y = cos(x-pi/3)+2
Графики функций, Построение графиков Работа проверена: plachich Время решения: 14 мин Сложность: 4.6
Дано
$$f{left (x right )} = cos{left (x – frac{pi}{3} right )} + 2$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$cos{left (x – frac{pi}{3} right )} + 2 = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в cos(x – pi/3) + 2.
$$cos{left (- frac{pi}{3} right )} + 2$$
Результат:
$$f{left (0 right )} = frac{5}{2}$$
Точка:
(0, 5/2)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$frac{d}{d x} f{left (x right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$frac{d}{d x} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = frac{pi}{3}$$
$$x_{2} = frac{4 pi}{3}$$
Зн. {2}} f{left (x right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = – frac{pi}{6}$$
$$x_{2} = frac{5 pi}{6}$$
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, -pi/6] U [5*pi/6, oo)
Выпуклая на промежутках
[-pi/6, 5*pi/6]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = langle 1, 3rangle$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции cos(x – pi/3) + 2, делённой на x при x->+oo и x ->-oo
$$lim_{x to -infty}left(frac{1}{x} left(cos{left (x – frac{pi}{3} right )} + 2right)right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$cos{left (x – frac{pi}{3} right )} + 2 = cos{left (x + frac{pi}{3} right )} + 2$$
– Нет
$$cos{left (x – frac{pi}{3} right )} + 2 = – cos{left (x + frac{pi}{3} right )} – 2$$
значит, функция
не является
ни чётной ни нечётной
1 | Найти производную — d/dx | бревно натуральное х | |
2 | Оценить интеграл | интеграл натурального логарифма x относительно x | |
3 | Найти производную — d/dx | 92)||
21 | Оценить интеграл | интеграл от 0 до 1 кубического корня из 1+7x относительно x | |
22 | Найти производную — d/dx | грех(2x) | |
23 | Найти производную — d/dx | 9(3x) по отношению к x||
41 | Оценить интеграл | интеграл от cos(2x) относительно x | |
42 | Найти производную — d/dx | 1/(корень квадратный из х) | |
43 | Оценка интеграла 9бесконечность | ||
45 | Найти производную — d/dx | х/2 | |
46 | Найти производную — d/dx | -cos(x) | |
47 | Найти производную — d/dx | грех(3x) | 92+1|
68 | Оценить интеграл | интеграл от sin(x) по x | |
69 | Найти производную — d/dx | угловой синус(х) | |
70 | Оценить предел | ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х | |
85 | Найти производную — d/dx | лог х | |
86 | Найти производную — d/dx | арктан(х) | |
87 | Найти производную — d/dx | бревно натуральное 5х92})$.![]() |