Z 2 xy: Mathway | Популярные задачи

Mathway | Популярные задачи

1Найти число возможных исходов7 выбор 3
2Найти число возможных исходов8 выбор 3
3Найти число возможных исходов5 выбор 2
4Найти число возможных исходов4 выбор 2
5Найти число возможных исходов8 выбор 4
6Найти число возможных исходов10 выбор 3
7Найти число возможных исходов7 выбор 4
8Найти число возможных исходов6 выбор 3
9Найти число возможных исходов9 выбор 3
10Найти число возможных исходов3 выбор 2
11Найти число возможных исходов6 выбор 4
12Найти число возможных исходов5 выбор 4
13Найти число возможных исходов7 перестановка 3
14Найти число возможных исходов7 выбор 2
15Найти число возможных исходов10 выбор 5
16Найти число возможных исходов10 выбор 6
17Найти число возможных исходов13 выбор 5
18Найти число возможных исходов3 выбор 3
19Найти число возможных исходов4 выбор 1
20Найти число возможных исходов4 выбор 4
21Найти число возможных исходов
5 выбор 1
22Найти число возможных исходов6 перестановка 3
23Найти число возможных исходов8 выбор 5
24Найти число возможных исходов9 перестановка 4
25Найти число возможных исходов13 выбор 3
26Найти число возможных исходов12 выбор 2
27Найти число возможных исходов12 выбор 4
28Найти число возможных исходов 12 выбор 3
29Найти число возможных исходов9 выбор 5
30Найти число возможных исходов9 выбор 2
31Найти число возможных исходов7 выбор 5
32Найти число возможных исходов6 перестановка 6
33Найти число возможных исходов8 перестановка 5
34Найти число возможных исходов8 перестановка 3
35Найти число возможных исходов7 перестановка 5
36Найти число возможных исходов52 выбор 5
37Найти число возможных исходов5 перестановка 3
38Найти число возможных исходов12 выбор 5
39Найти число возможных исходов3 выбор 1
40Найти число возможных исходов11 выбор 5
41Найти число возможных исходов10 выбор 2
42Найти число возможных исходов15 выбор 3
43Найти число возможных исходов52 выбор 4
44Найти число возможных исходов9 выбор 4
45Найти число возможных исходов9 перестановка 3
46Найти число возможных исходов7 перестановка 4
47Найти число возможных исходов7 перестановка 2
48Найти число возможных исходов
11 выбор 4
49Найти число возможных исходов11 выбор 2
50Найти число возможных исходов11 выбор 3
51Найти число возможных исходов10 перестановка 5
52Найти число возможных исходов5 выбор 5
53Найти число возможных исходов6 выбор 1
54Найти число возможных исходов8 перестановка 4
55Найти число возможных исходов 8 выбор 6
56Найти число возможных исходов13 выбор 4
57Вычислитьe
58Найти уравнение, перпендикулярное прямой-7x-5y=7
59Найти число возможных исходов13 выбор 2
60Найти число возможных исходов10 перестановка 2
61Найти число возможных исходов10 перестановка 3
62Найти число возможных исходов10 выбор 7
63Найти число возможных исходов20 выбор 4
64Найти число возможных исходов6 перестановка 4
65Найти число возможных исходов5 перестановка 4
66Найти число возможных исходов6 выбор 5
67Найти число возможных исходов52 выбор 3
68Найти число возможных исходов4 выбор 0
69
Найти число возможных исходов9 перестановка 7
70Найти число возможных исходов6 выбор 2
71Найти число возможных исходов5 перестановка 5
72Найти число возможных исходов5 перестановка 2
73Найти число возможных исходов6 выбор 6
74Найти число возможных исходов7 выбор 6
75Найти число возможных исходов8 перестановка 6
76Найти число возможных исходов7 перестановка 7
77Найти число возможных исходов9 перестановка 5
78Найти число возможных исходов2 перестановка 2
79Найти число возможных исходов10 выбор 8
80Найти число возможных исходов12 выбор 7
81Найти число возможных исходов15 выбор 5
82Найти обратный элемент[[1,0,1],[2,-2,-1],[3,0,0]]
83Определить область значений1/4x-7
84Найти число возможных исходов10 перестановка 7
85Найти число возможных исходов12 выбор 6
86Найти число возможных исходов2 выбор 1
87Найти число возможных исходов30 выбор 3
88Найти число возможных исходов9 выбор 6
89Найти число возможных исходов8 перестановка 2
90Найти число возможных исходов7 выбор 1
91Найти число возможных исходов6 перестановка 2
92Найти число возможных исходов4 перестановка 2
93Найти число возможных исходов4 перестановка 3
94Найти число возможных исходов3 перестановка 3
95Найти число возможных исходов46 выбор 6
96Найти число возможных исходов5 перестановка 1
97Найти число возможных исходов52 выбор 7
98Найти число возможных исходов52 перестановка 5
99Найти число возможных исходов9 выбор 1
100Найти число возможных исходов9 перестановка 6

Условия Коши-Римана.

Восстановление функции комплексной переменной

Определение

Условия Коши-Римана, которые также в некоторых источниках называются условиями Даламбера-Эйлера — соотношения, связывающие вещественную $u=u(x;y)$ и мнимую $v=v(x;y)$ части всякой дифференцируемой функции комплексного переменного $f(z)=u(x ; y)+i v(x ; y)$, где $z=x+iy$ .

Для того чтобы функция $f=f(z)$, которая определена в некоторой области комплексной плоскости $D$, была дифференцируема в точке $z_{0}=x_{0}+i y_{0}$, необходимо и достаточно, чтобы её вещественная и мнимая части $u=u(x;y)$ и $v=v(x;y)$ были дифференцируемы в точке $(x_0;y_0)$ как функции вещественных переменных $x$ и $y$ и в этой точке выполнялись условия Коши-Римана:

$$\begin{aligned} \frac{\partial u}{\partial x} &=\frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} &=-\frac{\partial v}{\partial x} \end{aligned}$$

Эти условия впервые появились в работе французского ученого-энциклопедиста, философа, математика и механика Жана Лерона Даламбера (1717 — 1783) в 1752 году. В работе швейцарского, немецкого и российского математика и механика Леонардо Эйлера (1707 — 1783), доложенной Петербургской академии наук в 1777 году, условия получили впервые характер общего признака аналитичности функций. Великий французский математик и механик Огюстен Луи Коши (178 9- 1857) пользовался этими соотношениями для построения теории функций.

Пусть задана действительная часть $u(x;y)$ функции комплексной переменной $f(z)$. Требуется найти мнимую часть $v(x;y)$ этой функции. Найти саму функцию $f=f(z)$, используя некоторое начальное условие.

1) Используя условия Коши-Римана, находим мнимую часть $v(x;y)$ .

2) Когда и действительная, и мнимая части функции $f(z)$ известны, составляем функцию $f(z)=u(x ; y)+i v(x ; y)$ . Далее в полученном выражении надо произвести такие преобразования, чтобы выделить переменную $z=x+iy$ или $$\bar{z}=x-i y$$, то есть «избавиться» от переменных $x$ и $y$.

Замечание 1

На практике будут полезны соотношения:

$$x+i y=z$$ $$x^{2}+2 x y i-y^{2}=(x+i y)^{2}=z^{2}$$ $$x^{3}+3 x^{2} y i-3 x y^{2}-y^{3} i=(x+i y)^{3}=z^{3}$$

Замечание 2

Поделить на мнимую единицу $i$ равносильно умножению на $-i$. 2).$ 92) \ge0$

$\endgroup$

$\begingroup$

Пусть $AF=x\ , BF=y\ , CF=z$.

$F-$ Точка Ферма $\треугольника ABC\ $

Таким образом, неравенство можно переписать в виде: $x+y+z\le 3R$ , что очевидно верно)

$\endgroup$

$\begingroup$

Пусть I = 3(x² + xy + y²)(y² + yz + z²)(z² + zx + x²)

Тогда из неравенства Гёльдера следует, что

I >= 81x²y²z²

Таким образом, нам нужно доказать, что

81x²y²z² >= (x + y + z)²(xy + yz + zx)²

Или 9xyz >= (x + y + z)( xy + yz + zx)

Расширение R.H.S. дает

9xyz >= xy(x + y) + yz(y + z) + zx(z + x) + 3xyz

Или xy(x + y) + yz(y + z) + zx(z + x) ) >= 6xyz

Что очевидно верно для AM>=GM. КЭД

$\endgroup$

1 92+8x+5)\geq0$. Сделанный!

$\endgroup$

8

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *