Векторное произведение вектора на самого себя: Векторное произведение векторов | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU

Векторное произведение векторов. Определение и его смысл



Данная операция определена для двух пространственных векторов, пусть это будут нетленные буквы .

Обозначение: , существуют и другие варианты

И сразу вопрос: в чём отличие векторного произведения от произведения скалярного? Явное отличие, прежде всего, в РЕЗУЛЬТАТЕ:

– Результатом скалярного произведения векторов является ЧИСЛО:

– Результатом векторного произведения векторов является ВЕКТОР:
, то есть, умножаем векторы и получаем снова вектор.

В учебной литературе обозначения тоже могут варьироваться, я буду использовать букву .

Определение: векторным произведением  неколлинеарных векторов , взятых в данном порядке, называется ВЕКТОР , длина которого численно равна площади параллелограмма, построенного на данных векторах; вектор  

ортогонален векторам  , и направлен так, что базис  имеет правую ориентацию.
Разберём определение «по косточкам»:

1) Исходные векторы , обозначенные красными стрелками, не коллинеарны.

2) Векторы  взяты в строго определённом порядке:  –  «а» умножается на «бэ», а не «бэ» на «а». Результатом умножения векторов является ВЕКТОР , который обозначен синим цветом. Если векторы умножить в обратном порядке, то получим равный по длине и противоположный по направлению вектор  (малиновый цвет). То есть, справедливо равенство .

3)Геометрический смысл векторного произведения. Это очень важный пункт! ДЛИНА «синего» вектора  численно равна ПЛОЩАДИ параллелограмма,  построенного на векторах . На рисунке данный параллелограмм заштрихован чёрным цветом. Длина «малинового» вектора , естественно, равна этой же площади.

Примечание: чертёж  является схематическим, и поэтому номинальная длина векторного произведения не равна площади параллелограмма.

Вспоминаем одну из геометрических формул: площадь параллелограмма равна произведению смежных сторон на синус угла между ними. Поэтому, исходя из вышесказанного, справедлива формула вычисления ДЛИНЫ векторного произведения:

Подчёркиваю, что в формуле речь идёт о ДЛИНЕ вектора, а не о самом векторе . Каков практический смысл? А смысл таков, что в задачах аналитической геометрии площадь параллелограмма часто находят через понятие векторного произведения:

Получим вторую важную формулу. Диагональ параллелограмма (красный пунктир) делит его на два равных треугольника. Следовательно, площадь треугольника, построенного на векторах  (красная штриховка), можно найти по формуле:

4) Не менее важный факт состоит в том, что вектор  ортогонален векторам , то есть . Разумеется, противоположно направленный вектор  (малиновая стрелка) тоже ортогонален исходным векторам .

5) Вектор  направлен так, что базис  имеет правую ориентацию. Что это значит? Объяснять буду на пальцах вашей правой руки. Мысленно совместите указательный палец с вектором  и средний палец с вектором , а безымянный палец и мизинец прижмите к ладони. В результате

большой палец – векторное произведение  будет «смотреть» вверх. Это и есть правоориентированный базис (на рисунке именно он).
Теперь совместите указательный палец левой руки с тем же вектором , а средний – с вектором . При этом большой палец будет неизбежно смотреть вниз – по направлению вектора . Это левый или левоориентированный базис .
Говорят, что эти базисы ориентируют пространство в разные стороны, и это понятие не следует считать чем-то надуманным или абстрактным – так, например, ориентацию пространства меняет самое обычное зеркало: если «вытащить отражённый объект из зазеркалья», то его в общем случае не удастся совместить с «оригиналом», ибо «лево» и «право» поменяются местами. Проверьте на собственном отражении!

Итак, определение разобрано и осталось выяснить, что происходит, когда векторы  коллинеарны. Если векторы коллинеарны, то их можно расположить на одной прямой, и наш параллелограмм тоже «складывается» в одну прямую. Площадь такого, как говорят математики, вырожденного параллелограмма равна нулю. Это же следует и из формулы  – синус нуля или 180 градусов равен нулю, а значит, и площадь нулевая

Таким образом, если , то  с очевидной длиной . Обратите внимание, что само векторное произведение равно нулевому вектору, но на практике этим часто пренебрегают и пишут, что оно тоже равно нулю.

Справедливо и обратное: если , то   – и этот факт используют для проверки векторов на коллинеарность.

Частный случай – векторное произведение вектора на самого себя:

Ну что же, разжигаем огонь практики:

Задача 46

а) Найти длину векторного произведения векторов  и , если .

б) Найти площадь параллелограмма, построенного на векторах  и , если  .

Нет, это не опечатка! – исходные данные в пунктах условия я намеренно сделал одинаковыми. Чтобы подчеркнуть отличие в решениях:

а) По условию требуется найти длину вектора (векторного произведения). По соответствующей формуле:

Для нахождения значений синуса удобно использовать соответствующую Тригонометрическую таблицу (см. Приложение Тригонометрия).

Ответ:

Коль скоро спрашивалось о длине, то в ответе указываем размерность – единицы.

б) По условию требуется найти

площадь параллелограмма, построенного на векторах . Площадь данного параллелограмма численно равна длине векторного произведения:

Ответ:

Обратите внимание, что в ответе о векторном произведении речи не идёт вообще, нас спрашивали о площади фигуры, соответственно, размерность – квадратные единицы.

Всегда смотрим, ЧТО требуется найти по условию, и, исходя из этого, формируем чёткий ответ!  В противном случае задание с высокой вероятностью вернётся на доработку, но это ещё не самое плохое. У рецензента может сложиться впечатление, что человек плохо разобрался в теме и его бы надо допросить с пристрастием :). Об этом нужно помнить, решая любую задачу по высшей математике, да и по другим предметам тоже.

Типовая задача для самостоятельного решения:

Задача 47

Найти площадь треугольника, построенного на векторах , если

Формула нахождения площади треугольника дана в комментариях к определению векторного произведения (см. выше). Решение и ответ в конце книги.

Для решения других задач нам понадобятся:

1.9.2. Свойства векторного произведения

1.8.4. Базис и система координат пространства

| Оглавление |



Автор: Aлeксaндр Eмeлин


Краткий курс высшей математики

Краткий курс высшей математики
  

Шнейдер В.

Е. и др. Краткий курс высшей математики. Учеб. пособие для втузов. М., «Высш. школа», 1972. 640 с.

Данное учебное пособие предназначено для студентов вечерних факультетов втузов и заводов-втузов. Оно в основном охватывает весь материал, предусмотренный обязательной программой. Достаточное количество решенных примеров и задач способствует лучшему усвоению теоретического материала.



Оглавление

ПРЕДИСЛОВИЕ
ГЛАВА I. МЕТОД КООРДИНАТ. ПОНЯТИЕ ФУНКЦИИ
§ 1. ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА. КООРДИНАТЫ ТОЧКИ НА ПРЯМОЙ
2. Геометрическое изображение действительных чисел. Координаты точки на прямой
3. Абсолютная величина действительного числа
4. Расстояние между двумя точками на прямой
§ 2. КООРДИНАТЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ
2. Расстояние между двумя точками на плоскости
3. Деление отрезка в данном отношении
4. Координаты точки в пространстве
5. Расстояние между двумя точками в пространстве
§ 3. УГОЛ МЕЖДУ ДВУМЯ ОСЯМИ. ПОЛЯРНЫЕ КООРДИНАТЫ
2. Полярные координаты
3. Зависимость между декартовыми и полярными координатами
§ 4. ФУНКЦИОНАЛЬНАЯ ЗАВИСИМОСТЬ
2. Понятие функции
3. График функции
4. Способы задания функций
5. Основные элементарные функции и их графики
6. Сложные функции. Элементарные функции
7. Целые и дробно-рациональные функции
8. Функции четные и нечетные. Периодические функции
§ 5. УРАВНЕНИЕ ЛИНИИ
2. Нахождение уравнения линии по ее геометрическим свойствам
§ 6 ПРЕОБРАЗОВАНИЕ КООРДИНАТ
2. Поворот осей координат
ГЛАВА II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ
§ 1. ПРЯМАЯ
2. Уравнение прямой с угловым коэффициентом
3. Уравнение прямой, параллельной оси ординат
4. Общее уравнение прямой и его частные случаи
5. Точка пересечения прямых. Построение прямой по ее уравнению
6. Вычисление угла между двумя прямыми. Условия параллельности и перпендикулярности двух прямых
7. Уравнение прямой, проходящей через данную точку в заданном направлении
8. Пучок прямых
9. Уравнение прямой, проходящей через две данные точки
10. Расстояние от точки до прямой
§ 2. КРИВЫЕ ВТОРОГО ПОРЯДКА
2. Окружность
3. Эллипс
4. Гипербола
5. Парабола
6. Окружность, эллипс, гипербола и парабола как конические сечения
7. Упрощение уравнения кривой второго порядка. График квадратного трехчлена
8. Уравнение равносторонней гиперболы, асимптоты которой приняты за оси координат
9. График дробно-линейной функции
10. Преобразование уравнения кривой второго порядка, не содержащего члена с произведением координат
ГЛАВА III. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ И ВЕКТОРНОЙ АЛГЕБРЫ
§ 1. ЭЛЕМЕНТЫ ТЕОРИИ ОПРЕДЕЛИТЕЛЕЙ
2. Определитель третьего порядка
3. Понятие об определителях высших порядков
§ 2. СИСТЕМЫ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ
2. Однородная система двух уравнений первой степени с тремя неизвестными
3. Система трех уравнений первой степени с тремя неизвестными
4. Однородная система трех уравнений первой степени с тремя неизвестными
§ 3. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ
2. Линейные операции над векторами
4. Проекция вектора на ось и составляются вектора по оси
5. Разложение вектора на составляющие по осям координат
6. Направляющие косинусы вектора
7. Условие коллинеарности двух векторов
8. Скалярное произведение
9. Выражение скалярного произведения через проекции перемножаемых векторов
10. Косинус угла между двумя векторами
11. Векторное произведение
12. Выражение векторного произведения через проекции перемножаемых векторов
13. Смешанное произведение трех векторов
14. Геометрический смысл смешанного произведения
15. Условие компланарности трех векторов
§ 4. МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ
2. Равенство матриц. Действия над матрицами
3. Обратная матрица
4. Матричная запись и матричное решение системы уравнений первой степени
§ 5. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ
2. Преобразование координат
3. Приведение квадратичной формы к каноническому виду
4. Упрощение общего уравнения кривой второго порядка
ГЛАВА IV. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ
§ 1. ПЛОСКОСТЬ
2. Нормальный вектор плоскости. Уравнение плоскости, проходящей через данную точку
3. Общее уравнение плоскости и его частные случаи
4. Построение плоскости по ее уравнению
5. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей
6. Точка пересечения трех плоскостей
§ 2. ПРЯМАЯ В ПРОСТРАНСТВЕ
2. Общие уравнения прямой
3. Векторное уравнение прямой. Параметрические уравнения прямой
4. Канонические уравнения прямой
5. Уравнения прямой, проходящей через две точки
6. Угол между двумя прямыми. Условия параллельности и перпендикулярности прямых
§ 3. Прямая и плоскость в пространстве
2. Точка пересечения прямой с плоскостью
3. Расстояние от точки до плоскости
4. Пучок плоскостей
§ 4. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА
2. Цилиндрические поверхности
3. Конические поверхности
4. Поверхность вращения
6. Гиперболоиды
7. Параболоиды
ГЛАВА V. ТЕОРИЯ ПРЕДЕЛОВ
§ 1. ПРЕДЕЛ ФУНКЦИИ
2. Предел функции при х -> -оо
3. Предел функции при х->х0
4. Бесконечно малые функции. Ограниченные функции
5. Бесконечно большие функции и их связь с бесконечно малыми функциями
6. Основные теоремы о пределах
7. Предел функции при x -> 0
8. Последовательность. Число e
9. Натуральные логарифмы
10. Сравнение бесконечно малых функций
§ 2. НЕПРЕРЫВНЫЕ ФУНКЦИИ
2. Операции над непрерывными функциями. Непрерывность элементарных функций
3. Свойства функций, непрерывных на сегменте
4. Понятие об обратной функции
5. Обратные тригонометрические функции
6. Показательная и логарифмическая функции
7. Понятие о гиперболических функциях
ГЛАВА VI. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
1. Приращение аргумента и приращение функции
2. Определение непрерывности функции с помощью понятии приращения аргумента и приращения функции
3. Задачи, приводящие к понятию производной
4. Определение производной и ее механический смысл
5. Дифференцируемость функции
6. Геометрический смысл производной
7. Производные некоторых основных элементарных функций
8. Основные правила дифференцирования
9. Производная обратной функции
10. Производные обратных тригонометрических функций
11. Производная сложной функции
§ 12. Производные гиперболических функций
13. Производная степенной функции с любым показателем
14. Сводная таблица формул дифференцирования
15. Неявные функции и их дифференцирование
16. Уравнения касательной а нормали к кривой
17. Графическое дифференцирование
§ 2. ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ
1. Нахождение производных высших порядков
2. Механический смысл второй производной
§ 3. ДИФФЕРЕНЦИАЛ ФУНКЦИИ
2. Производная как отношение дифференциалов
3. Дифференциал суммы, произведения и частного функций
4. Дифференциал сложной функции. Инвариантность формы дифференциала
5. Применение дифференциала к приближенным вычислениям
6. Дифференциалы высших порядков
§ 4. ФУНКЦИИ, ЗАДАННЫЕ ПАРАМЕТРИЧЕСКИ, И ИХ ДИФФЕРЕНЦИРОВАНИЕ
2. Дифференцирование функций, заданных параметрически
§ 5. ВЕКТОРНАЯ ФУНКЦИЯ СКАЛЯРНОГО АРГУМЕНТА
2. Векторная функция скалярного аргумента и ее производная
3. Уравнения касательной прямой и нормальной плоскости к пространственной кривой
4. Механический смысл первой и второй производных векторной функции скалярного аргумента
§ 6. НЕКОТОРЫЕ ТЕОРЕМЫ О ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЯХ
2. Теорема Ролля
3. Теорема Лагранжа
4. Правило Лопиталя
§ 7. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ
2. Максимум и минимум функции
3. Достаточный признак существования экстремума, основанный на знаке второй производной
4. Отыскание наибольшего и наименьшего значений функции
5. Применение теории максимума и минимума к решению задач
6. Выпуклость и вогнутость графика функции. Точки перегиба
7. Асимптоты графика функции
8. Общая схема исследования функции и построение ее графика
§ 8. ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ
2. Уточнение найденных значений корней методом хорд и касательных
§ 9. ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА ЛАГРАНЖА
ГЛАВА VII. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО СВОЙСТВА
2. Геометрический смысл неопределенного интеграла
3. Таблица основных интегралов
4. Основные свойства неопределенного интеграла
§ 2. ОСНОВНЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ
2. Интегрирование методом замены переменной
3. Интегрирование по частям
§ 3. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ФУНКЦИЙ
2. Рациональные дроби. Выделение правильной рациональной дроби
3. Интегрирование простейших рациональных дробей
4. Разложение правильной рациональной дроби на простейшие дроби
5. Метод неопределенных коэффициентов
6. Интегрирование рациональных дробей
§ 4. Интегрирование тригонометрических функций
2. Рациональные функции двух переменных
3. Интегралы вида
§ 5. ИНТЕГРИРОВАНИЕ НЕКОТОРЫХ ИРРАЦИОНАЛЬНЫХ ФУНКЦИЙ
2. Интеграл вида
3. Интегралы видов
4. Интегралы вида
§ 6. ОБЩИЕ ЗАМЕЧАНИЯ О МЕТОДАХ ИНТЕГРИРОВАНИЯ. ИНТЕГРАЛЫ, НЕ БЕРУЩИЕСЯ В ЭЛЕМЕНТАРНЫХ ФУНКЦИЯХ
2. Понятие об интегралах, не берущихся в элементарных функциях
ГЛАВА VIII. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОПРЕДЕЛЕННОМУ ИНТЕГРАЛУ
2. Задача о работе переменной силы
§ 2. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
2. Свойства определенного интеграла
3. Производная интеграла по переменной верхней границе
4. Формула Ньютона—Лейбница
5. Замена переменной в определенном интеграле
6. Интегрирование по частям в определенном интеграле
§ 3. ГЕОМЕТРИЧЕСКИЕ И ФИЗИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
2. Вычисление площади в полярных координатах
3. Вычисление объема тела по известным поперечным сечениям
4. Объем тела вращения
5. Длина дуги кривой
6. Дифференциал дуги
7. Площадь поверхности вращения
8. Общие замечания о решении задач методом интегральных сумм
§ 4. КРИВИЗНА ПЛОСКОЙ КРИВОЙ
2. Вычисление кривизны
3. Радиус кривизны. Круг кривизны. Центр кривизны
4. Эволюта и эвольвента
§ 5. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
2. Интегралы от разрывных функций
3. Признаки сходимости несобственных интегралов
§ 6. ПРИБЛИЖЕННЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ
2. Метод трапеций
3. Метод параболических трапеций (метод Симпсона)
ГЛАВА IX. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
2. График функции двух переменных
3. Функции трех и большего числа переменных
§ 2. Предел функции нескольких переменных. Непрерывность функции. Точки разрыва
2. Непрерывность функции нескольких переменных
3. Понятие области
4. Точки разрыва
5. Свойства функций, непрерывных в ограниченной замкнутой области
§ 3. ЧАСТНЫЕ ПРОИЗВОДНЫЕ
2. Геометрический смысл частных производных функции двух переменных
3. Частные производные высших порядков
§ 4. ПОЛНЫЙ ДИФФЕРЕНЦИАЛ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
2. Полный дифференциал функции
3. Приложение полного дифференциала к приближенным вычислениям
§ 5. Дифференцирование сложных и неявных функций
2. Инвариантность формы полного дифференциала
3. Дифференцирование неявных функций
§ 6. СКАЛЯРНОЕ ПОЛЕ
2. Производная по направлению
3. Градиент
4. Касательная плоскость а нормаль к поверхности
5. Геометрический смысл полного дифференциала функции двух переменных
§ 7. ЭКСТРЕМУМ ФУНКЦИЙ ДВУХ ПЕРЕМЕННЫХ
2. Наибольшее и наименьшее значения функции двух переменных
ГЛАВА X. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ
§ 1. ДВОЙНОЙ ИНТЕГРАЛ
2. Двойной интеграл. Теорема существования
3. Свойства двойного интеграла
4. Вычисление двойного интеграла в декартовых координатах
5. Вычисление двойного интеграла в полярных координатах
6. Приложения двойного интеграла
§ 2. ТРОЙНОЙ ИНТЕГРАЛ
2. Тройной интеграл и его свойства
3. Вычисление тройного интеграла в декартовых координатах
4. Вычисление тройного интеграла в цилиндрических координатах
5. Приложения тройного интеграла
§ 3. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ
2. Задача о работе. Криволинейный интеграл
3. Вычисление криволинейного интеграла
4. Формула Остроградского — Грина
5. Независимость криволинейного интеграла от пути интегрирования
6. Отыскание первообразной по полному дифференциалу
7. Криволинейный интеграл по длине дуги
ГЛАВА XI. РЯДЫ
§ 1. ЧИСЛОВЫЕ РЯДЫ
2. Геометрическая прогрессия
3. Простейшие свойства числовых рядов
4. Необходимый признак сходимости ряда
5. Достаточные признаки сходимости знакоположительных рядов
6. Знакопеременные ряды
7. Остаток ряда и его оценка
§ 2. ФУНКЦИОНАЛЬНЫЕ РЯДЫ
2. Правильно сходящиеся функциональные ряды и их свойства
§ 3. СТЕПЕННЫЕ РЯДЫ
2. Свойства степенных рядов
3. Ряды по степеням разности х-а
4. Разложение функций в степенные ряды. Ряд Тейлора
5. Разложение некоторых элементарных функций в ряды Тейлора и Маклорена
§ 4. ПРИЛОЖЕНИЕ РЯДОВ К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ
2. Приближенное вычисление интегралов
§ 5. ПОНЯТИЕ О ФУНКЦИИ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ. СТЕПЕННЫЕ РЯДЫ В КОМПЛЕКСНОЙ ОБЛАСТИ
2. Числовые ряды с комплексными членами
3. Степенные ряды в комплексной области
§ 6. РЯДЫ ФУРЬЕ
2. Ряд Фурье
3. Сходимость ряда Фурье
4. Ряды Фурье для четных и нечетных функций
5. Разложение в ряд Фурье функций с периодом 2l
ГЛАВА XII. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§ 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА
2. Дифференциальные уравнения первого порядка
3. Уравнения с разделяющимися переменными
4. Однородные уравнения
5. Линейные уравнения
6. Уравнение в полных дифференциалах
7. Особые решения
8. Приближенное решение дифференциальных уравнений первого порядка методом Эйлера
§ 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
2. Простейшие уравнения второго порядка, допускающие понижение порядка
3. Понятие о дифференциальных уравнениях высших порядков
§ 3. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
2. Линейные однородные дифференциальные уравнения второго порядка
3. Линейные неоднородные дифференциальные уравнения второго порядка
4. Метод вариации произвольных постоянных
§ 4. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ
2. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
3. Приложение линейных дифференциальных уравнений второго порядка к изучению механических и электрических колебаний
§ 5. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ
2. Линейные дифференциальные уравнения n-го порядка с постоянными коэффициентами
§ 6. ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ РЯДОВ
§ 7. ПОНЯТИЕ О СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
ПРИЛОЖЕНИЕ 1. ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА НЬЮТОНА
ПРИЛОЖЕНИЕ 2. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Формула векторного произведения

Геометрическое определение векторного произведения хорош для понимания свойств перекрестного произведения. Однако геометрическое определение не так полезно для вычисления векторное произведение векторов. Для вычислений нам понадобится формула в члены компонентов векторов. Начнем с использования геометрического определение для вычисления векторного произведения стандартных единичных векторов.

Перекрестное произведение единичных векторов 93$. (Мы определяем векторное произведение только в трех измерениях. Обратите внимание, что мы предполагаем правостороннюю систему координат.)

Загрузка апплета

Стандартные единичные векторы в трех измерениях. Стандартные единичные векторы в трех измерениях: $\vc{i}$ (зеленый), $\vc{j}$ (синий) и $\vc{k}$ (красный) представляют собой векторы длины один, которые указывают параллельно ось $x$, ось $y$ и ось $z$ соответственно. Перемещение их с помощью мыши не меняет вектора, поскольку они всегда указывают в положительном направлении соответствующей оси.

Дополнительная информация об апплете.

Параллелограмм, натянутый на любые два из этих стандартных единичных векторов, равен единичный квадрат, площадь которого равна единице. Следовательно, по геометрическое определение, крест произведение должно быть единичным вектором. Поскольку перекрестное произведение должно быть перпендикулярно двум единичным векторам, он должен быть равен другому единичный вектор или противоположный этому единичному вектору. Глядя на выше график, вы можете использовать правило правой руки, чтобы определить следующее Результаты. \начать{выравнивать*} \vc{i} \times \vc{j} &= \vc{k}\\ \vc{j} \times \vc{k} &=\vc{i}\\ \vc{k} \times \vc{i} &= \vc{j} \конец{выравнивание*} Эта небольшая циклическая диаграмма поможет вам запомнить эти результаты.

Как насчет $\vc{i} \times \vc{k}$? По правилу правой руки должно быть $-\vc{j}$. Помня, что $\vc{b} \times \vc{a} = — \vc{a} \times \vc{b}$, можно сделать вывод, что \начать{выравнивать*} \vc{j} \times \vc{i} &= -\vc{k}\\ \vc{k} \times \vc{j} &= -\vc{i}\\ \vc{i} \times \vc{k} &= -\vc{j}. \конец{выравнивание*}

Наконец, векторное произведение любого вектора на самого себя равно нулю вектор ($\vc{a} \times \vc{a}=\vc{0}$). В частности, перекрестное произведение любого стандартный единичный вектор с самим собой является нулевым вектором.

Общие векторы

За исключением двух специальных свойств, упомянутых выше ($\vc{b} \times \vc{a} = -\vc{a} \times \vc{b}$, и $\vc{a} \times \vc{a} = \vc{0}$), мы просто утверждаем, что векторное произведение ведет себя как обычное умножение. Он подчиняется следующим свойствам:

  • $(y\vc{a}) \times \vc{b} = y(\vc{a} \times \vc{b}) = \vc{a} \раз (г\вк{б})$,
  • $\vc{a} \times (\vc{b}+\vc{c}) = \vc{a} \times \vc{b} + \vc{a} \times \vc{c}$, 93$ и $y$ скаляр. (Эти свойства означают, что векторное произведение является линейным.) Мы можем использовать эти свойства вместе с векторным произведением стандартных единичных векторов, чтобы написать формулу для креста продукт по компонентам.

    Компоненты $\vc{a}$ и $\vc{b}$ запишем как: \начать{выравнивать*} \vc{a} = (a_1,a_2,a_3)= a_1 \vc{i} + a_2 \vc{j} + a_3 \vc{k}\\ \vc{b} = (b_1,b_2,b_3)= b_1 \vc{i} + b_2 \vc{j} + b_3 \vc{k} \конец{выравнивание*}

    Сначала предположим, что $a_3=b_3=0$. (Затем манипуляции намного проще.) Рассчитываем: \начать{выравнивать*} \vc{a} \times \vc{b} &= (a_1 \vc{i} + a_2 \vc{j}) \times (b_1 \vc{i} + b_2 \vc{j})\\ &= a_1b_1 (\vc{i}\times\vc{i}) + a_1b_2(\vc{i} \times \vc{j}) + a_2b_1 (\vc{j} \times \vc{i}) + a_2b_2 (\vc{j} \times \vc{j}) \конец{выравнивание*} Поскольку мы знаем, что $\vc{i} \times \vc{i}= \vc{0}= \vc{j} \times \vc{j}$ и что $\vc{i} \times \vc{j} = \vc{k} = -\vc{j} \times \vc{i}$, это быстро упрощается до \начать{выравнивать*} \vc{a} \times \vc{b} &= (a_1b_2-a_2b_1) \vc{k}\\ &= \влево| \begin{массив}{cc} а_1 и а_2\\ б_1 и б_2 \конец{массив} \право| \vc{к}. \конец{выравнивание*} Запись результата в виде определитель, как мы это делали в последний шаг, это удобный способ запомнить результат.

    Общий случай, когда $a_3$ и $b_3$ не равны нулю, немного сложнее. Однако это просто вопрос повторения тех же манипуляций, описанных выше, с использованием векторного произведения единичных векторов и свойств векторного произведения.

    Мы начинаем с расширения продукта \начать{выравнивать*} \vc{a} \times \vc{b} &= (a_1 \vc{i} + a_2 \vc{j} + a_3\vc{k}) \times (b_1 \vc{i} + b_2 \vc{j} + b_3\vc{k})\\ &= a_1b_1 (\vc{i}\times\vc{i}) + a_1b_2(\vc{i} \times \vc{j}) + a_1b_3(\vc{i} \times \vc{k})\\ &\ четырехъядерный + a_2b_1 (\vc{j} \times \vc{i}) + a_2b_2 (\vc{j} \times \vc{j}) + a_2b_3 (\vc{j} \times \vc{k})\\ &\ четырехъядерный + a_3b_1 (\vc{k} \times \vc{i}) + a_3b_2 (\vc{k} \times \vc{j}) + a_3b_3 (\vc{k} \times \vc{k}) \конец{выравнивание*} а затем вычислить все перекрестные произведения единичных векторов \начать{выравнивать*} \vc{a} \times \vc{b} &= a_1b_2 \vc{k} — a_1b_3 \vc{j} — a_2b_1 \vc{k} + a_2b_3 \vc{i} + a_3b_1 \vc{j} — a_3b_2 \vc{i}\\ «=» (a_2b_3-a_3b_2)\vc{i} — (a_1b_3-a_3b_1) \vc{j} +(a_1b_2-a_2b_1) \vc{k}. \конец{выравнивание*} Используя определители, мы можем записать результат как \начать{выравнивать*} \vc{a} \times \vc{b} &=\left| \begin{массив}{cc} а_2 и а_3\\ б_2 и б_3 \конец{массив} \право| \vc{я} — \влево| \begin{массив}{cc} а_1 и а_3\\ б_1 и б_3 \конец{массив} \право| \vc{j} + \влево| \begin{массив}{cc} а_1 и а_2\\ б_1 и б_2 \конец{массив} \право| \vc{к}. \конец{выравнивание*}

    Глядя на формулу определителя $3 \times 3$, мы видим, что формула для перекрестный продукт очень похож на формулу для $3 \times 3$ определитель. Если мы позволим матрице иметь вектор $\vc{i}$, $\vc{j}$ и $\vc{k}$ в качестве записей (хорошо, может быть, это не имеет смысла, но это всего лишь инструмент для запоминания перекрестного произведения), $3 Определитель \times 3$ дает удобную мнемонику для запоминания креста продукт: \начать{выравнивать*} \vc{a} \times \vc{b} = \влево| \begin{массив}{ccc} \vc{i} & \vc{j} & \vc{k}\\ а_1 и а_2 и а_3\\ б_1 и б_2 и б_3 \конец{массив} \право|. \конец{выравнивание*} Это компактный способ запомнить, как вычислять векторное произведение.

    линейная алгебра — Интуиция для векторного произведения вектора с самим собой и вектора с нулевым вектором

    Задавать вопрос

    спросил

    Изменено 6 лет, 1 месяц назад

    Просмотрено 35 тысяч раз

    $\begingroup$

    У меня возникли проблемы с интуитивным пониманием следующих двух векторных тождеств для любого вектора $\mathbf{v}$. Я спрашиваю здесь только об интуиции и , а не об их доказательствах (которые следуют из определения векторного произведения):

    $\color{green}{\mathbf{v}} \times \color{brown}{\ mathbf{v}} = \mathbf{0} \tag{*}$

    $\mathbf{v} \times \mathbf{0} = \mathbf{0} \tag{*}$

    Для (*) , моя интуиция подсказывает, что нам нужен вектор, перпендикулярный как $\color{green}{\mathbf{v}}$, так и $\color{brown}{\mathbf{v}}$. Но это один и тот же вектор, выписанный два раза. Поэтому нам нужен вектор, перпендикулярный только $\mathbf{v}$. Разве не будет бесконечно много векторов, перпендикулярных любому одному вектору? Почему это $\mathbf{0}$?

    Для (**) моя интуиция подсказывает, что нам нужен вектор, перпендикулярный как $\mathbf{v}$, так и $\mathbf{0}$. Так как $\mathbf{0}$ имеет величину $0$, то он не существует «физически», поэтому ни один вектор не может быть перпендикулярен ему. Но я не уверен в этом.

    • линейная алгебра

    $\endgroup$

    1

    $\begingroup$

    Хороший способ понять это, возможно, состоит в том, чтобы узнать, что означает величина перекрестного произведения. Если у вас есть два вектора $v$ и $w$, то их векторное произведение $v \times w$ является вектором, ортогональным плоскости, натянутой на $v$ и $w$, а величина равна площади параллелограмма, имеет векторы в качестве сторон.

    Теперь, если вы получите только вектор $v$ и вычислите $v \times v$, величина этой штуки должна быть площадью параллелограмма со сторонами $v$ и $v$. Однако этот параллелограмм является вырожденным (говоря грубо, на самом деле параллелограмм вообще не существует), так что его площадь действительно должна быть равна нулю.

    Если, с другой стороны, принять во внимание $v\times 0$, это будет по величине площадь параллелограмма, стороны которого равны $v$ и $0$, однако опять же этот параллелограмм вырожден и не должен иметь площади, так что $v\times 0 $ действительно должен быть нулевым вектором.

    $\endgroup$

    1

    $\begingroup$

    Вместо этого я предлагаю другое интуитивное определение перекрестного произведения: оно дает вектор, перпендикулярный плоскости , натянутой на два вектора .

    Следовательно, для (*) нет натянутой плоскости и, следовательно, нет выходного вектора. Для (**) снова не может быть сформирована плоскость между вектором и нулевым вектором, поэтому результат равен нулю.

    номер. это также хорошее определение, которое можно использовать, если вы когда-нибудь выйдете за пределы 3D, где векторное произведение не определено, но есть аналогичные продукты, которые говорят о плоскостях, натянутых на векторы.

    $\endgroup$

    $\begingroup$

    Крутящий момент силы $\mathbf{F}$, действующей в точке $\mathbf{d}$ относительно начала координат, вращающий момент, поворачивающее усилие и т. д., определяется как $\mathbf{\tau}=\mathbf {d}\times\mathbf{F}$. Направление задается как левый-свободный, правый-натянутый, а когда сила перпендикулярна смещению, то величина определяется как $Fd$.

    Если вы согласитесь с этим, ваши результаты будут почти тривиальными и совершенно понятными.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *