Y 0 2: Mathway | Популярные задачи

Mathway | Популярные задачи

1Оценить с использованием заданного значенияквадратный корень из 50
2Оценить с использованием заданного значенияквадратный корень из 45
3Вычислить5+5
4Вычислить7*7
5Разложить на простые множители24
6Преобразовать в смешанную дробь52/6
7Преобразовать в смешанную дробь93/8
8Преобразовать в смешанную дробь34/5
9Графикy=x+1
10Оценить с использованием заданного значенияквадратный корень из 128
11Найти площадь поверхностисфера (3)
12Вычислить54-6÷2+6
13Графикy=-2x
14Вычислить8*8
15Преобразовать в десятичную форму 5/9
16Оценить с использованием заданного значенияквадратный корень из 180
17Графикy=2
18Преобразовать в смешанную дробь7/8
19Вычислить9*9
20Risolvere per CC=5/9*(F-32)
21Упростить1/3+1 1/12
22Графикy=x+4
23Графикy=-3
24Графикx+y=3
25Графикx=5
26Вычислить6*6
27Вычислить2*2
28Вычислить4*4
29Вычислить1/2+(2/3)÷(3/4)-(4/5*5/6)
30Вычислить1/3+13/12
31Вычислить5*5
32Risolvere per d2d=5v(o)-vr
33Преобразовать в смешанную дробь3/7
34Графикy=-2
35Определить наклонy=6
36Перевести в процентное соотношение9
37Графикy=2x+2
38Графикy=2x-4
39Графикx=-3
40Решить, используя свойство квадратного корняx^2+5x+6=0
41Преобразовать в смешанную дробь1/6
42Преобразовать в десятичную форму9%
43Risolvere per n12n-24=14n+28
44Вычислить16*4
45Упроститькубический корень из 125
46Преобразовать в упрощенную дробь43%
47Графикx=1
48Графикy=6
49Графикy=-7
50Графикy=4x+2
51Определить наклонy=7
52Графикy=3x+4
53Графикy=x+5
54График3x+2y=6
55Решить, используя свойство квадратного корняx^2-5x+6=0
56Решить, используя свойство квадратного корняx^2-6x+5=0
57Решить, используя свойство квадратного корняx^2-9=0
58Оценить с использованием заданного значенияквадратный корень из 192
59Оценить с использованием заданного значенияквадратный корень из 25/36
60Разложить на простые множители14
61Преобразовать в смешанную дробь7/10
62Risolvere per a(-5a)/2=75
63Упроститьx
64Вычислить6*4
65Вычислить6+6
66Вычислить-3-5
67Вычислить-2-2
68Упроститьквадратный корень из 1
69Упроститьквадратный корень из 4
70Найти обратную величину1/3
71Преобразовать в смешанную дробь11/20
72Преобразовать в смешанную дробь7/9
73Найти НОК11 , 13 , 5 , 15 , 14 , , , ,
74Решить, используя свойство квадратного корняx^2-3x-10=0
75Решить, используя свойство квадратного корняx^2+2x-8=0
76График3x+4y=12
77График3x-2y=6
78Графикy=-x-2
79Графикy=3x+7
80Определить, является ли полиномом2x+2
81Графикy=2x-6
82Графикy=2x-7
83Графикy=2x-2
84Графикy=-2x+1
85Графикy=-3x+4
86Графикy=-3x+2
87Графикy=x-4
88Вычислить(4/3)÷(7/2)
89График2x-3y=6
90Графикx+2y=4
91Графикx=7
92Графикx-y=5
93Решить, используя свойство квадратного корняx^2+3x-10=0
94Решить, используя свойство квадратного корняx^2-2x-3=0
95Найти площадь поверхностиконус (12)(9)
96Преобразовать в смешанную дробь3/10
97Преобразовать в смешанную дробь7/20
98Преобразовать в смешанную дробь2/8
99Risolvere per wV=lwh
100Упростить6/(5m)+3/(7m^2)

общее, через три точки, нормальное

  • Плоскость, общее уравнение плоскости
  • Уравнение плоскости, проходящей через три точки
  • Нормальное уравнение плоскости. Расстояние от точки до плоскости

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Пусть в пространстве есть три уже известные нам оси координат — Ox, Oy и Oz. Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.

Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости, имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z. Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1). Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

.

Вектор задан по условию. Координаты вектора найдём по формуле :

.

Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:

. (1)

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P. Для точки N, не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.

Перед решением задач может пригодиться урок о декартовой системе координат. Также хорошо бы владеть материалом о скалярном произведении векторов.

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Решение. Используем формулу (1), еще раз посмотрим на неё:

.

В этой формуле числа A, B и C координаты вектора , а числа x0, y0 и z0 — координаты точки .

Вычисления очень простые: подставляем эти числа в формулу и получаем

.

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

.

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

    (2)

называется общим уравнением плоскости.

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.

Как найти эти точки? Чтобы найти точку пересечения с осью Oz, нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0. Поэтому получаем z = 6. Таким образом, заданная плоскость пересекает ось Oz в точке A(0; 0; 6).

Точно так же находим точку пересечения плоскости с осью Oy. При x = z = 0 получаем y = −3, то есть точку B(0; −3; 0).

И, наконец, находим точку пересечения нашей плоскости с осью Ox. При y = z = 0 получим x = 2, то есть точку C(2; 0; 0). По трём полученным в нашем решении точкам A(0; 0; 6), B(0; −3; 0) и C(2; 0; 0) строим заданную плоскость.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Рассмотрим теперь частные случаи общего уравнения плоскости. Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0(0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox, поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю).

Аналогично, при B = 0 плоскость параллельная оси Oy, а при C = 0 плоскость параллельна оси Oz.

3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox, поскольку она параллельна оси Ox (A = 0) и проходит через начало координат (D = 0). Аналогично, плоскость проходит через ось Oy, а плоскость через ось Oz.

4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy, поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz, а плоскость — плоскости xOz.

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость

xOy, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 — координатную плоскость yOz.

Пример 3. Составить уравнение плоскости P, проходящей через ось Oy и точку .

Решение. Итак, плоскость проходит через ось Oy. Поэтому в её уравнении y = 0 и это уравнение имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P.

Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (). Смотрим ещё раз на координаты точки:

M0(2; −4; 3).

Среди них x = 2, z = 3. Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:

2A + 3C = 0.

Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем

A = −1,5C.

Подставив найденное значение A в уравнение , получим

или .

Это и есть уравнение, требуемое в условии примера.

Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение

Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением .

Посмотреть правильное решение и ответ

.


Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Прямая и плоскость

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов

равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

    (3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:

, ,

и определить частный случай общего уравнения прямой, если такой имеет место.

Решение. По формуле (3) имеем:

Раскрываем определитель по первой строке:

Получили общее уравнение плоскости

или после деления на -2:

.

Это уравнение, в котором

A = 0, т.е. оно определяет плоскость, параллельную оси Ox.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Нормальным уравнением плоскости называется её уравнение, записанное в виде

,

где — направляющие косинусы нормали плоскости, — расстояние от начала координат до плоскости.

Нормалью к плоскости называется вектор, направление которого совпадает с направлением прямой, проведённой через начало координат перпендикулярно данной плоскости. (Есть полная аналогия с нормалью к прямой на плоскости, с той лишь разницей, что нормальное уравнение прямой существует в двух измерениях, а нормальное уравнение плоскости — в трёх).

Пусть M — какая угодно точка пространства. Для нахождения отклонения точки M от плоскости следует в левую часть нормального уравнения плоскости подставить на место x, y и z подставить координаты этой точки.

Это правило позволяет найти и расстояние от точки M до плоскости: расстояние равно модулю отклонения, т.е.

,

так как расстояние не может быть отрицательным числом.

Общее уравнение плоскости

приводится к нормальному виду почленным умножением на нормирующий множитель, определяемый формулой

.

Знак нормирующего множителя берётся противоположным знаку свободного члена в общем уравнении плоскости.

Пример 6. Привести уравнение плоскости к нормальному виду.

Решение. Вычислим нормирующий множитель:

.

Знак нормирующего множителя положительный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим требуемое в условии примера нормальное уравнение плоскости:

.

Пример 7. Вычислить величину отклонения и расстояния от точки до прямой, если точка задана координатами (-2; -4; 3), а плоскость задана общим уравнением .

Решение. Сначала приведём уравнение плоскости к нормальному виду. Вычислим нормирующий множитель:

.

Знак нормирующего множителя отрицательный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим нормальное уравнение плоскости:

.

Вычислим отклонение точки от плоскости:

Найдём теперь расстояние от точки до плоскости как модуль отклонения:

НазадЛистатьВперёд>>>

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Прямая и плоскость

Всё по теме «Прямая и плоскость»

  • Плоскость
    • Уравнения плоскости, взаимное расположение плоскостей
  • Прямая в пространстве
    • Уравнения прямой в пространстве
  • Задачи на плоскость и прямую в пространстве
    • Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке
  • Прямая на плоскости
    • Уравнение прямой с угловым коэффициентом
    • Общее уравнение прямой на плоскости
    • Уравнение прямой в отрезках
    • Каноническое уравнение прямой на плоскости
    • Параметрические уравнения прямой на плоскости
    • Нормальное уравнение прямой на плоскости, расстояние от точки до прямой
    • Угол между двумя прямыми
3-8 9 Оценить квадратный корень из 12 10 Оценить квадратный корень из 20 11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 92

Использование преобразования Лапласа для решения задач с начальными значениями

Использование преобразования Лапласа для решения исходной Проблемы с ценностями

Теперь, когда мы знаем, как найти преобразование Лапласа, пришло время использовать его для решать дифференциальные уравнения. Ключевая особенность преобразования Лапласа что делает его инструментом для решения дифференциальных уравнений, является то, что Лаплас преобразование производной функции является алгебраическим выражением, а не дифференциальное выражение. У нас есть

 

Теорема: Преобразование Лапласа производной

Пусть f(t) быть непрерывным с f ‘(t) кусочно-непрерывный. Также предположим, что

f(t) < Ke на  

для некоторого положительного K и постоянная а. Затем

L{f ‘(t)}  =  sL(f(t)} —  f(0)

 

 

Пруф

Чтобы доказать эту теорему, мы просто используем определение преобразования Лапласа и интегрирование по частям. Мы докажем теорему для случая, когда f’ равно непрерывный. Если он кусочно непрерывен, мы можем просто разбить интеграл на части и доказательство аналогично. У нас есть

Для функций f таких, что f, f’ и f» удовлетворяют условия теоремы имеем

        Л{ф »(t)}  =  -f ‘(0) + sL{f ‘(t)} =  -f ‘(0) + s[-f(0) + sL{f(t)}]

Мы будем часто использовать это. Перепишем результат как

 

L{f »(t)}  =  s 2 L{f(t)} — ​​sf(0) — f ‘(0)

Этот процесс будет работать и для производных более высокого порядка. С быстрым по индукции можно показать, что

 

       Л{ф (n) (t)}  =  s n L{f(t)} — ​​s n-1 f (0) — … — пф (н-2) (0) — ф (н-1) (0)

Это говорит нам о том, что если у нас есть дифференциальное уравнение, то Преобразование Лапласа превратит его в алгебраическое уравнение.

 

Пример

Решить  

        у» + у’ — 2y  =  4        y(0)  = 2        y'(0)  =  1

 

Раствор

Мы могли бы решить эту задачу, используя метод неопределенных коэффициентов, однако для этого потребуется найти y h , у р и две константы. Вместо этого мы увидим, что метод преобразований Лапласа решает всю проблему одним махом.

Начнем с применения преобразования Лапласа к обеим сторонам. По линейности преобразования Лапласа имеем

        Л{у»} + L{y’} — 2L{y}  =  L{4}

Здесь пригодится таблица преобразований Лапласа. Есть в учебник или вы можете найти его в Интернете здесь. Получаем

        (s 2 L{y} — 2s — 1) + (sL{y} — 2) — 2L{y}  =  4/s

Затем объедините одинаковые термины, чтобы получить

.

        (с 2 + s — 2)L{y} =  4/s + 2s + 3  

Обратите внимание, что коэффициент перед L{y} равен характеристическое уравнение дифференциального уравнения. Это не совпадение. Подведя под общий знаменатель, разделив и разложив мы получить

2 с 2 + 3 с + 4
L{y}  =                                     
с(с — 1)(с + 2)

Чтобы найти y, нам нужно выполнить обратное преобразование Лапласа правой руки сторона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *