Что такое радиус диаметр – Что такое диаметр и радиус окружности

Содержание

Чем отличается радиус от диаметра

Окружность представляет собой кривую линию, которая образована из всех точек, равноудаленных от одной определенной точки, которую называют центром окружности. По-другому можно дать такое определение окружности: кривая, которая замкнута на плоскости, и все точки которой, лежащие в той же плоскости, что и кривая, удалены от центра на одинаковое расстояние. Каждая точка окружности находится от центра окружности на одинаковом расстоянии.

Определение

Радиус — это отрезок прямой, который соединяет каждую точку окружности, которая находится на равном расстоянии от центра окружности, с центром окружности.

Диаметр — это отрезок прямой линии, который соединяет любые две удаленные друг от друга точки окружности и всегда должен проходить через центр этой окружности.

к содержанию ↑

Сравнение

Радиусом называют отрезок прямой, который соединяет каждую точку окружности, которая  находится на равном расстоянии от центра окружности, с центром окружности. Радиус обозначают буквой R. Он показывает длину этого отрезка. Центр окружности обозначается буквой O.

Диаметром называют отрезок прямой, который всегда должен проходить через центр окружности, и соединять две любые удаленные друг от друга точки окружности. Любой такой отрезок прямой называют диаметром и обозначают буквой D. Длину диаметра также обозначают буквой D.

Пусть точки A, B находятся на самой окружности, тогда отрезки OA, OB — это радиусы этой окружности.

Их длины равны: OB=OA.

BA = OB + OA ,     так как    BA = D,     а     OA = OB = R ,    то  D   =   2R .

Диаметр будет равняться двум радиусам. D   =   2R. Соответственно, радиус будет равняться половине диаметра: R = D/2.

к содержанию ↑

Выводы TheDifference.ru

  1. Диаметр всегда равняется удвоенному радиусу окружности.
  2. Радиус окружности равен половине диаметра этой окружности. R = D/2

thedifference.ru

Диаметр - это... Что такое Диаметр?

Диаметр в изначальном значении это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.

Диаметр геометрических фигур

Диаметр окружности, круга, сферы, шара

Радиус (r) и диаметр (d) окружности

Диаметр — это хорда (отрезок, соединяющий две точки) на окружности (сфере, поверхности шара), и проходящий через центр этой окружности (сферы, шара). Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. По величине диаметр равен двум радиусам.

Символ диаметра

Символ диаметра «⌀» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как ⌀ или ⌀). Этот символ не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства — например, приложение «Таблица символов» в Windows, программу «Таблица символов Юникода» (gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т. д. Специализорованные программы могут предоставлять пользователю свои способы ввода этого символа: к примеру, в САПР AutoCAD для ввода символа диаметра используется сочетание символов

%%c (буква c — латинская) или \U+2205 в текстовой строке.

Во многих случаях символ диаметра может не отображаться, так как он редко включается в шрифты — например, он присутствует в Arial Unicode MS (поставляется с Microsoft Office, при установке именуется «Универсальный шрифт»), DejaVu (свободный), Code2000 (условно-бесплатный) и некоторых других.

Следует отличать символ диаметра «⌀» от других похожих на него символов:

Вариации и обобщения

Понятие диаметра допускает естественные обобщения на некоторые другие геометрические объекты.

  • Под диаметром конического сечения понимается прямая проходящая через середины двух параллельных хорд.
  • Под диаметром метрического пространства понимается точная верхняя грань расстояний между парами его точек. В частности:
    • Диаметр графа — это максимальное из расстояний между парами его вершин. Расстояние между вершинами определяется как наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую. Иначе говоря, это расстояние между двумя вершинами графа, максимально удаленными друг от друга.
    • Диаметр геометрической фигуры — максимальное расстояние между точками этой фигуры.
    • Диаметром множества , лежащего в метрическом пространстве с метрикой , называется величина . Например, диаметр n-размерного гиперкуба со стороной s равен
.

См. также

Литература

dic.academic.ru

Окружность, круг, радиус, диаметр, секущая, хорда. Сегмент, сектор.

Тестирование онлайн

Определение окружности, круга. Радиус

Окружность - геометрическое место точек плоскости, равноудаленных от одной ее точки (центра).

Равные отрезки, соединяющие центр с точками окружности, называются радиусами.

Круг - часть плоскости, лежащая внутри окружности.

Хорда, дуга, диаметр

Прямая, проходящая через две точки окружности, называется секущей, а ее отрезок, лежащий внутри окружности, - хордой. Хорда, проходящая через центр О, называется диаметром. Диаметр равен двум радиусам.

Часть окружности называется дугой.

Дуга называется полуокружностью, если отрезок, соединяющий ее концы, является диаметром окружности.

Теорема. Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Касательная к окружности

Касательная - прямая, имеющая с окружностью только одну общую точку.

Теорема. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Обратная теорема (признак касательной). Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Перпендикуляр, проведенный из середины хорды до пересечения с дугой называется стрелкой дуги. Длина стрелки называется высотой

сегмента.

Сектором называется часть круга, ограниченная дугой и двумя радиусами, проведенными к концам дуги.

Сектор, отсекаемый радиусами, образующими угол 900, называется квадрантом.

fizmat.by

Диаметр — Википедия. Что такое Диаметр

Материал из Википедии — свободной энциклопедии

Диа́метр в изначальном значении термина — отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.

Диаметр геометрических фигур

Радиус (r) и диаметр (d) окружности

Диаметр — это хорда (отрезок, соединяющий две точки) на окружности (сфере, поверхности шара), проходящая через центр этой окружности (сферы, шара). Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет наибольшую длину. По величине диаметр равен двум радиусам.

Символ диаметра

Символы со сходным начертанием:
 Ø · ø ·

Символ диаметра «⌀» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как ⌀ или ⌀). Этот символ не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства — например, приложение «Таблица символов» в Windows, программу «Таблица символов» (ранее gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т. д. Специализированные программы могут предоставлять пользователю свои способы ввода этого символа: к примеру, в САПР AutoCAD для ввода символа диаметра используется сочетание символов %%c (буква c — латинская) или \U+2205 в текстовой строке.

Во многих случаях символ диаметра может не отображаться, так как он редко включается в шрифты — например, он присутствует в Arial Unicode MS (поставляется с Microsoft Office, при установке именуется «Универсальный шрифт»), DejaVu (свободный), Code2000 (условно-бесплатный) и некоторых других.

Сопряжённые диаметры эллипса и гиперболы

Сопряжённые диаметры эллипса

Пара сопряжённых диаметров эллипса. Если в точках касания диаметра с эллипсом провести прямую, параллельную сопряжённому диаметру, то прямая будет касательной к эллипсу и четыре таких касательных ко всем четырём концам пары сопряжённых диаметров эллипса образуют описанный около эллипса параллелограмм
  • Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.

На рисунке представлена пара сопряженных диаметров (красный и синий). Если в точках пересечения диаметра с эллипсом провести прямую, параллельную сопряжённому диаметру, то прямая будет касательной к эллипсу, и четыре таких касательных ко всем четырём концам пары сопряжённых диаметров эллипса образуют описанный около эллипса параллелограмм (зеленые линии на рисунке).

  • Расстояния r1{\displaystyle r_{1}} и r2{\displaystyle r_{2}} от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Радиус эллипса в данной точке (расстояние от его центра до данной точки) вычисляется по формуле r=abb2cos2⁡φ+a2sin2⁡φ=b1−e2cos2⁡φ{\displaystyle r={\frac {ab}{\sqrt {b^{2}\cos ^{2}\varphi +a^{2}\sin ^{2}\varphi }}}={\frac {b}{\sqrt {1-e^{2}\cos ^{2}\varphi }}}}, где φ{\displaystyle \varphi } — угол между радиус-вектором данной точки и осью абсцисс.

Сопряжённые диаметры гиперболы

Диаметры гиперболы
  • Диаметром гиперболы, как и всякого конического сечения, является прямая, проходящая через середины параллельных хорд. Каждому направлению параллельных хорд соответствует свой сопряжённый диаметр. Все диаметры гиперболы проходят через её центр. Диаметр, соответствующий хордам, параллельным мнимой оси, есть действительная ось; диаметр соответствующий хордам, параллельным действительной оси, есть мнимая ось.
  • Угловой коэффициент k{\displaystyle k} параллельных хорд и угловой коэффициент k1{\displaystyle k_{1}} соответствующего диаметра связан соотношением
k⋅k1=ε2−1=b2a2{\displaystyle k\cdot k_{1}=\varepsilon ^{2}-1={\frac {b^{2}}{a^{2}}}}
Для произвольного угла φ показаны диаметры и сопряженные им диаметры для окружностей и равнобочных гипербол.
  • Если диаметр гипербол a делит пополам хорды, параллельные диаметру b, то диаметр b делит пополам хорды, параллельные диаметру a. Такие диаметры называются взаимно сопряжёнными.
  • Главными диаметрами гипербол называются взаимно сопряжённые и взаимно перпендикулярные диаметры. У гиперболы есть только одна пара главных диаметров — действительная и мнимая оси.
  • В случае гипербол с асимптотами, образующими прямой угол, её сопряженные гиперболы получатся при её зеркальном отражении относительно одной из асимптот. При таком зеркальном отражении её диаметр перейдет в сопряженный диаметр, который будет просто диаметром сопряженной гиперболы (см. рис.). Также. как наблюдается перпендикулярность сопряженных диаметров на окружности (на рис. слева), аналогичная ортогональность наблюдается для сопряженных диаметров гиперболы со взаимно перпендикулярными асимптотами (на рис. справа).

Вариации и обобщения

Понятие диаметра допускает естественные обобщения на некоторые другие геометрические объекты.

  • Под диаметром конического сечения понимается прямая проходящая через середины двух параллельных хорд.
  • Под диаметром метрического пространства понимается точная верхняя грань расстояний между парами его точек. В частности:
    • Диаметр графа — это максимальное из расстояний между парами его вершин. Расстояние между вершинами определяется как наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую. Иначе говоря, это расстояние между двумя вершинами графа, максимально удаленными друг от друга.
    • Диаметр геометрической фигуры — максимальное расстояние между точками этой фигуры.
    • Диаметром множества M{\displaystyle M}, лежащего в метрическом пространстве с метрикой ρ{\displaystyle \rho }, называется величина (supx,y∈Mρ(x,y)){\displaystyle (\sup _{x,y\in M}\rho (x,y))}. Например, диаметр n-размерного гиперкуба со стороной s равен
d=s⋅n{\displaystyle d=s\cdot {\sqrt {n}}}.

Некоторые окружности, построенные в треугольнике на одном отрезке, как на диаметре

См. также

Литература

wiki.sc

Радиус - это... Что такое Радиус?

Радиус окружности

Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Радиус составляет половину диаметра.

Свойства

  • Радиус, проведённый в точку окружности, перпендикулярен окружности в этой точке.
  • Радиус, перпендикулярный хорде, делит её пополам.

Связанные определения

Этимология

Слово «радиус» впервые встречается в 1569 г. у французского учёного П. Рамуса, несколько позже у Ф. Виета. Становится общепринятым лишь в конце XVII века. Происходит от лат. radius, означающего «луч, спица колеса».

Обобщения

Радиусом множества , лежащего в метрическом пространстве с метрикой , называется величина . Например, радиус n-размерного гиперкуба со стороной s равен

См. также

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.

dic.academic.ru

Диаметр - это... Что такое Диаметр?

Диаметр в изначальном значении это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.

Диаметр геометрических фигур

Диаметр окружности, круга, сферы, шара

Радиус (r) и диаметр (d) окружности

Диаметр — это хорда (отрезок, соединяющий две точки) на окружности (сфере, поверхности шара), и проходящий через центр этой окружности (сферы, шара). Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. По величине диаметр равен двум радиусам.

Символ диаметра

Символ диаметра «⌀» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как ⌀ или ⌀). Этот символ не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства — например, приложение «Таблица символов» в Windows, программу «Таблица символов Юникода» (gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т. д. Специализорованные программы могут предоставлять пользователю свои способы ввода этого символа: к примеру, в САПР AutoCAD для ввода символа диаметра используется сочетание символов %%c (буква c — латинская) или \U+2205 в текстовой строке.

Во многих случаях символ диаметра может не отображаться, так как он редко включается в шрифты — например, он присутствует в Arial Unicode MS (поставляется с Microsoft Office, при установке именуется «Универсальный шрифт»), DejaVu (свободный), Code2000 (условно-бесплатный) и некоторых других.

Следует отличать символ диаметра «⌀» от других похожих на него символов:

Вариации и обобщения

Понятие диаметра допускает естественные обобщения на некоторые другие геометрические объекты.

  • Под диаметром конического сечения понимается прямая проходящая через середины двух параллельных хорд.
  • Под диаметром метрического пространства понимается точная верхняя грань расстояний между парами его точек. В частности:
    • Диаметр графа — это максимальное из расстояний между парами его вершин. Расстояние между вершинами определяется как наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую. Иначе говоря, это расстояние между двумя вершинами графа, максимально удаленными друг от друга.
    • Диаметр геометрической фигуры — максимальное расстояние между точками этой фигуры.
    • Диаметром множества , лежащего в метрическом пространстве с метрикой , называется величина . Например, диаметр n-размерного гиперкуба со стороной s равен
.

См. также

Литература

dikc.academic.ru

Что такое радиус. Что такое диаметр. Что такое окружность. Математика

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра) , лежащей в той же плоскости, что и кривая. Диаметр -отрезок, соединяющий две точки на окружности (сфере) и проходящий через центр окружности (или сферы) , а также длина этого отрезка. Диаметр равен двум радиусам. Под диаметром геометрической фигуры понимается максимальное расстояние между точками этой фигуры. Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы) , а также длина этого отрезка. Радиус составляет половину диаметра.

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра) , лежащей в той же плоскости, что и кривая. Диаметр -отрезок, соединяющий две точки на окружности (сфере) и проходящий через центр окружности (или сферы) , а также длина этого отрезка. Диаметр равен двум радиусам. Под диаметром геометрической фигуры понимается максимальное расстояние между точками этой фигуры. Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы) , а также длина этого отрезка. Радиус составляет половину диаметра. Нравится 6666 Комментарий Пожаловаться

Вопрос от не х. . делать. Кстати, ещё есть хорда.

да,... далее надо было: Что такое математика... .

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *