Стороны трапеций найти онлайн, правила, формулы, примеры
Трапеция — это выпуклый четырехугольник с двумя параллельными основами и двумя непараллельными боковыми сторонами.
Иногда фигура определяется как четырёхугольник, у которого пара противолежащих сторон параллельна,
поэтому параллелограмм и прямоугольник являются частными случаями трапеции. Также это
четырехугольник, у которого одна пара противоположных сторон параллельна, а остальные стороны не
равны между собой.
Параллельные стороны называются основами, а остальные боковыми.
Вычисление стороны необходимо для нахождения периметра, площади трапеции, ее диагоналей и других значимых параметров.
- Длина основания через среднию линию и другое известное основание
- Нижнее основание через верхнее основание, высоту и углы при нижнем основании
- Нижнее основание через боковые стороны, верхнее основание и углы при нижнем основании
- Верхнее основание через боковые стороны, нижнее основание и углы при нижнем основании
- Боковую сторону через высоту и угол при нижнем основании
Длина основания через среднюю линию и известное основание
Средняя линия — отрезок, соединяющий середины боковых сторон фигуры. Через её значение вычисляется одна из основ. Нужно умножить ее на два и вычесть известную:
a = 2m – b
Средняя линия (m):
ммсмдмм
Изв. основание (b):
ммсмдмм
Цифр после запятой:
012345678910Результат в: ммсмдмм
Например, средняя линия MN равна 6, а основание а – 9. Соответственно, значения, подставленные в формулу, показывают, что b = 2*6 – 9 = 3.
Нижнее основание через верхнее основание, высоту и углы при нижнем основании
Высота h или BK – перпендикуляр, проведенный от одной основы к другой. Высота проводится в любой их точке, но удобнее всего это делать из вершины углов при меньшей основе. Чтобы найти нижнее основание, надо к верхнему прибавить произведение высоты на сумму котангенсов углов при нижнем:
a = b + h*(ctga + ctgb)
Верх. основание (b):
ммсмдмм
Высота (h):
ммсмдмм
Угол (α):
градусырадианыctg
Угол (β):
градусырадианыctg
Цифр после запятой:
012345678910Результат в: ммсмдмм
Дано верхнее основание 10, высота 6 и углы 30 и 45. По формуле а = 10 + 6*(3+1) = 10 + 63 + 6 = 16+63. Для равнобедренного четырёхугольника выведены две формулы. В первой (a = 2S/h – b) основа выражена с помощью формулы площади. Пример: Площадь равнобедренной трапеции ABCD = 18, высота = 6, а AD = 5. Найти BC. BC = 2*18/6 – 5 = 6 – 5 = 1
Второе выражение сформулировано следующим образом: (a = b + 2h*ctga). Высота АН в трапеции ADEF = 10, DE = 4, а DAF = 45 градусам. Найти AF: AF = 4 + 10*2*1 = 24
Верхнее основание через нижнее основание, высоту и углы при нижнем основании
Чтобы найти верхнюю основу, надо из нижней вычесть произведение высоты на сумму котангенсов углов при ней:
b = a – h*(ctg α + ctg β)
Ниж.
основание (a):ммсмдмм
Высота (h):
ммсмдмм
Угол (α):
градусырадианыctg
Угол (β):
градусырадианыctg
Цифр после запятой:
012345678910Результат в: ммсмдмм
Дана трапеция с нижним основанием 15, высотой 8 и углами в 45 градусов. По формуле а = 15 + 8*(1+1) = 15 + 16 = 31
Формулы для равнобедренного четырёхугольника: b = 2S/h – a и b = a – 2h*ctga.
- Площадь трапеции KLMN = 44, KL=MN, высота равна 8, KN = 5. Найти LM: LM = 44*2/8 – 5 = 6
- Высота трапеции DEFG = 15, DG= 5, а EDG = 45 градусам. Найти EF: EF = 5 + 15*2*1 = 35
Нижнее основание через боковые стороны, верхнее основание и углы при нижнем основании
Для нахождения основы а нужно к основе b прибавить произведение одной и другой стороны и косинусов углов при них
a = b + c * cos α + d * cos β
Верх. 2)/b и a = b + 2c*cosa.
- трапеции ABCD AB = CD = 8, диагональ AC = 12, а BC = 4. Вычислить AD: AD = (12*12 – 8*8)/4 = (144 – 64)/4 = 20
- В трапеции KLMN KL = MN = 4, LM = 7, а LKN равен 30 градусам. Вычислить KN: KN = 7 + 4*2*3/2 = 7 + 43
Верхнее основание через боковые стороны, нижнее основание и углы при нем
Для нахождения основы b нужно из основы а вычесть произведение одной и другой боковой стороны и углов при них
b = a – c * cos α – d * cos β
Ниж. основание (a):
ммсмдмм
Сторона (c):
ммсмдмм
Сторона (d):ммсмдмм
Угол (α):
градусырадианыcos
Угол (β):
градусырадианыcos
Цифр после запятой:
012345678910Результат в: ммсмдмм
Дана трапеция с нижним основанием 27, боковыми сторонами 20 и 14 и углами в 30 и 60 градусов. 2)/a и b = a — 2c*cosa.
- В трапеции DEFG DE и FG = 11, диагональ АС = 13, а EF = 12. Вычислить DG: DG = (13*13 – 11*11)/12= (169 – 121)/12 = 4
- Боковые стороны трапеции BCDE BC и DE = 25, BE = 10, а CBE равен 60 градусам. Вычислить CD: CD = 25 – 10*2*1/2 = 15
Боковая сторона через высоту и угол при нижнем основании
Чтобы найти боковую сторону, надо разделить высоту на синус угла при ней
d = h / sin α
Высота (h):
ммсмдмм
Угол (α):
градусырадианыsin
Цифр после запятой:
012345678910Результат в: ммсмдмм
Дана трапеция с высотой 12 и углами в 30 и 60 градусов. Найти боковые стороны: c = 12/0,5 = 24, d = 12/3/2 = 243
Для прямоугольного типа формулы несколько отличаются. 2 – 16*6 = 100 – 96 = 4
Виды трапеций
Существуют следующие виды трапеций:
- Равнобедренная трапеция — фигура, у которой боковые стороны и углы при основании равны. Диагонали также равны. Треугольники, образованные диагоналями и основой, являются равнобедренными. Если диагонали взаимно перпендикулярны, то площадь равна квадрату высоты. Если разделить обе основы пополам и повести через эти точки линию, то она будет осью геометрической фигуры. Отрезки, последовательно соединяющие середины смежных сторон, образуют ромб.
- Прямоугольная трапеция — фигура, у которой одна из боковых сторон перпендикулярна основам и равна высоте. Два угла будут равны 90 градусам, и они всегда принадлежат смежным вершинам, а другие всегда острый и тупой, их сумма всегда будет равна 180 градусам. Каждая диагональ образует с ее меньшей боковой стороной прямоугольный треугольник. А высота, которая проведена из вершины с тупым углом, делит фигуру на две. Одна из них прямоугольник, другая прямоугольный треугольник.
- Разносторонняя трапеция — фигура, боковые стороны которой не равны и углы при основании не являются прямыми. 2.
- Треугольники ABO и DCO, образованные отрезками диагоналей и боковыми сторонами, имеют одинаковую площадь.
- В трапецию можно вписать окружность, если сумма оснований равняется сумме её боковых сторон.
- Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.
- Отрезок, соединяющий середины диагоналей, равняется половине разности основ и лежит на средней линии.
Площадь трапеции — онлайн калькулятор
Чтобы найти площадь трапеции воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Через длины оснований и высоту
Чему равна площадь трапеции, если:
основание a =
основание b =
высота h =
Ответ: S =
Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Чему равна площадь трапеции если известны основания a и b, а также высота h?
Формула
S = ½ ⋅ (a + b) ⋅ h
Пример
Если у трапеции основание a = 3 см, основание b = 6 см, а высота h = 4 см, то её площадь:
S = ½ ⋅ (3 + 6) ⋅ 4 = 36 / 2 = 18 см²
Через среднюю линию и высоту
Чему равна площадь трапеции, если:
средняя линия m =
высота h =
Ответ: S =
ед.²
Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Чему равна площадь трапеции если известны средняя линия m и высота h?
Формула
S = m ⋅ h
Пример
Если у трапеции средняя линия m = 6 см, а высота h = 4 см, то её площадь:
S = 6 ⋅ 4 = 24 см²
Через длины сторон и оснований
Чему равна площадь трапеции, если:
основание a =
основание b =
сторона c = сторона d =
Ответ: S =
ед. ²
Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Чему равна площадь трапеции если известны основания a и b, а также стороны c и d?
Формула
Пример
Если у трапеции основание a = 2 см, основание b = 6 см, сторона c = 4 см, а сторона d = 7 см, то её площадь:
S ≈ 13.555 см²
Через диагонали и угол между ними
Чему равна площадь трапеции, если:
диагональ d1 =
диагональ d2 =
угол α =
Ответ: S =
ед.²
Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Чему равна площадь трапеции если известны диагонали d1 и d2 и угол между ними α?
Формула
S = ½ ⋅ d1 ⋅ d2 ⋅ sin(α)
Пример
Если у трапеции одна диагональ d1 = 5 см, другая диагональ d2 = 7 см, а угол между ними ∠α = 30°, то её площадь:
S = ½ ⋅ 5 ⋅ 7 ⋅ sin (30) = 17. 5 ⋅ 0.5= 8.75 см²
Площадь равнобедренной трапеции
Через среднюю линию, боковую сторону и угол при основании
Чему равна площадь трапеции, если:
средняя линия m =
сторона c =
угол α =
Ответ: S =
ед.²
Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Чему равна площадь равнобедренной трапеции если средняя линия m, боковая сторона с, a угол при основании α?
Формула
S = m ⋅ c ⋅ sin(α)
Пример
Если у равнобедренной трапеции средняя линия m = 6 см, сторона c = 4 см, а угол при основании ∠α = 30°, то её площадь:
S = 6 ⋅ 4 ⋅ sin (30) = 24 ⋅ 0.5 = 12 см²
Через радиус вписанной окружности
Чему равна площадь трапеции, если:
радиус r =
угол α =
Ответ: S =
ед. ²
Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Чему равна площадь равнобедренной трапеции если радиус вписанной окружности r, a угол при основании α?
Формула
S = 4⋅r² ⁄ sin(α)
Пример
Если у равнобедренной трапеции радиус вписанной окружности r = 5 см, а угол при основании ∠α = 30°, то её площадь:
S = 4 ⋅ 5² / sin (30) = 100 / 0.5 = 200 см²
См. также
КАЛЬКУЛЯТОР ТРАПЕЦИЙ
КАЛЬКУЛЯТОР ТРАПЕЦИЙ Прямые BC и AD параллельны и называются основаниями. Линии AB и DC являются непараллельными сторонами и называются ответвлениями. Линии AC (или q ) и BD (или p ) называются диагоналями Линия, перпендикулярная линиям AD и BC, называется высотой или высотой. Линия, параллельная линиям AD и BC, проходит через середины линий AB и DC. и называется медиана или средний сегмент . Длина медианы = (Линия AD + Линия BC) ÷ 2 Трапеции имеют 2 пары смежных углов (A и B) и (B и C), которые являются дополнительными (добавить 180°).
|
Геометрия | Формы | Контакты и конфиденциальность | Геометрические калькуляторы | Немецкий: Geometriechner, Formen |
1DЛиния, дуга окружности, парабола, спираль, кривая Коха
2D Правильные многоугольники: Равносторонний треугольник, квадрат, пятиугольник, шестиугольник, семиугольник, восьмиугольник, многоугольник, десятиугольник, десятиугольник, додекагон, шестиугольник, N-угольник, кольцо многоугольника Другие многоугольники: Круглые формы: Тетраэдр, куб, октаэдр, додекаэдр, икосаэдр рон, усеченный кубооктаэдр, икосододекаэдр, усеченный додекаэдр, усеченный икосаэдр, курносый куб, ромбикосододекаэдр , Усеченный икосододекаэдр, Курносый додекаэдр Каталонские твердые тела: Johnson Solids: Другие многогранники: Круглые формы: | Anzeige Расчеты на трапеции. Трапеция (или трапеция) – это четырехугольник с двумя параллельными сторонами. Введите три длины сторон и один угол между двумя из этих сторон. Выберите количество знаков после запятой и нажмите «Рассчитать». Пожалуйста, вводите углы в градусах, здесь вы можете конвертировать единицы измерения углов. Здесь можно вычислить только те трапеции, где c не пересекается с a (g1, g2 ≥ 0; α, β ≤ 90°), для остальных см. тупую трапецию. Форма трапеции: Формулы: Сторона длина, высота, диагонали и периметр имеют одну и ту же единицу измерения (например, метр), площадь имеет эту единицу в квадрате (например, квадратный метр). |