Интегралы, содержащие только синус и тангенс
  • 9 Интегралы, содержащие только косинус и тангенс
  • 10 Интегралы, содержащие только синус и котангенс
  • 11 Интегралы, содержащие только косинус и котангенс
  • 12 Интегралы, содержащие только тангенс и котангенс
  • 13 Библиография
∫sin⁡cxdx=−1ccos⁡cx{\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx}
∫sinn⁡cxdx=−sinn−1⁡cxcos⁡cxnc+n−1n∫sinn−2⁡cxdx( n>0){\displaystyle \int \sin ^{n}cx\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{( }}n>0{\mbox{)}}}
∫xsin⁡cxdx=sin⁡cxc2−xcos⁡cxc{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}}
∫x2sin⁡cxdx=2cos⁡cxc3+2xsin⁡cxc2−x2cos⁡cxc{\displaystyle \int x^{2}\sin cx\;dx={\frac {2\cos cx}{c^{3}}}+{\frac {2x\sin cx}{c^{2}}}-{\frac {x^{2}\cos cx}{c}}}
∫x3sin⁡cxdx=−6sin⁡cxc4+6xcos⁡cxc3+3x2sin⁡cxc2−x3cos⁡cxc{\displaystyle \int x^{3}\sin cx\;dx=-{\frac {6\sin cx}{c^{4}}}+{\frac {6x\cos cx}{c^{3}}}+{\frac {3x^{2}\sin cx}{c^{2}}}-{\frac {x^{3}\cos cx}{c}}}
∫x4sin⁡cxdx=−24cos⁡cxc5−24xsin⁡cxc4+12x2cos⁡cxc3+4x3sin⁡cxc2−x4cos⁡cxc{\displaystyle \int x^{4}\sin cx\;dx=-{\frac {24\cos cx}{c^{5}}}-{\frac {24x\sin cx}{c^{4}}}+{\frac {12x^{2}\cos cx}{c^{3}}}+{\frac {4x^{3}\sin cx}{c^{2}}}-{\frac {x^{4}\cos cx}{c}}}
∫x5sin⁡cxdx=120sin⁡cxc6−120xcos⁡cxc5−60x2sin⁡cxc4+20x3cos⁡cxc3+5x4sin⁡cxc2−x5cos⁡cxc{\displaystyle \int x^{5}\sin cx\;dx={\frac {120\sin cx}{c^{6}}}-{\frac {120x\cos cx}{c^{5}}}-{\frac {60x^{2}\sin cx}{c^{4}}}+{\frac {20x^{3}\cos cx}{c^{3}}}+{\frac {5x^{4}\sin cx}{c^{2}}}-{\frac {x^{5}\cos cx}{c}}}
∫xnsin⁡cxdx=n!⋅sin⁡cx[xn−1c2⋅(n−1)!−xn−3c4⋅(n−3)!+xn−5c6⋅(n−5)!−…]−−n!⋅cos⁡cx[xnc⋅n!−xn−2c3⋅(n−2)!+xn−4c5⋅(n−4)!−…]{\displaystyle {\begin{aligned}\int x^{n}\sin cx\;dx&=n!\cdot \sin cx\left[{\frac {x^{n-1}}{c^{2}\cdot (n-1)!}}-{\frac {x^{n-3}}{c^{4}\cdot (n-3)!}}+{\frac {x^{n-5}}{c^{6}\cdot (n-5)!}}-…\right]-\\&-n!\cdot \cos cx\left[{\frac {x^{n}}{c\cdot n!}}-{\frac {x^{n-2}}{c^{3}\cdot (n-2)!}}+{\frac {x^{n-4}}{c^{5}\cdot (n-4)!}}-…\right]\end{aligned}}}
∫xnsin⁡cxdx=−xnccos⁡cx+nc∫xn−1cos⁡cxdx( n≥0){\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{( }}n\geq 0{\mbox{)}}}
∫sin⁡cxxdx=∑i=0∞(−1)i(cx)2i+1(2i+1)⋅(2i+1)!{\displaystyle \int {\frac {\sin cx}{x}}dx=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}}}
∫sin⁡cxxndx=−sin⁡cx(n−1)xn−1+cn−1∫cos⁡cxxn−1dx{\displaystyle \int {\frac {\sin cx}{x^{n}}}dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx}
∫dxsin⁡cx=1cln⁡|tg⁡cx2|{\displaystyle \int {\frac {dx}{\sin cx}}={\frac {1}{c}}\ln \left|\operatorname {tg} {\frac {cx}{2}}\right|}
∫dxsinn⁡cx=cos⁡cxc(1−n)sinn−1⁡cx+n−2n−1∫dxsinn−2⁡cx( n>1){\displaystyle \int {\frac {dx}{\sin ^{n}cx}}={\frac {\cos cx}{c(1-n)\sin ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}cx}}\qquad {\mbox{( }}n>1{\mbox{)}}}
∫dx1±sin⁡cx=1ctg⁡(cx2∓π4){\displaystyle \int {\frac {dx}{1\pm \sin cx}}={\frac {1}{c}}\operatorname {tg} \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}
∫xdx1+sin⁡cx=xctg⁡(cx2−π4)+2c2ln⁡|cos⁡(cx2−π4)|{\displaystyle \int {\frac {x\;dx}{1+\sin cx}}={\frac {x}{c}}\operatorname {tg} \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}
∫xdx1−sin⁡cx=xcctg⁡(π4−cx2)+2c2ln⁡|sin⁡(π4−cx2)|{\displaystyle \int {\frac {x\;dx}{1-\sin cx}}={\frac {x}{c}}\operatorname {ctg} \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}
∫sin⁡cxdx1±sin⁡cx=±x+1ctg⁡(π4∓cx2){\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\operatorname {tg} \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}
∫sin⁡c1xsin⁡c2xdx=sin⁡((c1−c2)x)2(c1−c2)−sin⁡((c1+c2)x)2(c1+c2)( |c1|≠|c2|){\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin((c_{1}-c_{2})x)}{2(c_{1}-c_{2})}}-{\frac {\sin((c_{1}+c_{2})x)}{2(c_{1}+c_{2})}}\qquad {\mbox{( }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
∫cos⁡cxdx=1csin⁡cx{\displaystyle \int \cos cx\;dx={\frac {1}{c}}\sin cx}
∫cosn⁡cxdx=cosn−1⁡cxsin⁡cxnc+n−1n∫cosn−2⁡cxdx( n>0){\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\sin cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{( }}n>0{\mbox{)}}}
∫xcos⁡cxdx=cos⁡cxc2+xsin⁡cxc{\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\sin cx}{c}}}
∫xncos⁡cxdx=xnsin⁡cxc−nc∫xn−1sin⁡cxdx{\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx}
∫cos⁡cxxdx=ln⁡|cx|+∑i=1∞(−1)i(cx)2i2i⋅(2i)!{\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}}{2i\cdot (2i)!}}}
∫cos⁡cxxndx=−cos⁡cx(n−1)xn−1−cn−1∫sin⁡cxxn−1dx( n≠1){\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin cx}{x^{n-1}}}dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫dxcos⁡cx=1cln⁡|tg⁡(cx2+π4)|{\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\operatorname {tg} \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
∫dxcosn⁡cx=sin⁡cxc(n−1)cosn−1⁡cx+n−2n−1∫dxcosn−2⁡cx( n>1){\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{( }}n>1{\mbox{)}}}
∫dx1+cos⁡cx=1ctg⁡cx2{\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\operatorname {tg} {\frac {cx}{2}}}
∫dx1−cos⁡cx=−1cctg⁡cx2{\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\operatorname {ctg} {\frac {cx}{2}}}
∫xdx1+cos⁡cx=xctg⁡cx2+2c2ln⁡|cos⁡cx2|{\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\operatorname {tg} {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}
∫xdx1−cos⁡cx=−xcctg⁡cx2+2c2ln⁡|sin⁡cx2|{\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{c}}\operatorname {ctg} {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}
∫cos⁡cxdx1+cos⁡cx=x−1ctg⁡cx2{\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\operatorname {tg} {\frac {cx}{2}}}
∫cos⁡cxdx1−cos⁡cx=−x−1cctg⁡cx2{\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\operatorname {ctg} {\frac {cx}{2}}}
∫cos⁡c1xcos⁡c2xdx=sin⁡(c1−c2)x2(c1−c2)+sin⁡(c1+c2)x2(c1+c2)( |c1|≠|c2|){\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{( }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
∫tg⁡cxdx=−1cln⁡|cos⁡cx|{\displaystyle \int \operatorname {tg} cx\;dx=-{\frac {1}{c}}\ln |\cos cx|}
∫tgn⁡cxdx=1c(n−1)tgn−1⁡cx−∫tgn−2⁡cxdx( n≠1){\displaystyle \int \operatorname {tg} ^{n}cx\;dx={\frac {1}{c(n-1)}}\operatorname {tg} ^{n-1}cx-\int \operatorname {tg} ^{n-2}cx\;dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫dxtg⁡cx+1=x2+12cln⁡|sin⁡cx+cos⁡cx|{\displaystyle \int {\frac {dx}{\operatorname {tg} cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
∫dxtg⁡cx−1=−x2+12cln⁡|sin⁡cx−cos⁡cx|{\displaystyle \int {\frac {dx}{\operatorname {tg} cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|}
∫tg⁡cxdxtg⁡cx+1=x2−12cln⁡|sin⁡cx+cos⁡cx|{\displaystyle \int {\frac {\operatorname {tg} cx\;dx}{\operatorname {tg} cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
∫tg⁡cxdxtg⁡cx−1=x2+12cln⁡

∫ Решение неопределённых интегралов — Калькулятор Онлайн

Введите функцию, для которой надо найти интеграл

После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение введённого вами интеграла.

Найдем решение неопределенного интеграла от функции f(x) (первообразную функции).

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

sqrt(x)/(x + 1)

Кубический корень

cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

x*arcsin(x)

Арккосинус

x*arccos(x)

Применение логарифма

x*log(x, 10)

Натуральный логарифм

ln(x)/x

Экспонента

exp(x)*x

Тангенс

tg(x)*sin(x)

Котангенс

ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

x*arctg(x)

Арккотангенс

x*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

x^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

x^2*arctgh(x)*arcctgh(x)
Правила ввода выражений и функций
Выражения могут состоять из функций (обозначения даны в алфавитном порядке):
absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция — арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция — арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
e
e число, которое примерно равно 2.7
exp(x)
Функция — экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число — «Пи», которое примерно равно 3.14
sin(x)
Функция — Синус от x
cos(x)
Функция — Косинус от x
sinh(x)
Функция — Синус гиперболический от x
cosh(x)
Функция — Косинус гиперболический от x
sqrt(x)
Функция — квадратный корень из x
sqr(x) или x^2
Функция — Квадрат x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
В выражениях можно применять следующие операции:
Действительные числа
вводить в виде 7.5, не 7,5
2*x
— умножение
3/x
— деление
x^3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание

Другие функции:
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа

Таблица интегралов

$$\int 0\, dx = C$$

Интеграл от нуля равен постоянной C

$$\int a\, dx = a*x + C$$

Интеграл от постоянной a равен этой постоянной, умноженной на x и плюс постоянная C

$$\int x^{n}\, dx = \frac{x^{n}}{n + 1} + C$$ при $n \ne 1$

Интеграл x в степени n (n не равна единице), равен x в степени n плюс один и все это деленное на n плюс один и все это плюс постоянная C

$$\int \frac{dx}{x} = \int x^{-1}\, dx = \ln{\left (x \right )} + C$$

Интеграл от единицы, деленной на x равен натуральному логарифму от x плюс постоянная C

$$\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a}\operatorname{arctg}{\left (\frac{x}{a} \right )} + C$$ $$ = -\frac{1}{a}\operatorname{arcctg}{\left (\frac{x}{a} \right )} + C$$

Интеграл от единицы, деленной на сумму x в квадрате плюс a в квадрате равен арктангенсу от x, деленному на a и все это разделено на a

$$\int \frac{dx}{x^{2} — a^{2}} = \frac{1}{2 a} \operatorname{ln}\left|{\frac{- a + x}{a + x}}\right| + C$$

Интеграл от единицы, деленной на разницу x в квадрате минус a в квадрате равен натуральному логарифму от модуля деления x-a на x + a и весь этот логарифм делен на произведение 2a

$$\int \operatorname{ln}\left(x\right)\,dx = x \operatorname{ln}\left(x\right) — x + C$$

Интеграл от натуральной логарифической функции равен произведению x на натуральный логарифм и минус переменная x

$$\int \frac{dx}{x \operatorname{ln}\left(x\right)} = \operatorname{ln}\left(\operatorname{ln}\left(x\right)\right) + C$$

Integral от единицы, деленной на произведение x на натуральный логарифм равняется логарифму от логарифма от x — по сути получается такая сложная функция

$$\int \operatorname{log}_{b}\left(x\right)\,dx = x \operatorname{log}_{b}\left(x\right) — \operatorname{log}_{b}\left(e\right) + C$$

Интеграл от логарифма от x по основанию b равен произведению x на логарифм от x по основанию b минус логарифм от экспоненты по основанию b

$$\int e^{x}\,dx = e^{x} + C$$

Значение интеграла от экспоненты в степени x равно самой экспоненте от x плюс константа C

$$\int a^{x}\,dx = \frac{a^{x}}{\operatorname{ln}\left(a\right)} + C$$

Интеграл от числа a в степени x равняется a в степени x, деленное на натуральный логарифм от a

$$\int \frac{dx}{\sqrt{a^{2} — x^{2}}} = \operatorname{arcsin}\left(\frac{x}{a}\right) + C$$

Интегральное выражение от 1 деленного на корень квадратный из разницы a в квадрате минус x в квадрате равняется арксинусу от деления x на a

$$\int \frac{- dx}{\sqrt{a^{2} — x^{2}}} = \operatorname{arccos}\left(\frac{x}{a}\right) + C$$

Этот же интеграл, но со знаком минус равен арккосинусу от деления x на a

$$\int \frac{dx}{x \sqrt{x^{2} — a^{2}}} = \frac{1}{a} \operatorname{arcsec} \frac{\left|x\right|}{a} + C$$

$$\int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = \operatorname{ln}\left| x + \sqrt{x^{2} \pm a^{2}}\right| + C$$

$$\int \operatorname{sin}\left(x\right)\,dx = — \operatorname{cos}\left(x\right) + C$$

Интеграл от функции синус от x равен минус косинусу от того же x

$$\int \operatorname{cos}\left(x\right)\,dx = \operatorname{sin}\left(x\right) + C$$

Интеграл от функции косинус от x равен синусу от x

$$\int \operatorname{tg}\left(x\right)\,dx = \frac{1}{2} \operatorname{ln}\left(\operatorname{tg}^{2}\left(x\right) + 1\right) + C$$

Интегральное от тангенса от x равно одной второй от логарифма от суммы тангенса в квадрате от x плюс один

$$\int \frac{dx}{\operatorname{tg}\left(x\right)} = — \frac{1}{2} \operatorname{ln}\left(\operatorname{tg}^{2}\left(x\right) + 1\right) + \operatorname{ln}\left(\operatorname{tg}\left(x\right)\right) + C$$

$$\int \frac{dx}{\operatorname{cos}\left(x\right)} = — \frac{1}{2} \operatorname{ln}\left(\operatorname{sin}\left(x\right) -1\right) + \frac{1}{2} \operatorname{ln}\left(\operatorname{sin}\left(x\right) + 1\right) + C$$

$$\int \frac{dx}{\operatorname{sin}\left(x\right)} = \frac{1}{2} \operatorname{ln}\left(\operatorname{cos}\left(x\right) -1\right) — \frac{1}{2} \operatorname{ln}\left(\operatorname{cos}\left(x\right) + 1\right) + C$$

$$\int \frac{dx}{\operatorname{cos}^{2}\left(x\right)} = \frac{\operatorname{sin}\left(x\right)}{\operatorname{cos}\left(x\right)} + C$$

интегралиус от 1 деленной на косинус в квадрате от x равен синусу от x, деленному на косинус от x

$$\int \frac{dx}{\operatorname{sin}^{2}\left(x\right)} = — \frac{\operatorname{cos}\left(x\right)}{\operatorname{sin}\left(x\right)} + C$$

интегрализэ от единицы, деленной на синус в квадрате от x равен минус косинусу от x, деленному на синус от x

$$\int \frac{\operatorname{tg}\left(x\right)}{\operatorname{cos}\left(x\right)}\,dx = \frac{1}{\operatorname{cos}\left(x\right)} + C$$

$$\int \frac{dx}{\operatorname{sin}\left(x\right) \operatorname{tg}\left(x\right)} = \frac{1}{\operatorname{sin}\left(x\right)} + C$$

$$\int \operatorname{sin}^{2}\left(x\right)\,dx = \frac{1}{2} x — \frac{1}{2} \operatorname{sin}\left(x\right) \operatorname{cos}\left(x\right) + C$$

$$\int \operatorname{cos}^{2}\left(x\right)\,dx = \frac{1}{2} x + \frac{1}{2} \operatorname{sin}\left(x\right) \operatorname{cos}\left(x\right) + C$$

$$\int \operatorname{arctg}\left(x\right)\,dx = x \operatorname{arctg}\left(x\right) — \frac{1}{2} \operatorname{ln}\left(x^{2} + 1\right) + C$$

$$\int \operatorname{sin}^{n} \left(x\right)\,dx = — \frac{\operatorname{sin}^{n-1}\left(x\right)*x*\operatorname{cos}\left(x\right)}{n} + \frac{n-1}{n} \int \operatorname{sin}^{n-2}\left(x\right)\,dx$$ при $n \geq 2, n \in \mathbb{N}$

$$\int \operatorname{cos}^{n} \left(x\right)\,dx = \frac{\operatorname{cos}^{n-1}\left(x\right)*x*\operatorname{sin}\left(x\right)}{n} + \frac{n-1}{n} \int \operatorname{cos}^{n-2}\left(x\right)\,dx$$ при $n \geq 2, n \in \mathbb{N}$

$$\int \operatorname{sh}\left(x\right)\,dx = \operatorname{ch}\left(x\right) + C$$

Интеграл от гипорболического синуса от x равен гиперболическому косинусу от x

$$\int \operatorname{ch}\left(x\right)\,dx = \operatorname{sh}\left(x\right) + C$$

Интеграл от гипорболического косинуса от x равен гиперболическому синусу от x

$$\int \frac{dx}{\operatorname{ch}^{2}\left(x\right)} = \frac{2 \operatorname{th}\left(\frac{x}{2}\right)}{\operatorname{th}^{2}\left(\frac{x}{2}\right) + 1} + C$$

$$\int \frac{dx}{\operatorname{sh}^{2}\left(x\right)} = — \frac{1}{2} \operatorname{th}\left(\frac{x}{2}\right) — \frac{1}{2 \operatorname{th}\left(\frac{x}{2}\right)} + C$$

$$\int \operatorname{th}\left(x\right)\,dx = x — \operatorname{ln}\left(\operatorname{th}\left(x\right) + 1\right) + C$$

$$\int \frac{dx}{\operatorname{sh}\left(x\right)} = \operatorname{ln}\left(\operatorname{th} \frac{x}{2}\right) + C$$

$$\int \frac{dx}{\operatorname{ch}\left(x\right)} = \operatorname{arctg}\left(\operatorname{sh}\left(x\right)\right) + C$$

$$\int \frac{dx}{\operatorname{th}\left(x\right)} = x — \operatorname{ln}\left(\operatorname{th}\left(x\right) + 1\right) + \operatorname{ln}\left(\operatorname{th}\left(x\right)\right) + C$$

Таблица интегралов

1.  
sin (x) dx = -cos (x) + C
2.  
cos (x) dx = sin (x) + C
3.  
sin2 (x) dx = x2 — 14 sin (2x) + C
4.  
cos2 (x) dx = x2 + 14 sin (2x) + C
5.  
sinn (x) dx = -1n sinn — 1 (x) cos (x) + n — 1n sinn — 2 (x) dx
6.  
cosn (x) dx = 1n cosn — 1 (x) sin (x) + n — 1n cosn — 2 (x) dx
7.  
dxsin (x) = ln|tg(x2)| + C
8.  
dxcos (x) = ln|ctg(x2)| + C
9.  
dxsin2 (x) = -ctg (x) + C
10.  
dxcos2 (x) = tg (x) + C
11.  
sin (x) cos (x) dx = -14cos (2x) + C
12.  
sin2 (x) cos (x) dx = 13sin3 (x) + C
13.  
sin (x) cos2 (x) dx = -13cos3 (x) + C
14.  
sin2 (x) cos2 (x) dx = -18x — 132sin (4x) + C
15.  
tg (x) dx = -ln |cos (x)| + C
16.  
ctg (x) dx = ln |sin (x)| + C
17.  
sin (x)cos2 (x)dx = 1cos (x) + C
18.  
cos (x)sin2 (x)dx = -1sin (x) + C
19.  
sin2 (x)cos2 (x)dx = tg (x) — x + C
20.  
cos2 (x)sin2 (x)dx = -ctg (x) — x + C
21.  
sin2 (x)cos (x)dx = ln|ctg(x2)| — sin (x) + C
22.  
cos2 (x)sin (x)dx = ln|tg(x2)| + cos (x) + C
23.  
dxsin (x) cos (x) = ln|tg(x)| + C
24.  
dxsin2 (x) cos (x) = -1sin (x) + ln|ctg(x2)| + C
25.  
dxsin (x) cos2 (x) = 1cos (x) + ln|tg(x2)| + C
26.  
dxsin2 (x) cos2 (x) = tg(x) — ctg(x) + C
27.  
dxsinn (x) = -1n — 1cos (x)sinn — 1 (x) + n — 2n — 1 dxsinn — 2 (x)
28.  
tgn (x) dx = tgn — 1 (x)n — 1 —  tgn — 2 (x) dx
29.  
ctgn
(x) dx = -ctgn — 1 (x)n — 1 — 
ctgn — 2 (x) dx
30.  
sin (x) cosn (x) dx = -cosn + 1 (x)n + 1 + C
31.  
cos (x) sinn (x) dx = sinn + 1 (x)n + 1 + C

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *