Треугольник прямоугольный периметр: Как найти периметр треугольника 🔺 формула нахождения

Содержание

Как найти периметр основания треугольника. Как найти периметр треугольника если известны не все стороны

Как найти периметр треугольника? Таким вопросом задавался каждый из нас, учась в школе. Попробуем вспомнить все, что мы знаем об этой удивительной фигуре, а также ответить на заданный вопрос.

Ответ на вопрос о том, как найти периметр треугольника, обычно является довольно-таки простым — требуется всего-лишь выполнить процедуру сложения длин всех его сторон. Однако есть ещё несколько простых методов искомой величины.

Советы

В том случае, если радиус (r) окружности, которая вписана в треугольник, и его площадь (S) известны, то ответить на вопрос о том, как найти периметр треугольника, довольно просто. Для этого вам необходимо воспользоваться обычной формулой:

Если известны два угла, допустим, α и β, которые прилегают к стороне, и сама длина стороны, то периметр можно найти с помощью весьма и весьма популярной формулы, которая имеет вид:

sinβ∙а/(sin(180° — β — α)) + sinα∙а/(sin(180° — β — α)) + а

Если вы знаете длины смежных сторон и угол β, находящийся между ними, то для того, чтобы найти периметр, требуется воспользоваться теоремой косинусов.

Периметр вычисляется по формуле:

P = b + a + √(b2 + a2 — 2∙b∙а∙cosβ),

где b2 и а2 являются квадратами длин смежных сторон. Подкоренное выражение — это длина третьей стороны, которая неизвестна, выраженная посредством теоремы косинусов.

Если вы не знаете, как найти периметр равнобедренного треугольника, то здесь, на самом деле, нет ничего сложного. Вычислите его по формуле:

где b — основание треугольника, а — его боковые стороны.

Для нахождения периметра правильного треугольника следует воспользоваться простейшей формулой:

где а — длина стороны.

Как найти периметр треугольника, если известны только радиусы окружностей, которые описаны около него или вписаны в него? Если треугольник является равносторонним, то тогда следует применить формулу:

P = 3R√3 = 6r√3,

где R и r являются радиусами описанной и вписанной окружности соответственно.

Если треугольник является равнобедренным, то для него применима формула:

P=2R (sinβ + 2sinα),

где α — это угол, который лежит у основания, а β — угол, который противолежит основанию.

Зачастую для решения математических задач требуется глубочайший анализ и специфическое умение находить и выводить требуемые формулы, а это, как многим известно, довольно непростая работа. Хотя некоторые задачи можно решить всего лишь с помощью одной-единственной формулы.

Давайте рассмотрим формулы, которые являются базовыми для ответа на вопрос о том, как найти периметр треугольника, по отношению к самым разнообразным типам треугольников.

Безусловно, главное правило для нахождения периметра треугольника — это данное утверждение: для нахождения периметра треугольника требуется сложить длины всех его сторон по соответствующей формуле:

где b, a и с — это длины сторон треугольника, а Р — периметр треугольника.

Есть несколько частных случаев данной формулы. Допустим, ваша задача формулируется следующим образом: «как найти периметр прямоугольного треугольника?» В таком случае вам следует воспользоваться следующей формулой:

P = b + a + √(b2 + a2)

В этой формуле b и а являются непосредственными длинами катетов прямоугольного треугольника. Несложно догадаться, что вместо стороны с (гипотенузы) используется выражение, полученное по теореме великого ученного древности — Пифагора.

Если требуется решить задачу, где треугольники являются подобными, то логично было бы воспользоваться данным утверждением: отношение периметров соответствует коэффициенту подобия. Допустим, у вас есть два подобных треугольника — ΔABC и ΔA1B1C1. Тогда для нахождения коэффициента подобия необходимо разделить периметр ΔABC на периметр ΔA1B1C1.

В заключение можно отметить, что периметр треугольника можно найти при помощи самых различных методик, в зависимости от тех исходных данных, которые у вас имеются. Необходимо добавить, что существуют некоторые частные случаи для прямоугольных треугольников.

Периметр — это величина, подразумевающая длину всех сторон плоской (двумерной) геометрической фигуры. Для разных геометрических фигур существуют разные способы нахождения периметра.

В данной статье вы узнаете как находить периметр фигуры разными способами, в зависимости от известных его граней.

Вконтакте

Возможные методы:

  • известны все три стороны равнобедренного или любого другого треугольника;
  • как найти периметр прямоугольного треугольника при двух известных его гранях;
  • известны две грани и угол, который расположен между ними (формула косинусов) без средней линии и высоты.

Первый метод: известны все стороны фигуры

Как находить периметра треугольника, когда известны все три грани , необходимо использовать следующую формулу: P = a + b + c, где a,b,c — известные длины всех сторон треугольника, P — периметр фигуры.

Например, известны три стороны фигуры: a = 24 см, b = 24 см, c = 24 см. Это правильная равнобедренная фигура, чтобы вычислить периметр пользуемся формулой: P = 24 + 24 + 24 = 72 см.

Данная формула подходит к любому треугольнику , необходимо просто знать длины всех его сторон. Если хотя бы одна из них неизвестна, необходимо воспользоваться другими способами, о которых мы поговорим ниже. 2 — (2 * a * b * cos(C)), где a,b,c — стандартно длины граней, а A,B и С — это углы, которые лежат напротив соответствующих граней треугольника. То есть, A — угол, противолежащий стороне a и так далее.

Представим, что описан треугольник, стороны а и б которого составляют 100 см и 120 см соответственно, а угол, лежащий между ними, составляет 97 градусов. То есть а = 100 см, б = 120 см, C = 97 градусов.

Все, что нужно сделать в данном случае — это подставить все известные значения в теорему косинусов. Длины известных граней возводятся в квадрат, после чего известные стороны перемножаются между друг другом и на два и умножаются на косинус угла между ними. Далее, необходимо сложить квадраты граней и отнять от них второе полученное значение. Из итоговой величины извлекается квадратный корень — это будет третья, неизвестная до этого сторона.

После того как все три грани фигуры известны, осталось воспользоваться уже полюбившейся нам стандартной формулой поиска периметра описываемой фигуры из первого метода.

Периметр фигуры – сумма длин всех ее сторон. Соответственно, дабы обнаружить периметр

треугольника , нужно знать, чему равна длина всякой из его сторон. Для поиска сторон применяются свойства треугольника и основные теоремы геометрии.

Инструкция

1. Если все три стороны треугольника теснее даны в условии задачи, легко сложите их. Тогда периметр будет равен: P = a + b + c.

2. Пускай даны две стороны a, b и угол между ними?. Тогда третью сторону дозволено обнаружить по теореме косинусов: c? = a? + b? – 2 a b cos(?). Помните, что длина стороны может быть только позитивной.

3. Частный случай теоремы косинусов – теорема Пифагора, которая применима для прямоугольных треугольников. Угол? в данном случае равен 90°. Косинус прямого угла обращается в единицу. Тогда c? = a? + b?.

4. Если в условии дана только одна из сторон, но при этом вестимы углы треугольника, две другие стороны дозволено обнаружить по теореме синусов.

Кстати, углы могут быть заданы не все, следственно благотворно помнить, что сумма всех углов треугольника равна 180°.

5. Выходит, пускай дана сторона a, угол? между a и b, ? между a и c. 3-й угол? между сторонами b и c легко обнаружить из теоремы о сумме углов треугольника: ? = 180° – ? – ?. По теореме синусов, a / sin(?) = b / sin(?) = c / sin(?) = 2 R, где R – радиус окружности, описанной около треугольника. Дабы обнаружить сторону b, дозволено выразить ее из этого равенства через углы и сторону a: b = a sin(?) / sin(?). Подобно выражается и сторона c: c = a sin(?) / sin(?). Если, скажем, дан радиус описанной окружности, но не дана длина ни одной из сторон, задачу также допустимо решить.

6. Если в задаче дана площадь фигуры, нужно записать формулу для площади треугольника через стороны. Выбор формулы зависит от того, что еще знаменито. Если, помимо площади, заданы две стороны, поможет использование формулы Герона. Площадь дозволено выразить также через две стороны и синус угла между ними: S = 1/2 a b sin(?), где? – угол между сторонами a и b.

7. В некоторых задачах может быть задана площадь и радиус окружности, вписанной в треугольник. В таком случае выручит формула r = S / p, где r – радиус вписанной окружности, S – площадь, p – полупериметр треугольника. Полупериметр из этой формулы выразить легко: p = S / r. Осталось обнаружить периметр: P = 2 p.

Треугольник – это многоугольник, имеющий три стороны и три угла. Как же вычислить его периметр?

Инструкция

1. Периметр треугольника – это сумма длин всех его 3 сторон.Обозначим стороны треугольника а, b, c. Периметр в математических формулах обозначается латинской буквой Р. Значит, исходя из правила, Р = а + b + cДопустим, наши стороны треугольника имеют такие длины: а = 3 см, b = 4 см, с = 5 смЧтобы обнаружить периметр данного треугольника – необходимо сложить длины всех его сторон.Т.е. Р = 3 + 4 + 5Р = 12 смНе трудная задача, чай правда?

Видео по теме

Видео по теме

Как найти периметр треугольника? Таким вопросом задавался каждый из нас, учась в школе. Попробуем вспомнить все, что мы знаем об этой удивительной фигуре, а также ответить на заданный вопрос.

Ответ на вопрос о том, как найти периметр треугольника, обычно является довольно-таки простым — требуется всего-лишь выполнить процедуру сложения длин всех его сторон. Однако есть ещё несколько простых методов искомой величины.

Советы

В том случае, если радиус (r) окружности, которая вписана в треугольник, и его площадь (S) известны, то ответить на вопрос о том, как найти периметр треугольника, довольно просто. Для этого вам необходимо воспользоваться обычной формулой:

Если известны два угла, допустим, α и β, которые прилегают к стороне, и сама длина стороны, то периметр можно найти с помощью весьма и весьма популярной формулы, которая имеет вид:

sinβ∙а/(sin(180° — β — α)) + sinα∙а/(sin(180° — β — α)) + а

Если вы знаете длины смежных сторон и угол β, находящийся между ними, то для того, чтобы найти периметр, требуется воспользоваться Периметр вычисляется по формуле:

P = b + a + √(b2 + a2 — 2∙b∙а∙cosβ),

где b2 и а2 являются квадратами длин смежных сторон. Подкоренное выражение — это длина третьей стороны, которая неизвестна, выраженная посредством теоремы косинусов.

Если вы не знаете, как найти периметр то здесь, на самом деле, нет ничего сложного. Вычислите его по формуле:

где b — основание треугольника, а — его боковые стороны.

Для нахождения периметра правильного треугольника следует воспользоваться простейшей формулой:

где а — длина стороны.

Как найти периметр треугольника, если известны только радиусы окружностей, которые описаны около него или вписаны в него? Если треугольник является равносторонним, то тогда следует применить формулу:

P = 3R√3 = 6r√3,

где R и r являются радиусами описанной и вписанной окружности соответственно.

Если треугольник является равнобедренным, то для него применима формула:

P=2R (sinβ + 2sinα),

где α — это угол, который лежит у основания, а β — угол, который противолежит основанию.

Зачастую для решения математических задач требуется глубочайший анализ и специфическое умение находить и выводить требуемые формулы, а это, как многим известно, довольно непростая работа. Хотя некоторые задачи можно решить всего лишь с помощью одной-единственной формулы.

Давайте рассмотрим формулы, которые являются базовыми для ответа на вопрос о том, как найти периметр треугольника, по отношению к самым разнообразным типам треугольников.

Безусловно, главное правило для нахождения периметра треугольника — это данное утверждение: для нахождения периметра треугольника требуется сложить длины всех его сторон по соответствующей формуле:

где b, a и с — это длины сторон треугольника, а Р — периметр треугольника.

Есть несколько частных случаев данной формулы. Допустим, ваша задача формулируется следующим образом: «как найти периметр прямоугольного треугольника?» В таком случае вам следует воспользоваться следующей формулой:

P = b + a + √(b2 + a2)

В этой формуле b и а являются непосредственными длинами катетов прямоугольного треугольника. Несложно догадаться, что вместо стороны с (гипотенузы) используется выражение, полученное по теореме великого ученного древности — Пифагора.

Если требуется решить задачу, где треугольники являются подобными, то логично было бы воспользоваться данным утверждением: отношение периметров соответствует коэффициенту подобия. Допустим, у вас есть два подобных треугольника — ΔABC и ΔA1B1C1. Тогда для нахождения коэффициента подобия необходимо разделить периметр ΔABC на периметр ΔA1B1C1.

В заключение можно отметить, что периметр треугольника можно найти при помощи самых различных методик, в зависимости от тех исходных данных, которые у вас имеются. Необходимо добавить, что существуют некоторые частные случаи для прямоугольных треугольников.

    Периметр — это сумма длин всех сторон любого многоугольника. Потому, не задумываясь над тем, какая перед вами геометрическая фигура, смело измеряйте линейкой длину всех сторон и суммируйте. Вот и получите периметр.

    Если мы говорим об основах геометрии, то периметр это сумма всех сторон треугольника: Р=а+b+с.

    Однако, если речь идт о более сложных геометрических и тригонометрических задачах, когда нам даны определнные данные, то есть несколько других формул, для вычисления периметра треугольника:

    Если известны радиус вписанной в треугольник окружности и его площадь, то периметр вычисляется по формуле: P=2S/r.

    Если известны два угла, например, amp;#945; и amp;#946;, прилежащих к одной стороне, и длина этой стороны, то формула для периметра следующая: Р=а+sinamp;#945;amp;#8729;а/(sin(180-amp;#945;-amp;#946;)) + sinamp;#946;amp;#8729;а/(sin(180-amp;#945;-amp;#946;)).

    Если есть длины смежных сторон и угол amp;#946; между ними, то периметр вычисляется при помощи формулы теоремы косинусов: P=a+b+amp;#8730;(а2+b2-2amp;#8729;aamp;#8729;bamp;#8729;cosamp;#946;), где а2 и b2 квадраты длин смежных сторон. Выражение под корнем длина третьей неизвестной стороны, выраженная через теорему косинусов.

    Периметр равнобедренного треугольника имеет следующий вид P=2a+b, где а боковые стороны, а b его основание.

    Периметр правильного треугольника: P=3a.

    Формула периметра для равностороннего треугольник, если известен радиус вписанной в него окружности P=6ramp;#8730;3, или радиус описанной около него окружности Р=3Ramp;#8730;3, где r и R соответственно радиусы вписанной или описанной окружности.

    Для равнобедренного треугольника есть формула: P=2R(2sinamp;#945;+sinamp;#946;), где amp;#945; угол при основании, amp;#946; угол, противолежащий основанию.

    Смотря на то, что вам известно из постановки задачи.

    Самый простой вариант — сложить длины всех сторон.

    В равностороннем треугольнике — длина стороны умножается на три.

    По формуле P=2S/r, если известны S — площадь и r — радиус вписанной окружности.

    Так же есть формулы для нахождения площади треугольника, если известны его углы.

    Если треугольник равносторонний, то чтобы найти его периметр нужно длину одной стороны умножить на три. А если треугольник разносторонний, тогда чтобы найти его периметр нужно сложить длины всех его сторон.

  • Как найти периметр треугольника

    Можете призвать на помощь Яндекс. Впишите в поисковую строку:

    периметр треугольника

    Яндекс вам предложит вот такой вот интерфейс, куда нужно будет просто подставить значения.

  • Чтобы найти периметр равностороннего треугольника, нужно длину одной стороны умножить на три.

    Чтобы найти периметр равнобедренного треугольника, нужно взять длину одной из равных по длине сторон, умножить на два и прибавить длину основания.

    Взять в руки линейку, измерить каждую сторону треугольника (если он равносторонний, то можно измерить только одну) и сложить длины его сторон. В случае равностороннего треугольника длину его стороны умножаем на 3.

    В уме, в столбик, на калькуляторе — как сможете, в завсисмости от математических способностей и наличия-отсутствия калькулятора.

    Найти периметр треугольника , если известна длина каждой из его сторон, просто нужно сложить длины сторон и получим периметр: (P=a+b+c ).

    Еще проще найти периметр равностороннего треугольника нужно просто умножить длину его стороны на 3: (P=3a) .

    Но чаще потребность в расчете периметра возникает тогда, когда известна длина не всех его сторон.

    Поэтому, если известна одна сторона треугольника c и прилегающие к ней углы, то формула расчета периметра будет выглядеть так:

    Периметр треугольника находится просто. Периметр это длина трх сторон треугольника. Надо сложить первую сторону, вторую сторону и третью сторону — общая длина трх сторон и будет периметром треугольника .

    Периметр — это сума длин сторон. Надо просуммировать длины всех сторон треугольника. Или я что-то неправильно поняла? Какие исходные данные задачи?

    Чтобы найти периметр треугольника, Вам необходимо сложить длины всех трех его сторон. Если треугольник равнобедренный, то можно длину одного ребра умножить на 2 и прибавить длину основания, таким образом получится периметр равнобедренного треугольника.

Периметр треугольника с прямым углом. Как найти периметр треугольника если известны не все стороны. Полезное видео: задачи на периметр труегольника

Периметр – это величина, подразумевающая длину всех сторон плоской (двумерной) геометрической фигуры. Для разных геометрических фигур существуют разные способы нахождения периметра.

В данной статье вы узнаете как находить периметр фигуры разными способами, в зависимости от известных его граней.

Возможные методы:

  • известны все три стороны равнобедренного или любого другого треугольника;
  • как найти периметр прямоугольного треугольника при двух известных его гранях;
  • известны две грани и угол, который расположен между ними (формула косинусов) без средней линии и высоты.

Первый метод: известны все стороны фигуры

Как находить периметра треугольника, когда известны все три грани , необходимо использовать следующую формулу: P = a + b + c, где a,b,c – известные длины всех сторон треугольника, P – периметр фигуры.

Например, известны три стороны фигуры: a = 24 см, b = 24 см, c = 24 см. Это правильная равнобедренная фигура, чтобы вычислить периметр пользуемся формулой: P = 24 + 24 + 24 = 72 см.

Данная формула подходит к любому треугольнику , необходимо просто знать длины всех его сторон. Если хотя бы одна из них неизвестна, необходимо воспользоваться другими способами, о которых мы поговорим ниже.

Еще один пример: a = 15 см, б = 13 см, c = 17 см. 2 – (2 * a * b * cos(C)), где a,b,c – стандартно длины граней, а A,B и С – это углы, которые лежат напротив соответствующих граней треугольника. То есть, A – угол, противолежащий стороне a и так далее.

Представим, что описан треугольник, стороны а и б которого составляют 100 см и 120 см соответственно, а угол, лежащий между ними, составляет 97 градусов. То есть а = 100 см, б = 120 см, C = 97 градусов.

Все, что нужно сделать в данном случае – это подставить все известные значения в теорему косинусов. Длины известных граней возводятся в квадрат, после чего известные стороны перемножаются между друг другом и на два и умножаются на косинус угла между ними. Далее, необходимо сложить квадраты граней и отнять от них второе полученное значение. Из итоговой величины извлекается квадратный корень – это будет третья, неизвестная до этого сторона.

После того как все три грани фигуры известны, осталось воспользоваться уже полюбившейся нам стандартной формулой поиска периметра описываемой фигуры из первого метода.

Прямоугольный треугольник — простая, но крайне важная для математики фигура. Знание о его свойствах и умение оперировать основными параметрами прямоугольного треугольника позволит вам справиться как со школьными, так и с реальными задачами.

Геометрия прямоугольного треугольника

Геометрически треугольник — это три точки, не лежащие на одной прямой, которые соединены между собой отрезками. Прямоугольный треугольник — фигура, две стороны которой образуют прямой угол. Эти стороны называются катетами треугольника, а третья, самая длинная сторона, носит название гипотенузы. Соотношение квадратов катетов и гипотенузы устанавливает теорема Пифагора — одна из фундаментальных теорем евклидовой геометрии.

Соотношения гипотенузы и катетов также положили основу для целого раздела математики — тригонометрии. Изначально синусы и косинусы определялись как функции углов прямоугольного треугольника, но в современном значении тригонометрические функции расширены на всю числовую ось. Сегодня тригонометрия используется во многих областях человеческой деятельности: от астрономии и океанографии до анализа финансовых рынков и разработки компьютерных игр.

Прямоугольный треугольник в реальности

Непосредственно прямоугольный треугольник встречается в реальности на каждом углу, как в прямом, так и в переносном смысле. Форму прямоугольного треугольника имеют грани тетраэдров и призм, которые в реальности превращаются в детали машин, керамическую плитку или скаты крыш. Угольник — чертежный инструмент, с которым человек впервые встречается на уроке геометрии, имеет форму именно прямоугольного треугольника и используется в проектировании, строительстве и столярном деле.

Периметр треугольника

Периметр — это численная оценка длин всех сторон плоской геометрической фигуры. Периметр n-угольника находится как сумма длин n сторон. Для определения периметра прямоугольного треугольника используется простая формула:

a и b – катеты, c – гипотенуза.

Вычисляя периметр треугольника вручную, вам пришлось бы измерять все три стороны, проводить дополнительные тригонометрические операции или вычисления по теореме Пифагора. Используя онлайн-калькулятор вам достаточно узнать следующие пары переменных:

  • два катета;
  • катет и угол;
  • гипотенуза и угол.

В школьных задачах или на практике вам будут заданы исходные данные, поэтому калькулятор позволяет найти периметр, зная разные пары параметров. Кроме того, инструмент автоматически рассчитывает все остальные атрибуты прямоугольного треугольника, то есть длины всех сторон и величины всех углов. Рассмотрим пару примеров.

Примеры из жизни

Школьная задача

Пусть в школьной задаче вам задан прямоугольный треугольник с длиной катета равным 5 см и прилежащим углом, величина которого составляет 60 градусов. Требуется найти периметр геометрической фигуры. Онлайн-калькулятор сопровождается рисунком, на котором изображены стороны и углы прямоугольного треугольника. Мы видим, что если катет a = 5 см, то его прилежащий угол — это угол бета. Это важный момент, так как если вы используете для расчетов угол альфа, то результат будет неверным. Вбиваем эти данные в форму и получаем ответ в виде:

Помимо непосредственно периметра, наша программа также определила величину противолежащего угла, а также длину второго катета и гипотенузы.

Обустройство клумбы

Допустим, вы хотите сделать ограду для клумбы, которая имеет форму прямоугольного треугольника. Для этого вам необходимо узнать периметр фигуры. Конечно, в реальности вы можете просто замерить все три стороны, но легко упростить себе задачу и измерить только два катета. Пусть они имеют длину 8 и 15 метров. Вбиваем эти данные в форму калькулятора и получаем ответ:

Итак, вам понадобится закупить материалы для обустройства 40 метров ограды. Наш калькулятор также подсчитал длину гипотенузы — 17 метров. Числа 8, 15 и 17 составляют пифагорову тройку — натуральные числа, которые удовлетворяют условиям теоремы Пифагора.

Заключение

Прямоугольные треугольники получили широкое распространение в повседневности, поэтому определение площади или периметра геометрической фигуры наверняка пригодится вам при решении школьных задач или бытовых вопросов.

Прямоугольный треугольник — это частный вид произвольного треугольника. Как и любой другой треугольник он имеет три стороны, но один из его углов обязательно должен составлять 90 градусов. Ка только вы определили, что заданный треугольник является прямоугольным, можно приступить к нахождению его основных величин. Одной из характеристик прямоугольного треугольника является его периметр. Нахождению периметра прямоугольного треугольника посвящено много задач по геометрии. Перед тем как мы рассмотрим основные способы нахождения периметра прямоугольного треугольника, хотелось бы напомнить, что периметр любой геометрической фигуры на плоскости равен сумме длин все ее сторон. Для все видов треугольников данное утверждение можно записать в виде следующего выражения:

где P — периметр треугольника;
a, b, c — стороны треугольника.

В прямоугольном треугольнике, как уже было сказано выше присутствует отличительная особенность в виде одного из углов, составляющего 90 градусов. Две стороны треугольника, прилегающие к данному углу называют катетами. Противоположную прямому углу сторону принято называть гипотенузой.

Необычные свойства прямоугольного треугольника было открыто Пифагором, который обнаружил, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов, что может быть записано в виде выражения:

Прямоугольный треугольник — это частный вид произвольного треугольника. Как и любой другой треугольник он имеет три стороны, но один из его углов обязательно должен составлять 90 градусов. Ка только вы определили, что заданный треугольник является прямоугольным, можно приступить к нахождению его основных величин. Одной из характеристик прямоугольного треугольника является его периметр. Нахождению периметра прямоугольного треугольника посвящено много задач по геометрии.

Где P — периметр треугольника;

A, b, c — стороны треугольника.

Исходя из теоремы Пифагора появилась возможность определять периметр прямоугольного треугольника по его двум любым сторонам известной длины. Если известны длины катетов, то периметр треугольника определяется через нахождение величины гипотенузы по формуле:

Если известен только один из катетов и длина гипотенузы, то периметр треугольника определяется через нахождение величины недостающего катета по формуле:

Если в прямоугольном треугольнике известна только длина гипотенузы с и один из прилегающих к ней острых углов α, то периметр треугольника в данном случае может быть определен по формуле:

В том случае, когда условиями задачи задана длина катета a и величина противолежащего ему острого угла α, то периметр прямоугольного треугольника в данном случае вычисляется по формуле:

Если же задан катет a с прилежащим к нему углом β, то периметр треугольника может быть рассчитан на основе выражения:

P = a + b + c, где, допустим,

P = v(a2 + b2) + a + b, или

P = v(c2 – b2) + b + с.

P = (1 + sin? + cos?)*с.

P = a*(1/tg? + 1/sin? + 1)

P = a*(1/сtg? + 1/cos? + 1)

Другие новости по теме:


Как найти периметр прямоугольного треугольника

Прямоугольным треугольником считается такой треугольник, один из углов которого равен 90 градусам, а два других являются острыми углами. Расчет периметра такого треугольника будет зависим от количества известных о нем данных.

В зависимости от случая, знание двух из трех сторон треугольника, а также одного из его острых углов.

Спонсор размещения P&G Статьи по теме «Как найти периметр прямоугольного треугольника» Как найти площадь поверхности пирамиды Как найти периметр если известна площадь Как найти периметр равностороннего треугольника

Способ 1.Если известны все три стороны треугольника, то, независимо от того, прямоугольный ли треугольник или нет, его периметр будет рассчитан так:

P = a + b + c, где, допустим,

Способ 2. Если в прямоугольнике известны только 2 стороны, то, используя теорему Пифагора, периметр этого треугольника можно рассчитать по формуле:

P = v(a2 + b2) + a + b, или

P = v(c2 – b2) + b + с.

Способ 3. Пусть в прямоугольном треугольнике даны гипотенуза c и острый угол?, то найти периметр можно будет таким образом:

P = (1 + sin? + cos?)*с.

Способ 4. Дано, что в прямоугольном треугольнике длина одного из катета равна a, а напротив него лежит острый угол?. Тогда расчет периметра этого треугольника будет вестись по формуле:

P = a*(1/tg? + 1/sin? + 1)

Способ 5. Пускай нам известен катет a и прилежащий к нему угол?, тогда периметр будет рассчитан так:

P = a*(1/сtg? + 1/cos? + 1)

Другие новости по теме:

Площадь и периметр — основные числовые характеристики любых геометрических фигур. Нахождение этих величин упрощается благодаря общепринятым формулам, согласно которым можно также вычислить одно через другое с минимумом или полным отсутствием дополнительных начальных данных. Спонсор размещения P&G

Равносторонний треугольник наряду с квадратом является, пожалуй, самой простой и симметричной фигурой в планиметрии. Разумеется, все соотношения, справедливые для обычного треугольника, верны также и для равностороннего. Однако для правильного треугольника все формулы становятся намного проще. Вам

Периметр треугольника, как и любой другой плоской геометрической фигуры, составляет сумма длин ограничивающих его отрезков. Поэтому, чтобы вычислить длину периметра, надо знать длины его сторон. Но в силу того, что длины сторон в геометрических фигурах связаны определенными соотношениями с

Прямоугольным считается такой треугольник, у которого один из углов прямой. Сторона треугольника, расположенная напротив прямого угла, называется гипотенузой, а две другие стороны — катетами. Чтобы найти длины сторон прямоугольного треугольника, можно воспользоваться несколькими способами. Спонсор

Периметр любой геометрической фигуры, в том числе треугольника, равен совокупной длине границ этой фигуры. Он обозначается заглавной латинской буквой P и легко находится методом сложения длин всех сторон данной фигуры. Спонсор размещения P&G Статьи по теме «Как вычислить периметр треугольника»

Треугольник — это многоугольник, имеющий три стороны и три угла. Как же вычислить его периметр? Спонсор размещения P&G Статьи по теме «Как находить периметр треугольника» Как найти периметр треугольника, заданного координатами своих вершин Как найти площадь треугольника Как найти длину и ширину

Гипотенуза – самая длинная сторона прямоугольного треугольника. Она расположена противоположно прямому углу. Способ нахождения гипотенузы прямоугольного треугольника зависит от того, какими исходными данными вы обладаете. Спонсор размещения P&G Статьи по теме «Как найти гипотенузу треугольника» Как

Прямоугольный треугольник характеризуется определенными соотношениями между углами и сторонами. Зная значения одних из них, можно вычислять другие. Для этого используются формулы, основанные, в свою очередь, на аксиомах и теоремах геометрии. Спонсор размещения P&G Статьи по теме «Как определить

Казалось бы, что может быть проще, чем вычисление площади и периметра треугольника – измерил стороны, поставил цифры в формулу – и все. Если вы так считаете, значит, забыли, что для этих целей существует не две простенькие формулы, а гораздо больше – для каждого вида треугольника – своя. Вам

Периметр треугольника – сумма длин его сторон. Найти периметр треугольника часто требуется как в задачах начальной геометрии, так и в более трудных заданиях. При их решении недостающие величины находят из других данных. Основные зависимости периметра треугольника от его других измерений отражены в

Прямоугольным треугольником считается такой треугольник, один из углов которого равен 90 градусам, а два других являются острыми углами. Расчет периметра такого треугольника будет зависим от числа знаменитых о нем данных.

Вам понадобится

  • В зависимости от случая, умение 2-х из 3 сторон треугольника, а также одного из его острых углов.

Инструкция

1. Метод 1.Если знамениты все три стороны треугольника , то, самостоятельно от того, прямоугольный ли треугольник либо нет, его периметр будет рассчитан так:P = a + b + c, где, возможен,c – гипотенуза;a и b – катеты.

2. Метод 2. Если в прямоугольнике вестимы только 2 стороны, то, применяя теорему Пифагора, периметр этого треугольника дозволено рассчитать по формуле:P = v(a2 + b2) + a + b, илиP = v(c2 – b2) + b + с.

3. Метод 3. Пускай в прямоугольном треугольнике даны гипотенуза c и острый угол?, то обнаружить периметр дозволено будет таким образом:P = (1 + sin ? + cos ?)*с.

4. Метод 4. Дано, что в прямоугольном треугольнике длина одного из катета равна a, а наоборот него лежит острый угол?. Тогда расчет периметра этого треугольника будет вестись по формуле:P = a*(1/tg ? + 1/sin ? + 1)

5. Метод 5. Пускай нам вестим катет a и прилежащий к нему угол?, тогда периметр будет рассчитан так:P = a*(1/сtg ? + 1/cos ? + 1)

Видео по теме

Одной из базовых геометрических фигур является треугольник. Он образуется при пересечении трех отрезков прямых. Данные отрезки прямых формируют стороны фигуры, а точки их пересечения называются вершинами. Каждый школьник, изучающий курс геометрии, обязан уметь находить периметр этой фигуры. Полученное умение будет полезным для многих и во взрослой жизни, к примеру, пригодится студенту, инженеру, строителю,

Существуют разные способы найти периметр треугольника. Выбор необходимой для вас формулы зависит от имеющихся исходных данных. Чтобы записать данную величину в математической терминологии используют специальное обозначение – Р. Рассмотрим, что такое периметр, основные способы его расчета для треугольных фигур разных видов.

Самым простым способом найти периметр фигуры, если есть данные всех сторон. В этом случае используется следующая формула:

Буквой «P» обозначается сама величина периметра. В свою очередь «a», «b» и «c» – это длины сторон.

Зная размер трех величин, достаточно будет получить их сумму, которая и является периметром.

Альтернативный вариант

В математических задачах все данные длины редко бывают известны. В таких случаях рекомендуется воспользоваться альтернативным способом поиска нужной величины. Когда в условиях указана длина двух прямых, а также угол, находящийся между ними, расчет производится через поиск третьей. Для поиска этого числа необходимо добыть квадратный корень по формуле:

.

Периметр по двум сторонам

Для расчета периметра не обязательно знать все данные геометрической фигуры. Рассмотрим способы расчета по двум сторонам.

Равнобедренный треугольник

Равнобедренным называется такой треугольник, не меньше двух сторон которого имеют одинаковую длину. Они называются боковыми, а третья сторона – основанием. Равные прямые образовывают вершинный угол. Особенностью в равнобедренном треугольникеявляется наличие одной оси симметрии. Ось – вертикальная линия, выходящая из вершинного угла и заканчивающаяся посредине основания. По своей сути ось симметрии включает в себя такие понятия:

  • биссектриса вершинного угла;
  • медиана к основанию;
  • высота треугольника;
  • срединный перпендикуляр.

Чтобы определить периметр равнобедренного вида треугольной фигуры, воспользуйтесь формулой.

В данном случае вам необходимо знать только две величины: основание и длину одной стороны. Обозначение «2а» подразумевает умножение длины боковой стороны на 2. К полученной цифре нужно добавить величину основания – «b».

В исключительном случае, когда длина основания равнобедренного треугольника равна его боковой прямой, можно воспользоваться более простым способом. Он выражается в следующей формуле:

Для получения результата достаточно умножить это число на три. Эта формула используется для того, чтобы найти периметр правильного треугольника.

Полезное видео: задачи на периметр труегольника

Треугольник прямоугольный

Главным отличием прямоугольного треугольника от других геометрических фигур этой категории является наличие угла 90°. По этому признаку и определяется вид фигуры. Прежде, чем определить, как найти периметр прямоугольного треугольника, стоит заметить, что данная величина для любой плоской геометрической фигуры составляет сумму всех сторон. Так и в этом случае самый простой способ узнать результат – суммировать три величины.

В научной терминологии те стороны, которые прилегают к прямому углу, имеют название «катеты», а противоположная к углу 90º – гипотенуза. Особенности этой фигуры исследовались еще древнегреческим ученым Пифагором. Согласно с теоремой Пифагора, квадрат гипотенузы равен сумме квадратов катетов.

.

На основании данной теоремы выведена еще одна формула, объясняющая, как найти периметр треугольника по двум известным сторонам. Рассчитать периметр при указанной длине катетов можно, используя следующий способ.

.

Чтобы узнать периметр, имея информацию о размере одного катета и гипотенузы, нужно определить длину второй гипотенузы. С этой целью используют такие формулы:

.

Также периметр описанного вида фигуры определяется и без данных о размерах катетов.

Вам потребуется знать длину гипотенузы, а также угол, прилегающий к ней. Зная длину одного из катетов, если имеется угол, прилегающий к нему, периметр фигуры рассчитывают по формуле:

.

Расчет через высоту

Рассчитать периметр таких категорий, как равнобедренные и прямоугольные треугольники, можно через показатель их средней линии. Как известно, высота треугольника разделяет его основание пополам. Таким образом, она образует две прямоугольных фигуры. Далее, нужный показатель вычисляется при помощи теоремы Пифагора. Формула будет иметь следующий вид:

.

Если известна высота и половина основания, используя этот способ, вы получите нужное число без поиска остальных данных о фигуре.

Полезное видео: нахождение периметра треугольника

Читайте также…
  • Девять самых крутых животных из «Звёздных войн Маленькие зверьки из звездных войн
  • Черное Солнце — символ-оберег для Ведающих Черное солнце star wars
  • Пример из двух зол выбирают меньшее
  • Неизвестная трехпалая раса

Периметр прямоугольного треугольника: онлайн калькулятор, формулы, примеры решений

Фигура {$ main. figures[data.figure] $}

1. Каков периметр треугольника?
2. Периметр треугольника Формула
3. Как найти периметр треугольника?
4. Часто задаваемые вопросы о периметре треугольника

    Шаг 1. Прочтите задачу. Нарисуйте рисунок и подпишите его с помощью данной информации.
    Шаг 2. Определите , что вы ищете. мера третьего угла треугольника
    Шаг 5. Решите уравнение. \(\begin{массив} {rll} {55 + 82 + x} &{=} &{180} \\ {137 + x} &{=} &{180} \\ {x} &{=} &{43} \end{массив}\)
    Шаг 6. Проверка.

    \(\begin{array} {rll} {55 + 82 + 43} &{\stackrel{?}{=}} &{180} \\ {180} &{=} &{180\checkmark} \ конец{массив}\)

     
    Шаг 7. Ответьте на вопрос. Размер третьего угла равен 43 градусам.

    Шаг 1. Прочтите задачу. Нарисуйте рисунок и подпишите его с помощью данной информации.
    Шаг 2. Определите , что вы ищете. длина третьей стороны треугольника
    Шаг 3. Имя. Выберите переменную для ее представления. Пусть \(c=\) третья сторона.
    Шаг 4. Переведите.  
    Напишите соответствующую формулу и замените ее.
    Замените предоставленную информацию.
    Шаг 5. Решите уравнение.
    Шаг 6. Проверка.

    \(\begin{array} {rll} {P} &{=} &{a + b +c} \\ {24} &{\stackrel{?}{=}} &{4 + 9+11 } \\ {24} &{=} &{24\checkmark} \end{массив}\)

     
    Шаг 7. Ответьте на вопрос. Длина третьей стороны 11 футов.