Уравнения с дискриминантом примеры: Квадратные уравнения — 32 примера

Содержание

Квадратные уравнения и уравнения, приводящиеся к квадратным. Мини-курс. 9 видео уроков. — Math

Квадратные уравнения и уравнения, приводящиеся к квадратным. Мини-курс. 9 видео уроков.

Квадратные уравнения. Какое квадратное уравнение называется полным? Формула дискриминанта и корней полного квадратного уравнения. Уравнения с дробями. Как избавиться от всех знаменателей сразу. Алгебра 8 класс. Примеры с решением и объяснением. Видеоуроки по математике. Устранение пробелов в знаниях. Подготовка к ЗНО ( ВНО ) по математике. Подготовка к ЕГЭ, ДПА ( ГИА ), ОГЭ по математике.

 

#116 Урок 2. Неполные квадратные уравнения. Решение через дискриминант. Алгебра 8 класс.Математика.

Квадратные уравнения. Какое квадратное уравнение называется полным? Какое квадратное уравнение называется неполным? Формула дискриминанта и корней полного квадратного уравнения. Как решать неполное квадратное уравнение через дискриминант. Алгебра 8 класс. Примеры с решением и объяснением.

 

#117 Урок 3. Квадратные уравнения. Текстовые задачи. Алгебра 8 класс.

Решение текстовых задач составлением квадратного уравнения. Алгебра 8 класс. Примеры с решением.

  • Пример 1: Найдите три последовательных целых числа, если удвоенный квадрат первого из них на 26 больше произведения второго и третьего чисел.
  • Пример 2: Найдите четыре последовательных четных числа, если утроенное произведение второго и третьего чисел на 344 больше произведения первого и четвертого.
  • Пример 3: Найдите стороны прямоугольника, если их разность равна 23 дм, а диагональ 37 дм.
  • Пример 4: Сколько сторон имеет многоугольник, если в нем можно провести 77 диагоналей.

Задачи с объяснением. Видеоуроки по математике. Устранение пробелов в знаниях. Подготовка к ЗНО ( ВНО ) по математике. Подготовка к ЕГЭ, ДПА ( ГИА ), ОГЭ по математике.

#118 Урок 4 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

Квадратные уравнения. Параметры. Алгебра 8 класс. Что такое параметр? Понятие параметра в математике. Определение параметра: Если в уравнение или неравенство наряду с неизвестной величиной входят неизвестные, но фиксированные числа, обозначаемые буквами, то они называются параметрами. Пример: 10х2 +4х+b=0; х — переменная; b — параметр; В уравнениях (неравенствах) коэффициенты при неизвестных или свободные члены заданные не конкретными числовыми значениями, а обозначенные буквами называются параметрами. Примеры с решением и объяснением.

  • Пример 1: При каком значении а, число 1/3 является корнем уравнения…?
  • Пример 2: При каком значении b имеет единственный корень уравнение? Условие единственности корня. Видеоуроки по математике. Устранение пробелов в знаниях. Подготовка к ЗНО ( ВНО ) по математике. Подготовка к ЕГЭ, ДПА ( ГИА ), ОГЭ по математике.
#119 Урок 5. Параметры. Решение квадратных уравнений с параметрами. Алгебра 8 класс. Математика.

Параметры. Решение квадратных уравнений с параметрами. Алгебра 8 класс. Квадратные уравнения. Примеры с решением и объяснением.

  • Пример 1: Решить квадратное уравнение с параметром, если коэффициент при х2 фиксированное число.
  • Пример 2: Решить квадратное уравнение с параметром, если коэффициент при х2 записано с использованием параметра.
 #120 Урок 6. Квадратные уравнения с модулем. Алгебра 8 класс. Решить уравнение. Модуль. Математика.

Решение квадратных уравнений с модулем. Алгебра 8 класс. Примеры с решением.

  • Пример 1: Решить квадратное уравнение с модулем, раскрыв модуль по определению.
  • Пример 2: Решить квадратное уравнение с модулем, раскрыв модуль, используя свойства модуля.

Квадратные уравнения с модулем 8 класс; квадратное уравнение под модулем; квадратные уравнения с модулем примеры; решение квадратных уравнений с модулем 8 класс; квадратные уравнения с модулем примеры решения; решение квадратных уравнений содержащих модуль; как раскрыть модуль квадратного уравнения. Как решать квадратное уравнение с модулем. Как раскрыть модуль, используя его определение. Определение модуля. Свойства модуля. Решить квадратное уравнение. Решить через дискриминант. Сделать проверку. Посторонние корни. Как убрать посторонние корни. Математика. Образование. Подготовка к егэ, егэ математика, видео уроки, подготовка к зно, вно математика. Видео уроки алгебра, алгебра видеоуроки, онлайн урок, математика видео уроки, онлайн урок, инфо урок, огэ, огэ математика. Дистанционное обучение.

#121 Урок 7. Решение квадратных уравнений с использованием свойств функций. Алгебра 8 класс.

Квадратные уравнения. Использование свойств функций для решения квадратных уравнений. Оценка левой и правой частей уравнения. Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю. Примеры с решением.

  • Пример 1: Решить иррациональное уравнение, приводящееся к квадратному, используя свойства функций.
  • Пример 2: Решить уравнение, преобразовав условие по формулам сокращенного умножения и оценив левую и правую части уравнения.
  • Пример 3: Решить уравнение с корнем и модулем.

#122 Урок 8. Решение квадратных уравнений с учетом ОДЗ. Область определения. Алгебра 8 класс.

Область определения функции, 4 случая: многочлен, дробь, квадратный корень и квадратные корень в знаменателе. ОДЗ дроби. ОДЗ корня. ОДЗ уравнения. Область определения квадратного корня. Область определения квадратного дроби. Область определения квадратного корня в знаменателе. Что такое область определения. Область определения теория. Область определения, табличка. Примеры с решением. Алгебра 8 класс. Решить квадратное уравнение с учетом ОДЗ. ОДЗ квадратного уравнения; как найти одз в квадратном уравнении; одз корня квадратного уравнения; 2 квадратных уравнения; решение квадратных уравнений; произведение квадратных уравнений; 3 квадратных уравнения. Математика. Образование. Подготовка к егэ, егэ математика, видео уроки, подготовка к зно, вно математика. Видео уроки алгебра, алгебра видеоуроки, онлайн урок, математика видео уроки, онлайн урок, инфо урок, огэ, огэ математика. Дистанционное обучение.

#62 Урок 9. Решение квадратных и кубических уравнений разложением на множители.

Как решить квадратное или кубическое уравнение, разложив его на множители?

Общий алгоритм:

  1. Разложить на множители (вынести общий множитель за скобки, посмотреть формулы, посмотреть способ группировки).
  2. Приравнять каждый множитель к нулю.
  3. Решить полученные уравнения.

Формулы сокращенного умножения. Разность квадратов, разность кубов, квадрат разности.Примеры с решением. Решение кубических уравнений. Уравнение четвертой степени. Как решить уравнение?

  • Пример 1: Решить кубическое уравнение разложением на множители.
  • Пример 2: Решить кубическое уравнение, используя формулы сокращенного умножения.
  • Пример 3: Решить кубическое уравнение, используя способ группировки.
  • Пример 4: Решить уравнение 4-й степени разложением на множители.

Полезные материалы:

Арифметический квадратный корень. Мини-курс. Уроки 1-5.

Мини-курс. Рациональные дроби. Алгебра 7-8 класс.

 

Информация о материале
Категория: Алгебра 8 класс.
  • Назад
  • Вперед
Добавить комментарий

примеры решений. Как решать квадратные уравнения через дискриминант :: SYL.ru

Квадратные уравнения часто появляются во время решения различных задач физики и математики. В данной статье мы рассмотрим, как решать эти равенства универсальным способом «через дискриминант». Примеры использования полученных знаний также даются в статье.

О каких уравнениях пойдет речь?

На рисунке ниже изображена формула, в которой x — неизвестная переменная, а латинские символы a, b, c представляют собой некоторые известные числа.

Каждый из этих символов называется коэффициентом. Как можно заметить, число «a» стоит перед переменной x, возведенной в квадрат. Это максимальная степень представленного выражения, поэтому оно называется квадратным уравнением. Часто используют другое его название: уравнение второго порядка. Само значение a — это квадратный коэффициент (стоящий при переменной в квадрате), b — это линейный коэффициент (он находится рядом с переменной, возведенной в первую степень), наконец, число c — свободный член.

Отметим, что вид уравнения, который изображен на рисунке выше, является общим классическим квадратным выражением. Помимо него существуют другие уравнения второго порядка, в которых коэффициенты b, c могут быть нулевыми.

Когда ставят задачу решить рассматриваемое равенство, то это означает, что такие значения переменной x нужно найти, которые бы ему удовлетворяли. Здесь первым делом нужно запомнить следующую вещь: поскольку максимальная степень икса — это 2, то данный тип выражений не может иметь больше, чем 2 решения. Это означает, что если при решении уравнения были найдены 2 значения x, которые ему удовлетворяют, то можно быть уверенным, что не существует никакого 3-го числа, подставляя которое вместо x, равенство также бы являлось истиной. Решения уравнения в математике называют его корнями.

Способы решения уравнений второго порядка

Решения уравнений этого типа требует знания некоторой теории о них. В школьном курсе алгебры рассматривают 4 различных метода решения. Перечислим их:

  • с помощью факторизации;
  • используя формулу для полного квадрата;
  • применяя график соответствующей квадратичной функции;
  • используя уравнение дискриминанта.

Плюс первого метода заключается в его простоте, однако, он не для всех уравнений может применяться. Второй способ является универсальным, однако несколько громоздким. Третий метод отличается своей наглядностью, но он не всегда удобен и применим. И, наконец, использование уравнения дискриминанта — это универсальный и достаточно простой способ нахождения корней абсолютно любого уравнения второго порядка. Поэтому в статье рассмотрим только его.

Формула для получения корней уравнения

Обратимся к общему виду квадратного уравнения. Запишем его: a*x²+ b*x + c =0. Перед тем как пользоваться способом его решения «через дискриминант», следует приводить равенство всегда к записанному виду. То есть оно должно состоять из трех слагаемых (или меньше, если b или c равен 0).

Например, если имеется выражение: x²-9*x+8 = -5*x+7*x², то сначала следует перенести все его члены в одну сторону равенства и сложить слагаемые, содержащие переменную x в одинаковых степенях.

В данном случае эта операция приведет к следующему выражению: -6*x²-4*x+8=0, которое эквивалентно уравнению 6*x²+4*x-8=0 (здесь левую и правую части равенства мы умножили на -1).

Как только усвоен описанный выше шаг, далее, следует научиться различать коэффициенты. Здесь все просто: при x² всегда стоит a, при x1 находится b, свободный член c представляет собой не связанное с x число.

В примере выше a = 6, b=4, c=-8. Заметим, что все члены рассматриваемого равенства всегда суммируются между собой, поэтому если появляется знак «-«, то это означает, что отрицательным является соответствующий коэффициент, как число c в данном случае.

Разобрав этот момент, перейдем теперь к самой формуле, которая дает возможность получения корней квадратного уравнения. Она имеет вид, который представлен на фото ниже.

Как видно из этого выражения, оно позволяет получать два корня (следует обратить внимание на знак «±»). Для этого в него достаточно подставить коэффициенты b, c, и a.

Понятие о дискриминанте

В предыдущем пункте была приведена формула, которая позволяет быстро решить любое уравнение второго порядка. В ней подкоренное выражение называют дискриминантом, то есть D = b²-4*a*c.

Почему эту часть формулы выделяют, и она даже имеет собственное название? Дело в том, что дискриминант связывает в единое выражение все три коэффициента уравнения. Последний факт означает, что он полностью несет информацию о корнях, которую можно выразить следующим списком:

  1. D>0: равенство имеет 2 различных решения, причем оба они представляют собой действительные числа.
  2. D<0: также получаются два корня, но оба они комплексные. Этот тип выражений научились решать только в эпоху Возрождения, когда математиками нового времени было введено понятие «мнимая единица».
  3. D=0: у уравнения всего один корень, и он является действительным числом.

Далее в статье приведены примеры с дискриминантом квадратных уравнений и дано их решение.

Задача на определение дискриминанта

Приведем простой пример, как найти дискриминант. Пусть дано такое равенство: 2*x² — 4+5*x-9*x² = 3*x-5*x²+7.

Приведем его к стандартному виду, получаем: (2*x²-9*x²+5*x²) + (5*x-3*x) + (- 4-7) = 0, откуда приходим к равенству: -2*x²+2*x-11 = 0. Здесь a=-2, b=2, c=-11.

Теперь можно воспользоваться названной формулой для дискриминанта: D = 2² — 4*(-2)*(-11) = -84. Полученное число является ответом на поставленную задачу. Поскольку в примере дискриминант меньше нуля, то можно сказать, что данное квадратное уравнение не имеет действительных корней. Его решением будут только числа комплексного типа.

Пример неравенства через дискриминант

Решим задачи несколько иного типа: дано равенство -3*x²-6*x+c = 0. Необходимо найти такие значения c, для которых D>0.

В данном случае известно лишь 2 из 3 коэффициентов, поэтому рассчитать точное значение дискриминанта не получится, однако известно, что он является положительным. Последний факт используем при составлении неравенства: D= (-6)²-4*(-3)*c>0 => 36+12*c>0. Решение полученного неравенства приводит к результату: c>-3.

Проверим полученное число. Для этого вычислим D для 2 случаев: c=-2 и c=-4. Число -2 удовлетворяет полученному результату (-2>-3), соответствующий дискриминант будет иметь значение: D = 12>0. В свою очередь, число -4 не удовлетворяет неравенству (-4<-3), вычисляем дискриминант: D = -12<0, что противоречит условию задачи.

Таким образом, любые числа c, которые больше -3, будут удовлетворять условию.

Пример решения уравнения

Приведем задачу, которая заключается не только в нахождении дискриминанта, но и в решении уравнения. Необходимо найти корни для равенства -2*x²+7-9*x = 0.

В этом примере дискриминант равен следующему значению: D = 81-4*(-2)*7= 137. Тогда корни уравнения определятся так: x = (9±√137)/(-4). Это точные значения корней, если вычислить приближенно корень, тогда получатся числа: x = -5,176 и x = 0,676.

Геометрическая задача

Решим задачу, которая потребует не только умения вычислять дискриминант, но и применения навыков абстрактного мышления и знания, как составлять квадратные уравнения.

У Боба было пуховое одеяло размером 5 x 4 метра. Мальчик захотел пришить к нему по всему периметру сплошную полосу из красивой ткани. Какой толщины будет эта полоса, если известно, что у Боба имеется 10 м² ткани.

Пусть полоса будет иметь толщину x м, тогда площадь ткани по длинной стороне одеяла составит (5+2*x)*x, а поскольку длинных сторон 2, то имеем: 2*x*(5+2*x). По короткой стороне площадь пришитой ткани составит 4*x, так как этих сторон 2, то получаем значение 8*x. Отметим, что к длинной стороне было добавлено значение 2*x, поскольку длина одеяла увеличилась на это число. Общая пришитая к одеялу площадь ткани равна 10 м². Поэтому получаем равенство: 2*x*(5+2*x) + 8*x = 10 => 4*x²+18*x-10 = 0.

Для этого примера дискриминант равен: D = 18²-4*4*(-10) = 484. Его корень равен 22. Воспользовавшись формулой, находим искомые корни: x = (-18±22)/(2*4) = (-5; 0,5). Очевидно, что из двух корней подходит по условию задачи только число 0,5.

Таким образом, полоса из ткани, которую пришьет Боб к своему одеялу, будет иметь ширину 50 см.

Дискриминантная формула: природа корней, примеры, использование

  • Автор ШВЕТА Б.Р.
  • Последнее изменение 25-11-2022

Дискриминант Формула: В математике дискриминант является функцией полиномиальных коэффициентов. Дискриминант многочлена — это число, которое зависит от коэффициентов и влияет на определенные свойства корней в математике. Обычно его описывают как полиномиальную функцию коэффициентов исходного полинома. В полиномиальном факторинге, теории чисел и алгебраической геометрии обычно используется дискриминант. Символ \(D\) или \(∆\) часто используется для его обозначения. 92},b \to \) коэффициент при \(x, c→\) постоянной.

Формула квадратного уравнения

Формула квадратного уравнения является наиболее эффективным способом определения корней квадратного уравнения. Некоторые квадратные уравнения трудно разложить на множители. В этих случаях мы можем применить эту квадратичную формулу, чтобы найти корни. Сумма корней и произведение корней квадратного уравнения также могут быть найдены с помощью корней квадратного уравнения.

Квадратичная формула равна 92} – 4ac} }}{{2a}}\)

Приведенная выше формула для получения корней квадратного уравнения известна как формула квадратного уравнения.

Корни квадратных уравнений

Два значения \(х\), полученные путем решения квадратного уравнения, являются корнями квадратного уравнения. Символы альфа \ (\ влево ( \ альфа \ вправо) \) и бета \ (\ влево ( \ бета \ вправо) \) используются для представления корней квадратного уравнения. Нули уравнения также известны как корни квадратного уравнения. 92} – 4ac\).

Он может «различать» следующие категории ответов:

1. При положительном ответе мы получаем два реальных решения.
2. Когда он равен нулю, существует только одно действительное решение (оба ответа одинаковы)
3. Когда он отрицательный, есть два комплексных решения.

Формула дискриминанта

Дискриминант полинома является функцией его коэффициентов и обозначается заглавной \(«D»\) или дельта-символом \(∆.\) Он демонстрирует природу корней любого квадратного уравнения с рациональными коэффициентами \(a, b,\) и \(c.\) Квадратное уравнение может просто указывать действительные корни или число пересечений \(x-\). Эта формула используется для определения того, являются ли корни квадратного уравнения действительными или мнимыми. 92} – 4ac.\) Дискриминант говорит нам, есть ли два решения, одно решение или нет решений.

  • Дискриминант квадратного уравнения важен, потому что он указывает количество и характер решений. Это знание очень важно, поскольку оно действует как двойная проверка при применении любого из четырех способов решения квадратных уравнений (разложение на множители, завершение квадрата, использование квадратных корней и использование квадратной формулы).
  • Решенные примеры – формула дискриминанта 92} – 4ac\) Дискриминант говорит нам, есть ли два решения, одно решение или нет решений. Эта статья включает определение квадратного уравнения, стандартную форму квадратного уравнения, формулу квадратного уравнения, корни уравнения, природу корней, определение дискриминанта, формулу дискриминанта, символ дискриминанта и его использование.

    Эта статья поможет лучше понять формулу дискриминанта темы. Результаты этой статьи помогают нам изучить формулу дискриминанта и решать на ее основе различные задачи.

    Часто задаваемые вопросы (FAQ) – формула дискриминанта

    Ответы на наиболее часто задаваемые вопросы о формуле дискриминанта можно найти здесь:

    Q. 2} + bx + c = 0\): 92} – 4ac.\) Дискриминант говорит нам, есть ли два решения, одно решение или нет решений.
    Q.3. Как использовать дискриминантную формулу?
    Ответ: С помощью дискриминанта можно определить количество корней квадратного уравнения. Дискриминант может быть положительным, отрицательным или нулевым. Зная значение определителя, можно определить природу корней.
    Q.4. Что такое символ дискриминанта?
    Ответ: Для обозначения дискриминанта используется символ \(D\) или \({\rm{\Delta}}\left({{\rm{Delta}}} \right){\ rm{.}}\)
    Q.5. Почему он называется дискриминантом?
    Ответ: Используя «дискриминант» квадратного корня, который представляет собой формулу \({b^2} – 4ac,\), вы можете «различить» (то есть определить разницу между ) различные типы решений, использующие его значение.
    2} – 4ac\) называется дискриминантом.
    Q.6. Почему дискриминант важен?
    Ответ: Дискриминант квадратного уравнения важен, потому что он показывает нам, сколько и каких решений существует. Это знание полезно, поскольку оно действует как двойная проверка при использовании любой из четырех стратегий решения квадратных уравнений, а именно факторизации, завершения квадрата, использования квадратных корней и применения квадратной формулы.
    Q.7. Какова природа корней, если значение дискриминанта отрицательно?
    Ответ: Если значение дискриминанта отрицательное, то корни этих уравнений мнимые и неравные.
    Q.8. Какова природа корней, если дискриминант равен 50?
    Ответ: Из заданного дискриминанта \({b^2} – 4ac = 50\) 92} – 4ac > 0\) или \(D>0\) означает, что данное уравнение имеет \(2\) действительных корней.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    © 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

    Карта сайта