Y x 2 3x 4 y x 1: ВЫЧИСлите площадь фигуры ограниченной линиями y=-x^2+3x+4 y=x+1

Содержание

Квадратичная функция и ее график

В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.

Функция вида , где  называется квадратичной функцией.

В уравнении квадратичной функции:

aстарший коэффициент

bвторой коэффициент

с  — свободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции  имеет вид:

Обратите внимание на точки, обозначенные зелеными кружками — это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции , составим таблицу:

Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции  при любых значениях остальных коэффициентов.

График  функции  имеет вид:

Для нахождения координат базовых точек составим таблицу:

 

Обратите внимание, что график функции  симметричен графику функции относительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0, то ветви параболы напрaвлены вверх.

Если старший коэффициент a<0, то ветви параболы напрaвлены вниз.

Второй параметр для построения графика  функции — значения х, в которых функция равна нулю, или нули функции. На графике нули функции  — это точки пересечения графика функции с осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты  точек  пересечения графика функции с осью ОХ, нужно решить уравнение .

В случае квадратичной функции  нужно решить квадратное уравнение .

Теперь внимание!

В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если ,то уравнение  не имеет решений, и, следовательно, квадратичная парабола  не имеет точек пересечения с осью ОХ. Если ,то график функции выглядит как-то так:

2. Если ,то уравнение  имеет одно решение, и, следовательно, квадратичная парабола   имеет одну точку пересечения с осью ОХ. Если ,то график функции выглядит примерно так:

3.  Если ,то уравнение  имеет два решения, и, следовательно, квадратичная парабола   имеет две точки пересечения с осью ОХ:

,  

Если ,то график функции выглядит примерно так:

Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

Следующий важный параметр графика квадратичной функции —

координаты вершины параболы:

 

Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.

И еще один параметр, полезный при построении графика функции — точка пересечения параболы  с осью OY.

Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы  с осью OY, нужно в уравнение параболы вместо х подставить ноль: .

То есть точка пересечения параболы с осью OY имеет координаты (0;c).

Итак, основные параметры графика квадратичной функции показаны  на рисунке:

Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.

1. Функция задана формулой .

Рассмотрим общий алгоритм построения графика квадратичной параболы

на примере построения графика функции 

1. Направление ветвей параболы.

Так как ,ветви параболы направлены вверх.

2. Найдем дискриминант квадратного трехчлена 

 

Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.

Для того, чтобы найти их координаты, решим уравнение: 

,  

3.   Координаты  вершины параболы:

4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.

Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:

Этот способ можно несколько упростить.

1. Найдем координаты вершины параболы.

2. Найдем координаты точек, стоящих справа и слева от вершины.

Воспользуемся результатами построения графика функции

Кррдинаты вершины параболы

Ближайшие к вершине точки, расположенные  слева от вершины имеют абсциссы соответственно -1;-2;-3

Ближайшие к вершине точки, расположенные справа имеют абсциссы  соответственно 0;1;2

Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их  в таблицу:

Нанесем эти точки на координатную плоскость и соединим плавной линией:

2.  Уравнение квадратичной функции имеет вид  — в этом уравнении — координаты вершины параболы

или в уравнении квадратичной функции  , и второй коэффициент — четное число.

Построим для примера график функции .

Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно

  • сначала построить график функции ,
  • затем одинаты всех точек графика умножить на 2,
  • затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • а затем вдоль оси OY на 4 единицы вверх:

Теперь рассмотрим построение  графика функции . В уравнении этой функции , и второй коэффициент — четное число.

Выделим в уравнении функции полный квадрат: 

Следовательно,  координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):

3.  Уравнение квадратичной функции имеет вид y=(x+a)(x+b)

Построим для примера график функции y=(x-2)(x+1)

1. Вид уравнения функции позволяет легко найти нули функции — точки пересечения графика функции с осью ОХ:

(х-2)(х+1)=0, отсюда 

2. Координаты вершины параболы:

3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.

Нанесем эти точки на  координатную плоскость и построим график:

 

График квадратичной функции.

Перед вами график квадратичной функции вида .

Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции от значения коэффициента ,

— сдвига графика функции вдоль оси от значения  ,

— сдвига графика функции вдоль оси от значения  
— направления ветвей параболы от знака коэффициента
— координат вершины параболы от значений и :

Скачать таблицу квадратичная функция

И.В. Фельдман, репетитор по математике.

Решения | Контр. 6. Квадратная функция — Математика, 8 класс

1.2}{3}$ является квадратной;


в) Любая парабола пересекает ось ординат;
г) множеством значений квадратной функции является множество всех действительных чисел.

Ответ: г).

Вариант 2

а) областью определения квадратной функции является множество всех действительных чисел;
б) графиком квадратной функции является гипербола;
в) ось симметрии параболы параллельна оси абсцисс;

г) график квадратной функции пересекает ось ординат в двух точках.

Ответ: а).

5. Постройте график функции

Вариант 1

$y = x^2 — 4x + 3$

Вариант 2

$y=x^2-6x+5$

6.2 — 2x + 1 = 0.$

Находим дискриминант:

$D = 4 -3 = 1,$
$x = \dfrac{2 ± 1}{\dfrac{3}{2}},$
$x = 2, x = \dfrac{2}{3},$
$y = 1 — 2 ⋅ \dfrac{2}{3} = -\dfrac{1}{3},$

Ответ: $(\dfrac{2}{3}; -\dfrac{1}{3}).$

9.

Вариант 1

Найдите два числа, сумма которых равна 82, а произведение — наибольшее из возможных.

$x + y = 82;$
$y = 82 — x;$

$x ⋅ y = x ⋅ (82 — x)$ $= -x^2 + 82x$ $= -x^2+82x — 41^2 + 41^2$ $= -(x-41)^2 + 41^2 ≤ 41^2$ при $x є R.2-3x|.$

Присоединяйтесь к Telegram-группе @superresheba_8, делитесь своими решениями и пользуйтесь материалами, которые присылают другие участники группы!

Найдите наименьшее значение функции

В недавней статье мы рассмотрели нахождение точек максимума (минимума) для иррациональной функции. Здесь представлено решение нескольких примеров на нахождение наибольшего (наименьшего) значения таких функции на данном отрезке.

Алгоритм решения уже описывался не раз, посмотрите его в статье, где мы рассматривали задания с логарифсами. Если у вас есть общие вопросы по теории, то советую изучить эту статью. Данный тип заданий включает в себя все действия, которые производятся при вычислении точек максимума (минимума). После этого необходимо определить какие из этих точек принадлежат указанному интервалу, затем вычислить значения функции в этих точках и на границах интервала, а далее выбрать наибольшее или наименьшее. Рассмотрим примеры:

77454. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=(2/3) x3/2 −3x+1 на отрезке [1;9].

Найдём производную заданной функции:

Найдем нули производной:

Решаем уравнение:

Полученное значение х входит в данный интервал.

Вычисляем значения функции в точках 1 и 9:

Наименьшее значение функции равно –8.

Ответ: −8

77456. Найдите наибольшее значение функции

на отрезке [0;4].

Найдём производную заданной функции:

Найдем нули производной:

Решаем уравнение:

Данное значение х входит в интервал.

Вычисляем значения функции в точках  0, 1 и 4:

Большее значение функции равно 1.

Ответ: 1

77466. Найдите наибольшее значение функции

на отрезке [1;9].

Найдём производную заданной функции:

Найдем нули производной:

Решаем уравнение:

Данное значение х входит в интервал (лежит на его границе).

Вычисляем значения функции в точках   1 и 9:

Наибольшее значение функции равно 10.

*На данном интервале производная положительна, поэтому наибольшее значение будет в крайней правой точке.

Ответ: 10

 

77452. Найдите наименьшее значение функции y = x3/2– 3x+1 на отрезке [1;9].

Посмотреть решение

На этом всё. Учитесь с удовольствием!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Y 2 3x 4 построить график функции. Квадратичная и кубическая функции

Разберем как строить график с модулем.

Найдем точки при переходе которых знак модулей меняется.
Каждое выражения, которое под модулем приравниваем к 0. У нас их два x-3 и x+3.
x-3=0 и x+3=0
x=3 и x=-3

У нас числовая прямая разделится на три интервала (-∞;-3)U(-3;3)U(3;+∞). На каждом интервале нужно определить знак под модульных выражений.

1. Это сделать очень просто, рассмотрим первый интервал (-∞;-3). Возьмем с этого отрезка любое значение, например, -4 и подставим в каждое под модульное уравнение вместо значения х.
х=-4
x-3=-4-3=-7 и x+3=-4+3=-1

У обоих выражений знаки отрицательный, значит перед знаком модуля в уравнении ставим минус, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (-∞;-3).

y= (x-3)-( (x+3))=-х+3+х+3=6

На интервале (-∞;-3) получился график линейной функции (прямой) у=6

2. Рассмотрим второй интервал (-3;3). Найдем как будет выглядеть уравнение графика на этом отрезке. Возьмем любое число от -3 до 3, например, 0. Подставим вместо значения х значение 0.
х=0
x-3=0-3=-3 и x+3=0+3=3

У первого выражения x-3 знак отрицательный получился, а у второго выражения x+3 положительный. Следовательно, перед выражением x-3 запишем знак минус, а перед вторым выражением знак плюс.

y= (x-3)-(+ (x+3))=-х+3-х-3=-2x

На интервале (-3;3) получился график линейной функции (прямой) у=-2х

3.Рассмотрим третий интервал (3;+∞). Возьмем с этого отрезка любое значение, например 5, и подставим в каждое под модульное уравнение вместо значения х.

х=5
x-3=5-3=2 и x+3=5+3=8

У обоих выражений знаки получились положительными, значит перед знаком модуля в уравнении ставим плюс, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (3;+∞).

y=+ (x-3)-(+ (x+3))=х-3-х-3=-6

На интервале (3;+∞) получился график линейной функции (прямой) у=-6

4. Теперь подведем итог.Постоим график y=|x-3|-|x+3|.
На интервале (-∞;-3) строим график линейной функции (прямой) у=6.
На интервале (-3;3) строим график линейной функции (прямой) у=-2х.
Чтобы построить график у=-2х подберем несколько точек.
x=-3 y=-2*(-3)=6 получилась точка (-3;6)
x=0 y=-2*0=0 получилась точка (0;0)
x=3 y=-2*(3)=-6 получилась точка (3;-6)
На интервале (3;+∞) строим график линейной функции (прямой) у=-6.

5. Теперь проанализируем результат и ответим на вопрос задания найдем значение k, при которых прямая y=kx имеет с графиком y=|x-3|-|x+3| данной функции ровно одну общую точку.

Прямая y=kx при любом значении k всегда будет проходить через точку (0;0). Поэтому мы можем изменить только наклон данной прямой y=kx, а за наклон у нас отвечает коэффициент k.

Если k будет любое положительное число, то будет одно пересечение прямой y=kx с графиком y=|x-3|-|x+3|. Этот вариант нам подходит.

Если k будет принимать значение (-2;0), то пересечений прямой y=kx с графиком y=|x-3|-|x+3| будет три.Этот вариант нам не подходит.

Если k=-2, решений будет множество [-2;2], потому что прямая y=kx будет совпадать с графиком y=|x-3|-|x+3| на данном участке. Этот вариант нам не подходит.

Если k будет меньше -2, то прямая y=kx с графиком y=|x-3|-|x+3| будет иметь одно пересечение.Этот вариант нам подходит.

Если k=0, то пересечений прямой y=kx с графиком y=|x-3|-|x+3| также будет одно.Этот вариант нам подходит.

Ответ: при k принадлежащей интервалу (-∞;-2)U и возрастает на промежутке }

Wolfram | Alpha Примеры: Пошаговые дифференциальные уравнения


Разделимые уравнения

Посмотрите, как решаются разделяемые уравнения:

Другие примеры


Линейные уравнения первого порядка

Решите линейные уравнения первого порядка:

См. Шаги, которые используют преобразования Лапласа для решения ОДУ:

Другие примеры


Точные уравнения первого порядка

Превратите в точное уравнение:

Другие примеры


Уравнения Бернулли

Научитесь решать уравнения Бернулли:

Другие примеры


Замены первого порядка

Примените линейную замену:

Решите однородное уравнение первого порядка с помощью замены:

Сделайте общие замены:

Другие примеры


Уравнения типа Чини

Решите уравнение Риккати:

Решите уравнение Абеля первого рода с постоянным инвариантом:

Решите уравнение Чини с постоянным инвариантом:

Другие примеры


Общие уравнения первого порядка

См. Шаги для решения уравнения Клеро:

Решите уравнение Даламбера:

Посмотрите, как решаются обыкновенные дифференциальные уравнения первого порядка:

Другие примеры


Линейные уравнения второго порядка с постоянными коэффициентами

Решите линейное однородное уравнение с постоянными коэффициентами:

Решите линейное уравнение с постоянными коэффициентами несколькими методами:

См. Шаги, которые используют преобразования Лапласа для решения ОДУ:

Другие примеры


Снижение порядка

Сведите к уравнению первого порядка:

Выведите уравнение цепной линии:

Другие примеры


Уравнения Эйлера – Коши.

Решите уравнения Эйлера – Коши:

Другие примеры


Общие уравнения второго порядка

Посмотрите, как решаются обыкновенные дифференциальные уравнения второго порядка:

Другие примеры


Уравнения высшего порядка

См. Шаги для уравнений высшего порядка:

Другие примеры

ПРИМЕР 1 Построение квадратичного неравенства График y> x 2 + 3x — 4.РЕШЕНИЕ ШАГ 1 График y = x 2 + 3x — 4. Поскольку символ неравенства>, сделайте параболу.

Презентация на тему: «ПРИМЕР 1 Построение квадратичного неравенства График y> x 2 + 3x — 4. РЕШЕНИЕ ШАГ 1 График y = x 2 + 3x — 4. Поскольку символ неравенства>, составьте параболу». — Стенограмма презентации :

ins [data-ad-slot = «4502451947»] {display: none! important;}} @media (max-width: 800px) {# place_14> ins: not ([data-ad-slot = «4502451947»]) {display: none! important;}} @media (max-width: 800px) {# place_14 {width: 250px;}} @media (max-width: 500 пикселей) {# place_14 {width: 120px;}} ]]>

1

2 ПРИМЕР 1 Построение квадратичного неравенства График y> x 2 + 3x — 4.РЕШЕНИЕ ШАГ 1 График y = x 2 + 3x — 4. Поскольку символ неравенства>, сделайте параболу пунктирной. Проверьте точку внутри параболы, например (0, 0). ШАГ 2 y> x 2 + 3x — 4 0> 0 2 + 3 (0) — 4? 0> — 4

3 ПРИМЕР 1 Построение квадратичного неравенства Итак, (0, 0) является решением неравенства. ШАГ 3 Закрасьте область внутри параболы.

4 ПРИМЕР 2 Использование квадратичного неравенства в реальной жизни Манильская веревка, используемая для спуска со скалы, может безопасно выдерживать вес W (в фунтах) при условии, что Rappelling W ≤ 1480d 2, где d — диаметр веревки (в дюймах).Изобразите неравенство. РЕШЕНИЕ График W = 1480d 2 для неотрицательных значений d. Поскольку символ неравенства равен ≤, сделайте параболу твердой. Проверьте точку внутри параболы, например (1, 2000).

5 ПРИМЕР 2 Используйте квадратичное неравенство в реальной жизни W ≤ 1480d 2 2000 ≤ 1480 Поскольку (1, 2000) не является решением, закрасьте область ниже параболы. 2000 ≤ 1480 (1) 2?

6

7 ПРИМЕР 3 Построить график системы квадратичных неравенств. Построить график системы квадратичных неравенств.y <–x 2 + 4 Неравенство 1 y> x 2 — 2x — 3 Неравенство 2 РЕШЕНИЕ ШАГ 1 График y ≤ –x 2 + 4. График представляет собой красную область внутри параболы y = –x 2 + 4, включая параболу.

8 ПРИМЕР 3 Постройте систему квадратичных неравенств. ШАГ 2. График y> x 2 — 2x — 3. На графике изображена синяя область внутри (но не включая) параболы y = x 2 — 2x — 3. Найдите фиолетовую область, где находятся два графики перекрываются.Этот регион является графиком системы. ШАГ 3

9 РЕКОМЕНДАЦИИ для примеров 1, 2 и 3 Изобразите неравенство. 1. y> x 2 + 2x — 8y <2x 2 - 3x + 1 2.

10 РЕКОМЕНДУЕМЫЕ ПРАКТИКИ для примеров 1, 2 и 3 Изобразите неравенство. y <–x 2 + 4x + 23. 4. Изобразите систему неравенств, состоящую из y ≥ x 2 и y <–x 2 + 5.

11 ПРИМЕР 4 Решите квадратное неравенство с помощью таблицы. Решите x 2 + x ≤ 6 с помощью таблицы. РЕШЕНИЕ Перепишем неравенство как x 2 + x — 6 ≤ 0. Затем составьте таблицу значений. Обратите внимание, что x 2 + x — 6 ≤ 0, когда значения x находятся между –3 и 2 включительно. Решение неравенства –3 ≤ x ≤ 2. ОТВЕТ

12 ПРИМЕР 5 Решите квадратное неравенство, построив график. Решите 2x 2 + x — 4 ≥ 0, построив график.РЕШЕНИЕ Решение состоит из значений x, для которых график y = 2x 2 + x — 4 лежит на оси x или выше нее. Найдите пересечение графика по x, положив y = 0 и используя формулу корней квадратного уравнения, чтобы найти x. 0 = 2x 2 + x — 4 x = –1+ 1 2 — 4 (2) (- 4) 2 (2) x = –1+ 33 4 x 1,19 или x –1,69

13 ПРИМЕР 5 Решите квадратичное неравенство, построив Sketch на графике параболы, которая раскрывается и имеет 1,19 и –1,69 в качестве x -перехвата.График лежит на оси x или выше нее слева от x = –1,69 (включительно) и справа от x = 1,19 (включительно). Решение неравенства приблизительно равно x ≤ –1,69 или x ≥ 1,19. ОТВЕЧАТЬ

14 РЕКОМЕНДУЕМЫЕ ПРАКТИКИ для примеров 4 и 5 Решите неравенство 2x 2 + 2x ≤ 3, используя таблицу и график. 5. –1,8 ≤ x ≤ 0,82 ОТВЕТ

15 ПРИМЕР 6 Использование квадратичного неравенства в качестве модели. Число T команд, которые участвовали в соревновании по созданию роботов для старшеклассников, можно смоделировать с помощью робототехники T (x) = 7.51x 2 –16,4x + 35,0, 0 ≤ x ≤ 9 Где x — количество лет, прошедших с 1992 года. В течение каких лет количество команд превышало 100?

16 ПРИМЕР 6 Использование квадратичного неравенства в качестве модели T (x)> 100 7,51x 2 — 16,4x + 35,0> 100 7,51x 2 — 16,4x — 65> 0 График y = 7,51x 2 — 16,4x — 65 в области 0 ≤ x ≤ 9. Перехват графа по x составляет около 4,2. График лежит выше оси x, когда 4,2

17 ПРИМЕР 7 Решите квадратное неравенство алгебраически. Решите x 2 — 2x> 15 алгебраически. РЕШЕНИЕ Сначала напишите и решите уравнение, полученное заменой> на =. x 2 — 2x = 15 x 2 — 2x — 15 = 0 (x + 3) (x — 5) = 0 x = –3 или x = 5 Запишите уравнение, соответствующее исходному неравенству.Пишите в стандартной форме. Фактор. Свойство нулевого продукта

18 ПРИМЕР 7 Решите квадратное неравенство алгебраически. Числа –3 и 5 являются критическими значениями x неравенства x 2 — 2x> 15. Постройте –3 и 5 на числовой прямой, используя открытые точки, потому что значения не удовлетворяют неравенству. . Критические значения x делят числовую прямую на три интервала. Проверьте значение x в каждом интервале, чтобы убедиться, что оно удовлетворяет неравенству.Тест x = — 4: Тест x = 1: 1 2 — 2 (1) = –1> 15 Тест x = 6: Решение x 5. ОТВЕТ (–4) 2 — 2 (–4) = 24> 15  6 2 –2 (6) = 24> 15 

19 РЕКОМЕНДУЕМЫЕ ПРАКТИКИ для примеров 6 и 7 6. Робототехника Используйте информацию из примера 6, чтобы определить, в какие годы не менее 200 команд участвовали в соревнованиях по сборке роботов. 1998 — 2001 ОТВЕТ 7. Решите неравенство 2x 2 — 7x> 4 алгебраически. x 4 ОТВЕТ


Системы нелинейных уравнений: решение промежуточных систем

Системы нелинейных уравнений:
Средняя сложность Системы
(стр. 4 из 6)


Нелинейные системы, которые мы решили до сих пор, представляют собой одно квадратное уравнение и одно линейное уравнение, которые изображены в виде параболы и прямой линии соответственно.Двигаясь вверх по сложности, мы приходим к решению систем двух квадратных уравнений, которые будут отображены в виде двух парабол; и аналогично беспорядочные системы.

  • Решите следующие проблемы система:
  • л = 2 x 2 + 3 x + 4
    y = x 2 + 2 х + 3

    Как и раньше, я установите эти уравнения равными и решите для значений x :

    2 x 2 + 3 x + 4 = x 2 + 2 x + 3
    x 2 + х + 1 = 0

    Использование квадратичного Формула:


    Но я не умею рисовать что отрицательный внутри квадратного корня! Что тут происходит?

    Взгляните на график:


    Линии не пересекаются.Поскольку нет пересечения, значит, и решения нет. Это, это противоречивая система. Мой окончательный ответ: нет Решение: несовместимая система.


В целом метод решения для общая система уравнений заключается в решении одного из уравнений (вы выбираете which) для одной из переменных (опять же, вы выбираете какую). Затем вы подключаете полученное выражение в other уравнение для выбранной переменной, и решите для значений другие Переменная.Затем вы вставляете эти решения обратно в первое уравнение, и найдите значения первой переменной. Вот еще несколько Примеры: Copyright 2002-2011 Элизабет Стапель. Все права защищены.

  • Решите следующие проблемы система:
  • Графически эта система прямая линия (из первого уравнения), пересекающая круг с центром в начале координат (из второго уравнения):

    Кажется, двое решения.Я продолжу алгебраически, чтобы подтвердить это впечатление, и чтобы получить точные значения.

    Поскольку первое уравнение уже решено для y , Подключу « x 3 дюйма для « y » во втором уравнении и найдите значения x :

      x 2 + y 2 = 17
      x 2 + ( x 3) 2 = 17
      x 2 + ( x 3) ( x 3) = 17
      x 2 + ( x 2 + 6 x + 9) = 17
      2 x 2 + 6 x + 9 = 17
      2 x 2 + 6 x 8 = 0
      x 2 + 3 x 4 = 0
      ( x + 4) ( x 1) = 0
      x = 4, х = 1

    Когда x = 4, y = x 3 = (4) 3 = 4 3 = 1

    Когда x = 1, y = х 3 = (1) 3 = 4

    Затем решение состоит из точек (4, 1) и (1, 4) .


Обратите внимание на процедуру: я решил одно из уравнений (первое уравнение выглядело проще) для одного из переменные (решение для « y =» выглядело проще), и затем подставил полученное выражение обратно в другое уравнение. Этот дал мне одно уравнение с одной переменной (переменная оказалась x ), а уравнение с одной переменной — это то, что я умею решать. Когда-то у меня было значения решения для x , Я сделал обратное решение для соответствующих значений , и .Я подчеркиваю «соответствующий», потому что вы должны отслеживать который y -значение идет с которым x -значение. В приведенном выше примере точки (4, 4) и (1, 1) — это , а не решений. Хотя я придумал x = 4 и 1 и y = 4 и 1, x = 4 не пошел с y = 4, а x = 1 не пошел с y = 1.

Предупреждение: Вы должны сопоставить значения x и y -значения правильно. Будь осторожен!


  • Решите следующие проблемы система уравнений:
  • Поскольку оба уравнения уже решены для y , Я установлю их равными и найду значения x :

      ( 1 / 2 ) x 5 = x 2 + 2 x 15
      х 10 = 2 х 2 + 4 х 30
      0 = 2 x 2 + 3 x 20
      0 = (2 x 5) ( x + 4)

      х = 5 / 2 , x = 4

    Когда x = 5 / 2 :

    Когда x = 4:

    Тогда решения точки ( 5 / 2 , 15 / 4 ) и (4, 7) .


Графически Выше система выглядит так:

Точки пересечения на графике, похоже, хорошо совпадают с численными решениями, которые я получил с помощью алгебры, что подтверждает правильность выполнения упражнения.



  • Решите следующие система уравнений:
  • Беглый взгляд на На графике я вижу, что есть только одно решение:

    Думаю, я решу второе уравнение для y , и подставьте результат в первое уравнение:

    Тогда:

    Тогда:

    Тогда решение точка (1, 1) .

<< Предыдущая Вверх | 1 | 2 | 3 | 4 | 5 | 6 | Вернуться к указателю Далее >>

Цитируйте эту статью как:

Стапель, Елизавета. «Системы нелинейных уравнений: Промежуточные системы». Purplemath .
Доступно по номеру https://www.purplemath.com/modules/syseqgen4.htm .
Дата обращения [Дата] [Месяц] 2016 г.

Решение системных уравнений | Уравнения и неравенства

\ (- 10 x = -1 \) и \ (- 4 х + 10 у = -9 \).

Решить относительно \ (x \):

\ begin {align *} — 10х = -1 \\ \ поэтому x = \ frac {1} {10} \ end {выровнять *}

Подставляем значение \ (x \) во второе уравнение и решаем относительно \ (y \):

\ begin {align *} -4x + 10y & = -9 \\ -4 \ left (\ frac {1} {10} \ right) + 10y & = -9 \\ \ frac {-4} {10} + 10y & = -9 \\ 100л & = -90 + 4 \\ y & = \ frac {-86} {100} \\ & = \ frac {-43} {50} \ end {выровнять *}

Следовательно, \ (x = \ frac {1} {10} \ text {и} y = — \ frac {43} {50} \).

\ (3x — 14y = 0 \) и \ (x — 4y + 1 = 0 \)

Запишите \ (x \) через \ (y \):

\ begin {align *} 3х — 14лет & = 0 \\ 3х & = 14л \\ x & = \ frac {14} {3} y \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} х — 4у + 1 & = 0 \\ \ frac {14} {3} y — 4y + 1 & = 0 \\ 14лет — 12лет + 3 & = 0 \\ 2у & = -3 \\ y & = — \ frac {3} {2} \ end {выровнять *}

Подставить значение \ (y \) обратно в первое уравнение:

\ begin {align *} x & = \ frac {14 \ left (- \ frac {3} {2} \ right)} {3} \\ & = -7 \ end {выровнять *}

Следовательно, \ (x = -7 \ text {и} y = — \ frac {3} {2} \).

\ (x + y = 8 \) и \ (3x + 2y = 21 \)

Запишите \ (x \) через \ (y \):

\ begin {align *} х + у & = 8 \\ х & = 8 — у \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} 3х + 2у & = 21 \\ 3 (8 — у) + 2у & = 21 \\ 24 — 3л + 2у & = 21 \\ y & = 3 \ end {выровнять *}

Подставить значение \ (y \) обратно в первое уравнение:

\ [x = 5 \]

Следовательно, \ (x = 5 \ text {и} y = 3 \).

\ (y = 2x + 1 \) и \ (x + 2y + 3 = 0 \)

Запишите \ (y \) через \ (x \):

\ [y = 2x + 1 \]

Подставьте значение \ (y \) во второе уравнение:

\ begin {align *} х + 2у + 3 & = 0 \\ х + 2 (2х + 1) + 3 & = 0 \\ х + 4х + 2 + 3 & = 0 \\ 5x & = -5 \\ х & = -1 \ end {выровнять *}

Подставить значение \ (x \) обратно в первое уравнение:

\ begin {align *} у & = 2 (-1) + 1 \\ & = -1 \ end {выровнять *}

Следовательно, \ (x = -1 \ text {и} y = -1 \).

\ (5x-4y = 69 \) и \ (2x + 3y = 23 \)

Сделайте \ (x \) предметом первого уравнения:

\ begin {align *} 5х-4л & = 69 \\ 5х & = 69 + 4у \\ x & = \ frac {69 + 4y} {5} \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} 2х + 3у & = 23 \\ 2 \ left (\ frac {69 + 4y} {5} \ right) + 3y & = 23 \\ 2 (69 + 4у) +3 (5) у & = 23 (5) \\ 138 + 8л + 15л & = 115 \\ 23лет & = -23 \\ \ поэтому y & = -1 \ end {выровнять *}

Подставить значение \ (y \) обратно в первое уравнение:

\ begin {align *} x & = \ frac {69 + 4y} {5} \\ & = \ frac {69 + 4 (-1)} {5} \\ & = 13 \ end {выровнять *}

Следовательно, \ (x = 13 \ text {и} y = -1 \).

\ (x + 3y = 26 \) и \ (5x + 4y = 75 \)

Сделайте \ (x \) предметом первого уравнения:

\ begin {align *} х + 3у & = 26 \\ x & = 26 — 3 года \ end {выровнять *}

Подставьте значение \ (x \) во второе уравнение:

\ begin {align *} 5х + 4у & = 75 \\ 5 (26 — 3л) + 4л & = 75 \\ 130 — 15л + 4л & = 75 \\ -11л & = -55 \\ \ поэтому y & = 5 \ end {выровнять *}

Подставить значение \ (y \) обратно в первое уравнение:

\ begin {align *} х & = 26 — 3у \\ & = 26 — 3 (5) \\ & = 11 \ end {выровнять *}

Следовательно, \ (x = 11 \ text {и} y = 5 \).

\ (3x — 4y = 19 \) и \ (2x — 8y = 2 \)

Если мы умножим первое уравнение на 2, то коэффициент при \ (y \) будет одинаковым в обоих уравнениях:

\ begin {align *} 3х — 4л & = 19 \\ 3 (2) х — 4 (2) у & = 19 (2) \\ 6x — 8 лет & = 38 \ end {выровнять *}

Теперь мы можем вычесть второе уравнение из первого:

\ [\ begin {array} {cccc} & 6x — 8лет & = & 38 \\ — & (2x — 8y & = & 2) \\ \ hline & 4x + 0 & = & 36 \ конец {массив} \]

Решить относительно \ (x \):

\ begin {align *} \ поэтому x & = \ frac {36} {4} \\ & = 9 \ end {выровнять *}

Подставьте значение \ (x \) в первое уравнение и решите относительно \ (y \):

\ begin {align *} 3х-4л & = 19 \\ 3 (9) -4y & = 19 \\ \ поэтому y & = \ frac {19-3 (9)} {- 4} \\ & = 2 \ end {выровнять *}

Следовательно, \ (x = 9 \ text {и} y = 2 \).

\ (\ dfrac {a} {2} + b = 4 \) и \ (\ dfrac {a} {4} — \ dfrac {b} {4} = 1 \)

Сделайте \ (a \) предметом первого уравнения:

\ begin {align *} \ frac {a} {2} + b & = 4 \\ а + 2b & = 8 \\ а & = 8 — 2b \ end {выровнять *}

Подставьте значение \ (a \) во второе уравнение:

\ begin {align *} \ frac {a} {4} — \ frac {b} {4} & = 1 \\ а — б & = 4 \\ 8 — 2б — б & = 4 \\ 3b & = 4 \\ b & = \ frac {4} {3} \ end {выровнять *}

Подставить значение \ (b \) обратно в первое уравнение:

\ begin {align *} a & = 8-2 \ left (\ frac {4} {3} \ right) \\ & = \ frac {16} {3} \ end {выровнять *}

Следовательно, \ (a = \ frac {16} {3} \ text {и} b = \ frac {4} {3} \).

\ (- 10x + y = -1 \) и \ (- 10x — 2y = 5 \)

Если мы вычтем второе уравнение из первого, то мы сможем решить для \ (y \):

\ [\ begin {array} {cccc} & -10x + y & = & -1 \\ — & (-10x — 2y & = & 5) \\ \ hline & 0 + 3г & = & -6 \ конец {массив} \]

Решить относительно \ (y \):

\ begin {align *} 3лет & = -6 \\ \ поэтому y & = -2 \ end {выровнять *}

Подставьте значение \ (y \) в первое уравнение и решите относительно \ (x \):

\ begin {align *} -10x + y & = -1 \\ -10x — 2 & = -1 \\ -10x & = 1 \\ x & = \ frac {1} {- 10} \ end {выровнять *}

Следовательно, \ (x = \ frac {-1} {10} \ text {и} y = -2 \).

\ (- 10 x — 10 y = -2 \) и \ (2 x + 3 y = 2 \)

Сделайте \ (x \) предметом первого уравнения:

\ begin {align *} — 10 х — 10 у = -2 \\ 5х + 5у & = 1 \\ 5x & = 1 — 5л \\ \ поэтому x = -y + \ frac {1} {5} \ end {выровнять *}

Подставляем значение \ (x \) во второе уравнение и решаем относительно \ (y \):

\ begin {align *} 2х + 3у & = 2 \\ 2 \ left (-y + \ frac {1} {5} \ right) + 3y & = 2 \\ -2y + \ frac {2} {5} + 3y & = 2 \\ y & = \ frac {8} {5} \ end {выровнять *}

Подставьте значение \ (y \) в первое уравнение:

\ begin {align *} 5х + 5у & = 1 \\ 5x + 5 \ влево (\ frac {8} {5} \ right) & = 1 \\ 5х + 8 & = 1 \\ 5x & = -7 \\ x & = \ frac {-7} {5} \ end {выровнять *}

Следовательно, \ (x = — \ frac {7} {5} \ text {и} y = \ frac {8} {5} \).

\ (\ dfrac {1} {x} + \ dfrac {1} {y} = 3 \) и \ (\ dfrac {1} {x} — \ dfrac {1} {y} = 11 \)

Переставьте оба уравнения, умножив на \ (xy \):

\ begin {align *} \ frac {1} {x} + \ frac {1} {y} & = 3 \\ у + х & = 3xy \\\\ \ frac {1} {x} — \ frac {1} {y} & = 11 \\ у — х & = 11xy \ end {выровнять *}

Сложите два уравнения вместе:

\ [\ begin {array} {cccc} & y + x & = & 3xy \\ + & (у — х & = & 11xy) \\ \ hline & 2y + 0 & = & 14xy \ конец {массив} \]

Решить относительно \ (x \):

\ begin {align *} 2y & = 14xy \\ у & = 7xy \\ 1 & = 7x \\ х & = \ гидроразрыв {1} {7} \ end {выровнять *}

Подставить значение \ (x \) обратно в первое уравнение:

\ begin {align *} y + \ frac {1} {7} & = 3 \ left (\ frac {1} {7} \ right) y \\ 7у + 1 & = 3у \\ 4г & = -1 \\ y & = — \ frac {1} {4} \ end {выровнять *}

Следовательно, \ (x = \ frac {1} {7} \ text {и} y = — \ frac {1} {4} \).2 + 1 \\ 0 & = 0 \ end {выровнять *}

Поскольку это верно для всех \ (x \) в действительных числах, \ (x \) может быть любым действительным числом.

Посмотрите, что происходит с \ (y \), когда \ (x \) очень маленький или очень большой:

Наименьшее значение \ (x \) может быть равно 0. Когда \ (x = 0 \), \ (y = 2- \ frac {3} {2} = \ frac {1} {2} \).2 & = 3 — ab \ end {выровнять *}

Обратите внимание, что это то же самое, что и второе уравнение

\ (a \) и \ (b \) может быть любым действительным числом, кроме \ (\ text {0} \).

Графические уравнения с программой «Пошаговое решение математических задач»

Язык математики особенно эффективен для представления отношений между двумя или более переменными.В качестве примера рассмотрим пройденное расстояние через определенный промежуток времени автомобилем, движущимся с постоянной скоростью 40 миль в час. Мы можем представить эту взаимосвязь как

  1. 1. Словесное предложение:
    Пройденное расстояние в милях равно сороккратному количеству пройденных часов.
  2. 2. Уравнение:
    d = 40r.
  3. 3. Таблица значений.
  4. 4. График, показывающий зависимость между временем и расстоянием.

Мы уже использовали словесные предложения и уравнения для описания таких отношений; В этой главе мы будем иметь дело с табличным и графическим представлениями.

7.1 РЕШЕНИЕ УРАВНЕНИЙ ОТ ДВУХ ПЕРЕМЕННЫХ

ЗАКАЗАННЫЕ ПАРЫ

Уравнение d = 40f объединяет расстояние d для каждого момента времени t. Например,


если t = 1, то d = 40
, если t = 2, то d = 80
, если t = 3, то d = 120

и так далее.

Пара чисел 1 и 40, рассматриваемая вместе, называется решением уравнение d = 40r, потому что когда мы подставляем 1 вместо t и 40 вместо d в уравнении, мы получаем верное утверждение. Если мы согласны ссылаться на парные номера в указанном порядок, в котором первое число относится ко времени, а второе число относится к расстояния, мы можем сократить приведенные выше решения как (1, 40), (2, 80), (3, 120) и скоро.Мы называем такие пары чисел упорядоченными парами и ссылаемся на первую и вторые числа в парах как компоненты. В соответствии с этим соглашением решения Уравнение d — 40t — это упорядоченные пары (t, d), компоненты которых удовлетворяют уравнению. Некоторые упорядоченные пары для t, равного 0, 1, 2, 3, 4 и 5, равны

(0,0), (1,40), (2,80), (3,120), (4,160) и (5,200)

Такие пары иногда отображаются в одной из следующих табличных форм.

В любом конкретном уравнении, включающем две переменные, когда мы присваиваем значение одной переменных определяется значение другой переменной и, следовательно, зависит от первого.Удобно говорить о переменной, связанной с первый компонент упорядоченной пары как независимая переменная и переменная связанный со вторым компонентом упорядоченной пары в качестве зависимой переменной. Если в уравнении используются переменные x и y, подразумевается, что заменить — элементы для x являются первыми компонентами и, следовательно, x — независимая переменная и замены y являются вторыми компонентами и, следовательно, y является зависимой переменной. Например, мы можем получить пары для уравнения

, подставив конкретное значение одной переменной в уравнение (1) и решив для другая переменная.

Пример 1

Найдите недостающий компонент, чтобы заказанная пара стала решением для

2х + у = 4

а. (0 ,?)

г. (1 ,?)

г. (2 ,?)

Решение

если x = 0, то 2 (0) + y = 4
y = 4

если x = 1, то 2 (1) + y = 4
y = 2

если x = 2, то 2 (2) + y = 4
y = 0

Три пары теперь могут отображаться как три упорядоченные пары

(0,4), (1,2) и (2,0)

или в табличной форме

ЯВНО ВЫРАЖАЮЩИЙ ПЕРЕМЕННУЮ

Мы можем добавить -2x к обоим членам 2x + y = 4, чтобы получить

-2x + 2x + y = -2x + 4
y = -2x + 4

В уравнении (2), где y есть само по себе, мы говорим, что y явно выражается через из х.Часто бывает проще получить решения, если сначала выразить уравнения в такой форме потому что зависимая переменная явно выражается через независимые Переменная.

Например, в уравнении (2) выше

, если x = 0, то y = -2 (0) + 4 = 4
, если x = 1, то y = -2 (1) + 4 = 2
, если x = 2, то y = -2 (2) + 4 = 0

Мы получаем те же пары, которые мы получили с помощью уравнения (1)

(0,4), (1,2) и (2,0)

Мы получили уравнение (2) добавлением одинаковой величины -2x к каждому члену уравнения (1), таким образом получая y само по себе.В общем, мы можем написать эквивалент уравнения с двумя переменными, используя свойства, которые мы ввели в главе 3, где мы решали уравнения первой степени с одной переменной.

Уравнения эквивалентны, если:

  1. Одно и то же количество прибавляется к равным количествам или вычитается из них.
  2. Равные количества умножаются или делятся на одинаковое ненулевое количество.

Пример 2

Решите 2y — 3x = 4 явно для y через x и получите решения для x = 0, х = 1 и х = 2.

Решение
Во-первых, добавляя 3x к каждому члену, мы получаем

2y — 3x + 3x = 4 + 3x
2y = 4 + 3x (продолжение)

Теперь, разделив каждый член на 2, получим

В этой форме мы получаем значения y для заданных значений x следующим образом:

В этом случае три решения: (0, 2), (1, 7/2) и (2, 5).

ОБОЗНАЧЕНИЕ ФУНКЦИЙ

Иногда мы используем специальные обозначения для наименования второго компонента упорядоченного пара, которая связана с указанным первым компонентом.Символ f (x), который часто используется для обозначения алгебраического выражения в переменной x, также может использоваться для обозначения значение выражения для конкретных значений x. Например, если

f (x) = -2x + 4

, где f (x) играет ту же роль, что и y в уравнении (2) на странице 285, тогда f (1) представляет значение выражения -2x + 4, когда x заменяется на 1

f (l) = -2 (1) + 4 = 2

Аналогично

f (0) = -2 (0) + 4 = 4

и

f (2) = -2 (2) + 4 = 0

Символ f (x) обычно называют обозначением функции.

Пример 3

Если f (x) = -3x + 2, найти f (-2) и f (2).

Решение

Замените x на -2, чтобы получить
f (-2) = -3 (-2) + 2 = 8

Замените x на 2, чтобы получить
f (2) = -3 (2) + 2 = -4

7.2 ГРАФИКИ ЗАКАЗАННЫХ ПАР

В разделе 1.1 мы видели, что каждое число соответствует точке на линии. Simi- Как правило, каждая упорядоченная пара чисел (x, y) соответствует точке на плоскости. К граф упорядоченной пары чисел, мы начинаем с построения пары перпендикулярных числовые линии, называемые осями.Горизонтальная ось называется осью x, вертикальная ось называется осью Y, а точка их пересечения называется началом координат. Эти топоры разделите плоскость на четыре квадранта, как показано на рисунке 7.1.

Теперь мы можем присвоить упорядоченную пару чисел точке на плоскости, указав на перпендикулярное расстояние точки от каждой из осей. Если первый составляющая положительная, точка лежит правее вертикальной оси; если отрицательный, это лежит слева.Если второй компонент положительный, точка находится выше Горизонтальная ось; если отрицательный, он находится внизу.

Пример 1

График (3, 2), (-3, 2), (-3, -2) и (3, -2) в прямоугольной системе координат.

Решение
График (3, 2) находится на 3 единицы правее ось y и на 2 единицы выше оси x; график (-3,2) лежит на 3 единицы слева от ось y и на 2 единицы выше оси x; график (-3, -2) лежит на 3 единицы слева от ось y и на 2 единицы ниже оси x; график (3, -2) лежит на 3 единицы правее ось y и на 2 единицы ниже оси x.

Расстояние y, на котором точка расположена от оси x, называется ординатой. точки, а расстояние x, на котором точка расположена от оси y, называется абсцисса точки. Абсцисса и ордината вместе называются прямоугольником. Гулярные или декартовы координаты точки (см. рисунок 7.2).

7.3 ИЗОБРАЖЕНИЕ УРАВНЕНИЙ ПЕРВОГО УРОВНЯ

В разделе 7.1 мы увидели, что решение уравнения с двумя переменными является упорядоченным пара.В разделе 7.2 мы видели, что компонентами упорядоченной пары являются координаты точки на плоскости. Таким образом, чтобы построить уравнение с двумя переменными, мы Изобразите набор упорядоченных пар, которые являются решениями уравнения. Например, мы может найти некоторые решения уравнения первой степени

у = х + 2

, положив x равным 0, -3, -2 и 3. Затем

для x = 0, y = 0 + 2 = 2
для x = 0, y = -3 + 2 = -1
для x = -2, y = -2 + 2-0
для x = 3, y = 3 + 2 = 5

и получаем решения

(0,2), (-3, -1), (-2,0) и (3,5)

, который может отображаться в табличной форме, как показано ниже.

Если мы изобразим точки, определенные этими упорядоченные пары и проведите прямую через их, мы получаем график всех решений y = x + 2, как показано на рисунке 7.3. Это, каждое решение y = x + 2 лежит на прямой, и каждая точка на линии является решением у = х + 2.

Графики уравнений первой степени в двух переменные всегда прямые; следовательно, такие уравнения также называются линейными уравнения.

В приведенном выше примере значения, которые мы использовали для x были выбраны случайным образом; мы могли бы использовать любые значения x, чтобы найти решения уравнения.Графики любых других упорядоченных пар, которые являются решениями уравнения, также будут быть на линии, показанной на рисунке 7.3. Фактически каждое линейное уравнение с двумя переменными имеет бесконечное количество решений, график которых лежит на прямой. Однако мы только нужно найти два решения, потому что для определения прямая линия. Третий балл можно получить как проверку.

Чтобы изобразить уравнение первой степени:

  1. Постройте набор прямоугольных осей, показывающих масштаб и переменную, представляющую отправляется каждой осью.
  2. Найдите две упорядоченные пары, которые являются решениями уравнения, которое нужно построить на графике. присвоение любого удобного значения одной переменной и определение соответствующего соответствующее значение другой переменной.
  3. Изобразите эти упорядоченные пары.
  4. Проведите прямую линию через точки.
  5. Проверьте, построив график третьей упорядоченной пары, которая является решением уравнения и убедитесь, что он лежит на линии.

Пример 1

Постройте уравнение y = 2x — 6.

Решение
Сначала мы выбираем любые два значения x, чтобы найти связанные значения y.
Мы будем использовать 1 и 4 для x.
Если x = 1, y = 2 (1) — 6 = -4
, если x = 4, y = 2 (4) — 6 = 2
Таким образом, два решения уравнения:
(1, -4) и (4, 2).
Затем мы нарисуем эти упорядоченные пары и проведем прямую линию через точки, как показано на рисунке. Мы используем стрелки, чтобы показать, что линия тянется бесконечно далеко в обоих направлениях. Любая третья упорядоченная пара, удовлетворяющая уравнение можно использовать в качестве проверки:
, если x = 5, y = 2 (5) -6 = 4
Затем отметим, что график (5, 4) также лежит на линии
. Чтобы найти решения уравнения, как мы уже отмечали, часто проще всего сначала решить явно для y через x.

Пример 2

График x + 2y = 4.

Решение
Сначала решаем y через x, чтобы получить

Теперь мы выбираем любые два значения x, чтобы найти соответствующие значения y. Мы будем использовать 2 и 0 для x.

Таким образом, двумя решениями уравнения являются (2, 1) и (0, 2).

Затем мы построим график этих упорядоченных пар и проведите через точки прямую, как показано на рисунке.

Любая третья упорядоченная пара, удовлетворяющая уравнение можно использовать как проверку:

Заметим, что график (-2, 3) также лежит на линии.

ОСОБЫЕ СЛУЧАИ ЛИНЕЙНЫХ УРАВНЕНИЙ

Уравнение y = 2 можно записать как

0x + y = 2

и может рассматриваться как линейное уравнение в двух переменные, у которых коэффициент при x равен 0. Некоторые решения 0x + y = 2 равны

(1,2), (-1,2) и (4,2)

Фактически, любая упорядоченная пара вида (x, 2) является решение (1). Графическое изображение решений дает горизонтальную линию, как показано на рисунке 7.4.

Точно так же уравнение, такое как x = -3, может можно записать как

х + 0у = -3

и может рассматриваться как линейное уравнение в двух переменные, у которых коэффициент при y равен 0.

Некоторые решения x + 0y = -3 являются (-3, 5), (-3, 1) и (-3, -2). Фактически любой упорядоченная пара вида (-3, y) является решением из (2). Построение графика решений дает вертикальную линии, как показано на рисунке 7.5.

Пример 3

График

а. у = 3
б. х = 2

Решение
а. Мы можем записать y = 3 как Ox + y = 3.
Некоторые решения: (1, 3), (2,3) и (5, 3).

б. Мы можем записать x = 2 как x + Oy = 2.
Некоторые решения: (2, 4), (2, 1) и (2, -2).

7.4 МЕТОД ПЕРЕСЕЧЕНИЯ ГРАФИКА

В Разделе 7.3 мы присвоили значения x в уравнениях с двумя переменными, чтобы найти соответствующие значения y. Решения уравнения с двумя переменными, которые как правило, легче всего найти те, в которых первый или второй компонент 0. Например, если мы заменим 0 на x в уравнении

3x + 4y = 12

у нас

3 (0) + 4y = 12
y = 3

Таким образом, решением уравнения (1) является (0, 3).Мы также можем найти упорядоченные пары, которые решения уравнений с двумя переменными путем присвоения значений y и определения соответствующие значения x. В частности, если мы подставим 0 вместо y в уравнение (1), мы получить

3x + 4 (0) = 12
x = 4

и второе решение уравнения (4, 0). Теперь мы можем использовать упорядоченные пары (0, 3) и (4, 0) для построения графика уравнения (1). График представлен на рисунке 7.6. Уведомление что линия пересекает ось x в точке 4 и ось y в точке 3. По этой причине число 4 называется пересечением по оси x графа, а число 3 — точкой пересечения по оси y.

Такой способ построения графика линейного уравнения называется пересечением. метод построения графиков. Обратите внимание, что когда мы используем этот метод построения графиков линейного уравнение, нет никакого преимущества в том, чтобы сначала явно выразить y через x.

Пример 1

График 2x — y = 6 методом пересечения.

Решение
Мы находим точку пересечения с x, подставляя 0 вместо y в уравнение, чтобы получить

2x — (0) = 6
2x = 6
x = 3

Теперь мы находим точку пересечения по оси Y, подставляя для x в уравнении, чтобы получить

2 (0) — y = 6
-y = 6
y = -6

Упорядоченные пары (3, 0) и (0, -6) являются решениями 2x — y = 6.Графическое изображение этих точки и соединив их прямой линией, получим график 2x — y = 6. Если график пересекает оси в начале координат или рядом с ним, метод перехвата не работает. удовлетворительно. Затем мы должны построить график упорядоченной пары, которая является решением уравнения и чей график не является началом координат или не слишком близок к началу координат.

Пример 2

График y = 3x.

Решение
Мы можем заменить 0 на x и найти
y = 3 (0) = 0
Аналогичным образом, заменив 0 на y, мы получим
0 = 3.x, x = 0
Таким образом, 0 является и точкой пересечения по оси x, и точкой пересечения по оси y.

Так как одной точки недостаточно для графического = 3x, мы прибегаем к методам, описанным в Раздел 7.3. Выбирая любое другое значение для x, скажем 2, мы получаем

у = 3 (2) = 6

Таким образом, (0, 0) и (2, 6) являются решениями уравнение. График y = 3x показан на верно.

7,5 НАКЛОН ЛИНИИ

ФОРМУЛА НАКЛОНА

В этом разделе мы изучим важное свойство линии.Мы назначим число к линии, которую мы называем уклоном, что даст нам меру «крутизны» или «направление» линии.

Часто бывает удобно использовать специальные обозначения для различения прямоугольников. Гулярные координаты двух разных точек. Мы можем обозначить одну пару координат на (x 1 , y 1 (читается «x sub one, y sub one»), связанный с точкой P 1 , и второй пара координат по (x 2 , y 2 ), связанная со второй точкой P 2 , как показано на рисунке 7.7. Обратите внимание на рис. 7.7, что при переходе от P 1 к P 2 вертикальное изменение (или расстояние по вертикали) между двумя точками составляет y 2 — y 1 , а изменение по горизонтали (или расстояние по горизонтали) составляет x 2 — x 1 .

Отношение вертикального изменения к горизонтальному называется крутизной линия, содержащая точки P 1 и P 2 . Это соотношение обычно обозначают m. Таким образом,

Пример 1

Найдите наклон прямой, содержащей два точки с координатами (-4, 2) и (3, 5) как показано на рисунке справа.

Решение
Мы обозначаем (3, 5) как (x 2 , y 2 ) и (-4, 2) как (x 1 , y 1 ). Подставляя в уравнение (1) дает

Обратите внимание, что мы получим тот же результат, если подставим -4 и 2 вместо x 2 и y 2 и 3 и 5 для x 1 и y 1

Линии с различным уклоном показаны на Рисунке 7.8 ниже. Наклоны линий, которые вверх вправо положительны (рисунок 7.8а) и наклоны спускающихся вниз справа отрицательны (рис. 7.8b). Обратите внимание (рис. 7.8c), что, поскольку все точки на горизонтальной линии имеют одинаковое значение y, y 2 — y 1 равно нулю для любых двух точек, а наклон линии просто

Также обратите внимание (рисунок 7.8c), что, поскольку все точки на вертикали имеют одинаковое значение x, x 2 — x 1 равняется нулю для любых двух точек. Однако

не определено, поэтому вертикальная линия не имеет наклона.

ПАРАЛЛЕЛЬНЫЕ И ПЕРПЕНДИКУЛЯРНЫЕ ЛИНИИ

Рассмотрим линии, показанные на рисунке 7.9. Линия l 1 имеет наклон m 1 = 3, а линия l 2 имеет уклон м 2 = 3. В данном случае

Эти линии никогда не пересекаются и называются параллельными линиями. Теперь рассмотрим строки показано на рисунке 7.10. Линия l 1 имеет наклон m 1 = 1/2, а линия l 2 имеет наклон m 2 = -2. В данном случае

Эти линии пересекаются, образуя прямой угол, и называются перпендикулярными линиями.

В общем, если две линии имеют уклон и м2:

    а. Линии параллельны, если они имеют одинаковый наклон, т. Е. если m 1 = m 2 .
    г. Линии перпендикулярны, если произведение их уклонов равно -1, то есть если m 1 * m 2 = -1.

7.6 УРАВНЕНИЯ ПРЯМЫХ ЛИНИЙ

ОПОРНО-СКЛОННАЯ ФОРМА

В разделе 7.5 мы нашли наклон прямой по формуле

Допустим, мы знаем, что линия проходит через точку (2, 3) и имеет наклон 2.Если обозначить любую другую точку на прямой как P (x, y) (см. Рис. 7.1а), наклоном формула

Таким образом, уравнение (1) — это уравнение прямой, проходящей через точку (2, 3), и имеет уклон 2.

В общем, допустим, мы знаем, что линия проходит через точку P 1 (x 1 , y 1 и имеет уклон м. Если мы обозначим любую другую точку на прямой как P (x, y) (см. Рис. 7.11 b), то через формула наклона

Уравнение (2) называется формой точечного уклона для линейного уравнения.В уравнении (2), m, x 1 и y 1 известны, а x и y — переменные, которые представляют координаты любая точка на линии. Таким образом, всякий раз, когда мы знаем наклон линии и точку на линии, мы можем найти уравнение линии, используя уравнение (2).

Пример 1

Линия имеет наклон -2 и проходит через точку (2, 4). Найдите уравнение прямой.

Решение
Замените -2 вместо m и (2, 4) вместо (x 1 , y 1 ) в уравнении (2)

Таким образом, прямая с наклоном -2, проходящая через точку (2, 4), имеет уравнение у = -2х + 8.Мы могли бы также записать уравнение в эквивалентной форме y + 2x = 8, 2x + y = 8 или 2x + y — 8 = 0.

ФОРМА НАКЛОНА

Теперь рассмотрим уравнение прямой с наклоном m и точкой пересечения оси y b, как показано на Рисунок 7.12. Подставив 0 вместо x 1 и b вместо y 1 в форме точечного наклона линейного уравнение, имеем

y — b = m (x — 0)
y — b = mx

или

y = mx + b

Уравнение (3) называется формой пересечения наклона для линейного уравнения.Наклон и пересечение по оси Y можно получить непосредственно из уравнения в эта форма.

Пример 2 Если линия имеет уравнение

, то наклон линии должен быть -2, а точка пересечения оси Y — 8. Аналогично, график

г = -3x + 4

имеет наклон -3 и точку пересечения по оси Y 4; и график

имеет наклон 1/4 и точку пересечения по оси Y -2.

Если уравнение не записано в форме x = mx + b и мы хотим знать наклон и / или точку пересечения с y, мы переписываем уравнение, решая относительно y через x.

Пример 3

Найдите наклон и точку пересечения оси Y 2x — 3y = 6.

Решение
Сначала мы решаем y в терминах x, добавляя -2x к каждому члену.

2x — 3y — 2x = 6 — 2x
— 3y = 6 — 2x

Теперь, разделив каждого члена на -3, мы получим

Сравнивая это уравнение с формой y = mx + b, отметим, что наклон m (величина коэффициент при x) равен 2/3, а точка пересечения оси y равна -2.

7.7 ПРЯМОЕ ИЗМЕНЕНИЕ

Частный случай уравнения первой степени с двумя переменными дается

y = kx (k — постоянная)

Такая связь называется прямой вариацией.Мы говорим, что переменная y изменяется прямо как x.

Пример 1

Мы знаем, что давление P в жидкости изменяется прямо пропорционально глубине d ниже поверхность жидкости. Мы можем обозначить это соотношение в символах как

P =

кД

В прямом варианте, если мы знаем набор условий для двух переменных, и если мы также знаем другое значение для одной из переменных, мы можем найти значение вторая переменная для этого нового набора условий.

В приведенном выше примере мы можем решить для константы k, чтобы получить

Поскольку отношение P / d постоянно для каждого набора условий, мы можем использовать соотношение для решения задач, связанных с прямым изменением.

Пример 2

Если давление P напрямую зависит от глубины d и P = 40, когда d = 10, найдите P, когда d = 15.

Решение
Поскольку отношение P / d является постоянным, мы можем подставить значения для P и d и получить пропорция

Таким образом, P = 60 при d = 15.

7.8 НЕРАВЕНСТВА В ДВУХ ПЕРЕМЕННЫХ

В разделах 7.3 и 7.4 мы построили уравнения с двумя переменными. В этом разделе мы построит график неравенств по двум переменным. Например, рассмотрим неравенство

у ≤ -x + 6

Решения — это упорядоченные пары чисел, которые «удовлетворяют» неравенству.Это, (a, b) является решением неравенства, если неравенство является истинным утверждением после того, как мы заменим a на x и b на y.

Пример 1

Определите, является ли данная упорядоченная пара решением y = -x + 6.

а. (1, 1)
б. (2, 5)

Решение
Упорядоченная пара (1, 1) является решением, потому что, когда 1 заменяется на x, а 1 подставив вместо y, мы получим

(1) = — (1) + 6, или 1 = 5

, что является верным утверждением. С другой стороны, (2, 5) не является решением, потому что когда 2 заменяется на x и 5 заменяется на y, мы получаем

(5) = — (2) + 6, или 5 = 4

, что является ложным заявлением.

Чтобы изобразить неравенство y = -x + 6, сначала построим уравнение y = -x + 6 показано на рисунке 7.13. Обратите внимание, что (3, 3), (3, 2), (3, 1), (3, 0) и т. Д., Связанные с точками, находящимися на линии или под ней, являются решениями неравенства y = -x + 6, тогда как (3,4), (3, 5) и (3,6), связанные с точками над линии не являются решениями неравенства. Фактически, все упорядоченные пары, связанные с точки на линии или ниже являются решениями y = — x + 6. Таким образом, каждая точка на или под линией находится на графике.Мы представляем это, закрашивая область под линия (см. рисунок 7.14).

В общем, чтобы построить график неравенства первой степени с двумя переменными в виде Ax + By = C или Ax + By = C, сначала строим график уравнения Ax + By = C и затем определите, какая полуплоскость (область выше или ниже линии) содержит решения. Затем закрашиваем эту полуплоскость. Мы всегда можем определить, какая половина плоскость заштриховать, выбрав точку (не на линии уравнения Ax + By = C) и тестирование, чтобы увидеть, является ли упорядоченная пара, связанная с точкой, решением учитывая неравенство.Если да, то закрашиваем полуплоскость, содержащую контрольную точку; иначе, заштриховываем вторую полуплоскость. Часто (0, 0) — удобная контрольная точка.

Пример 2

График 2x + 3y = 6

Решение
Сначала построим линию 2x + 3y = 6 (см. График a). Используя начало координат как контрольную точку, мы определяем, является ли (0, 0) решением 2x + 3y ≥ 6. Поскольку утверждение

2 (0) + 3 (0) = 6

ложно, (0, 0) не является решением и мы закрашиваем полуплоскость, не содержащую начало координат (см. график b).

Когда линия Ax + By = C проходит через начало координат, (0, 0) не является допустимым тестом точка, так как она находится на линии.

Пример 3

График y = 2x.

Решение
Начнем с построения линии y = 2x (см. График a). Поскольку линия проходит через начало координат, мы должны выбрать другую точку не на линии в качестве нашей тестовой точки. Мы будем используйте (0, 1). Поскольку выписка

(1) = 2 (0)

верно, (0, 1) является решением, и мы закрашиваем полуплоскость, содержащую (0, 1) (см. график б).

Если символ неравенства — ‘, точки на графике Ax + By = C не являются решениями неравенства. Затем мы используем пунктирную линию для графика Ax + By = C.

РЕЗЮМЕ ГЛАВЫ

  1. Решение уравнения с двумя переменными — это упорядоченная пара чисел. в упорядоченная пара (x, y), x называется первым компонентом, а y называется вторым компонент. Для уравнения с двумя переменными переменная, связанная с первой компонент решения называется независимой переменной, а переменная связанный со вторым компонентом, называется зависимой переменной.Обозначение функции f (x) используется для обозначения алгебраического выражения в x. Когда х в символ f (x) заменяется определенным значением, символ представляет значение выражения для этого значения x.

  2. Пересечение двух перпендикулярных осей в системе координат называется происхождение системы, и каждая из четырех областей, на которые делится плоскость называется квадрантом. Компоненты упорядоченной пары (x, y), связанной с точки на плоскости называются координатами точки; x называется абсциссой точки, а y называется ординатой точки.

  3. График уравнения первой степени с двумя переменными представляет собой прямую линию. То есть каждый упорядоченная пара, которая является решением уравнения, имеет график, лежащий на линии, и каждая точка в строке связана с упорядоченной парой, которая является решением уравнение.

    Графики любых двух решений уравнения с двумя переменными могут быть использованы для получить график уравнения. Однако два решения уравнения в двух переменные, которые обычно легче всего найти, — это те, в которых либо первая, либо второй компонент равен 0.Координата x точки, в которой линия пересекает ось x. называется пересечением по оси x линии, а координата y точки, в которой линия пересекает ось ординат и называется пересечением линии. Использование точек пересечения для построения графика уравнение называется методом построения графика с пересечением.

  4. Наклон линии, содержащей точки P 1 (x 1 , y 1 ) и P 2 (x 2 , y 2 ), определяется как

    Две прямые параллельны, если они имеют одинаковый наклон (m 1 = m 2 ).

    Две прямые перпендикулярны, если произведение их уклонов равно — l (m 1 * m 2 = -1).

  5. Форма точки-наклона прямой с уклоном m, проходящей через точку (x 1 , y 1 ) это

    y — y 1 — m (x — x 1 )

    Форма пересечения наклона линии с уклоном m и точкой пересечения оси y b равна

    y = mx + b

  6. Взаимосвязь, определяемая уравнением вида

    y = kx (k постоянная)

    называется прямой вариацией.

  7. Решением неравенства с двумя переменными является упорядоченная пара чисел, которая, при подстановке в неравенство делает неравенство истинным утверждением. В График линейного неравенства от двух переменных представляет собой полуплоскость. Символы, представленные в этой главе, появляются на внутренней стороне передней обложки.

Решите одновременные уравнения подстановкой

Цель решения одновременных уравнений — найти одинаковое значение x и такое же значение y , которое удовлетворяет обоим уравнениям.Для решения один член одного уравнения заменяется на в другом уравнении.


Первый пример

Решите эти два уравнения с помощью замены:
у = х + 6
x = –2y

Ответ:
Значение x и значение y одинаковы в обоих уравнениях.
Во втором уравнении x равно –2y, поэтому мы подставим –2y вместо x в первое уравнение.

у = х + 6
y = –2y + 6
у + 2у = 6
3y = 6
г = 2

Теперь мы найдем значение x, подставив y = 2 в любое уравнение.

у = х + 6
2 = х + 6
х = 2-6
х = –4

Совместное решение для обоих уравнений: x = –4 и y = 2.


Пример два

Решите эти два уравнения с помощью замены:
у = 3х — 4
х = у + 2

Ответ:
Значение x и значение y одинаковы в обоих уравнениях.
Во втором уравнении x равен (y + 2), поэтому мы подставим (y + 2) вместо x в первое уравнение.
Будьте осторожны при использовании скоб.

у = 3х — 4
у = 3 (у + 2) — 4
у = 3у + 6-4
у = 3у + 2
у — 3y = 2
–2y = 2
y = –1

Теперь мы найдем значение x, подставив y = –1 в любое уравнение.
Второе уравнение выглядит самым простым.

х = у + 2
х = –1 + 2
х = 1

Совместное решение для обоих уравнений: x = 1 и y = –1.


Пример три

Решите эти два уравнения с помощью замены:
у = 2х + 1
у = х + 3

Ответ:
Значение x и значение y одинаковы в обоих уравнениях.
В первом уравнении y равно 2x + 1. Во втором уравнении y равно x + 3.
Поскольку оба равны y, они равны друг другу.

2х + 1 = х + 3
2х — х = 3 — 1
х = 2

Теперь мы найдем значение y, подставив x = 2 в любое уравнение.
Второе уравнение выглядит самым простым.

у = х + 3
у = 2 + 3
г = 5

Совместное решение для обоих уравнений: x = 2 и y = 5.

Вопрос — Решаем заменой

у = 4х + 1
х = у + 2

Ответ
х = –1
y = –3

Систем линейных уравнений — Бесплатная математическая справка

Системы линейных уравнений имеют место, когда существует более одного связанного математического выражения. Например, в \ (y = 3x + 7 \) есть только одна линия со всеми точками на этой линии, представляющая набор решений для приведенного выше уравнения.

Когда вам задают 2 уравнения в одном и том же вопросе и просят решить для единственного ответа, вы можете визуализировать проблему как две линии на одной плоскости xy.Следующие два уравнения изображены на одной плоскости xy:

$$ y = 3x + 5 $$ $$ y = — x $$

Решение любого уравнения — это место пересечения ОБЕИХ уравнений на плоскости xy. Это место встречи называется Точкой пересечения. Если у вас есть линейное уравнение и квадратное уравнение в одной плоскости xy, могут быть ДВЕ ТОЧКИ, где график каждого уравнения будет встречаться или пересекаться. Вот геометрический вид:

Вот пример двух уравнений с двумя неизвестными переменными:

Пример

$$ x + y = 10 $$ $$ 3x + 2y = 20 $$

Есть три метода решить наш примерный вопрос.

  • 1) Решаем графически
  • 2) Мы можем решить это алгебраически
  • 3) Мы также можем решить это с помощью алгебраического исключения

Решу вопрос всеми 3-мя способами. Метод 1. Решить графически:

Чтобы решить графически, лучше всего записать ОБА уравнения в форме пересечения наклона или в форме: \ (y = mx + b \), где m = наклон и b = точка пересечения y в качестве первого шага. Таким образом, \ (x + y = 10 \) становится \ (y = — x + 10 \) (форма пересечения наклона).Затем \ (3x + 2y = 20 \) становится \ (y = — \ frac {3x} {2} + 10 \) при записи в форме пересечения наклона.

Затем нарисуйте две линии, ведущие к точке пересечения. Построив эти линии, вы обнаружите, что ОБА уравнения пересекаются в точке (0,10). Точка (0,10) означает, что если вы подставите x = 0 и y = 10 в ОБЕИ исходные уравнения, вы обнаружите, что это решает оба уравнения. Вот как эти два уравнения выглядят на плоскости xy:

Метод 2. Решить алгебраически

Шагов:

1) Решите относительно x или y в первом уравнении (\ (x + y = 10 \)).Решу за у. Итак, \ (x + y = 10 \) становится \ (y = -x + 10 \).

2) Подставьте значение y (то есть -x + 10) во второе уравнение, чтобы найти x. Наше второе уравнение было \ (3x + 2y = 20 \) и после подстановки становится \ (3x + 2 (-x + 10) = 20 \)

Далее: Решите относительно x.

$$ 3x -2x + 20 = 20 $$ $$ x + 20 = 20 $$ $$ x = 0 $$

3) Подставьте x = 0 в ЛЮБОЕ исходное уравнение, чтобы найти значение y. Я буду использовать наше второе уравнение.

$$ 3x + 2y = 20 $$ $$ 3 (0) + 2y = 20 $$ $$ 0 + 2y = 20 $$ $$ y = 10 $$

Итак, наша точка пересечения снова (0,10).

Метод 3: Алгебраическое исключение

Этот метод имеет дело с сопоставлением переменных для ELIMINATE или устранением одной. Имейте в виду, что какую переменную удалить в первую очередь — это ваш выбор.

ЦЕЛЬ: исключить x и решить вместо y или наоборот. Вернемся к нашим исходным уравнениям.

В нашем втором 3x + 2y = 20, вы можете исключить 3x, умножив -3 на КАЖДЫЙ член в нашем первом уравнении (x + y = 10).

x + y = 10
3x + 2y = 20

-3 (x) + -3 (y) = -3 (10)
3x + 2y = 20

-3x + -3y = -30
3x + 2y = 20

ВНИМАНИЕ, что -3x и 3x исключаются.Видеть это? Понять, почему? И вот почему: отрицательный плюс положительный = ноль.

Теперь у нас есть это:

-3y = -30
2y = 20

-3y + 2y = -30 + 20

-y = -10

y = 10.

Далее: чтобы найти x, мы подставляем y = 10 в ЛЮБОЕ из исходных уравнений. К настоящему времени вы должны увидеть, что наш ответ для x будет НУЛЬ.

Вот он:

Я буду использовать x + y = 10

x + 10 = 10

x = 0.

Вы видите то, что вижу я? Да, я снова нашел ту же самую точку пересечения, которая составляет (0,10).

Г-н Фелиз
(c) 2005

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *