1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
www.mathway.com
График функции y = 1/cos(x)
Решение
$$f{\left (x \right )} = \frac{1}{\cos{\left (x \right )}}$$
График функции[LaTeX]
Область определения функции[LaTeX]
Точки, в которых функция точно неопределена:
$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$
[LaTeX]
График функции пересекает ось X при f = 0значит надо решить уравнение:
$$\frac{1}{\cos{\left (x \right )}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:подставляем x = 0 в 1/cos(x).
$$\frac{1}{\cos{\left (0 \right )}}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{\sin{\left (x \right )}}{\cos^{2}{\left (x \right )}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = \pi$$
Зн. экстремумы в точках:
(0, 1)
(pi, -1)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 0$$
Максимумы функции в точках:
$$x_{2} = \pi$$
Убывает на промежутках
[0, pi]
Возрастает на промежутках
(-oo, 0] U [pi, oo)Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{\cos{\left (x \right )}} \left(\frac{2 \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} + 1\right) = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет Вертикальные асимптоты
[LaTeX]
Есть:
$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo$$\lim_{x \to -\infty} \frac{1}{\cos{\left (x \right )}} = \langle -\infty, \infty\rangle$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \langle -\infty, \infty\rangle$$
$$\lim_{x \to \infty} \frac{1}{\cos{\left (x \right )}} = \langle -\infty, \infty\rangle$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \langle -\infty, \infty\rangle$$ Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции 1/cos(x), делённой на x при x->+oo и x ->-ooTrue
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x \lim_{x \to -\infty}\left(\frac{1}{x \cos{\left (x \right )}}\right)$$
True
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x \lim_{x \to \infty}\left(\frac{1}{x \cos{\left (x \right )}}\right)$$ Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{1}{\cos{\left (x \right )}} = \frac{1}{\cos{\left (x \right )}}$$
— Да
$$\frac{1}{\cos{\left (x \right )}} = — \frac{1}{\cos{\left (x \right )}}$$
— Нет
значит, функция
является
чётной
www.kontrolnaya-rabota.ru
График функции y = cosx. 11-й класс
Разделы: Математика, Конкурс «Презентация к уроку»
Презентация к уроку
Загрузить презентацию (19,2 МБ)
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.
Тема урока: “Функция у=cosx”
Урок №1
Цели урока: Ознакомить учащихся со свойствами функции у=cosx, обучение построению графика функции у=cosx, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.
Задачи урока.
Образовательная – формирование функциональных представлений на наглядном материале, формирование умений построения графиков функции у=cosx, формировать навыки свободного чтения графиков, умение отражать свойства функции на графике.
Развивающая – формирование способности анализировать, обобщать полученные знания. Формирование логического мышления.
Воспитательная – активизировать интерес к получению новых знаний, воспитание графической культуры, формирование точности и аккуратности при выполнении чертежей.
Оснащене: мультимедийный проектор, экран, операционная система Microsoft Windows 98/Me/2000/XP, программа MS Office 2003: Power Point, Microsoft Word, Microsoft Excel.
Ход урока
№ | Этап урока | Демонстрация слайдов | Время |
1 | Организационный момент. Приветствие | 1 |
|
2 | Объявление темы и цели урока | Слайд №2 |
2 |
3 | Актуализация опорных знаний Выполнение устных упражнений. |
Фронтальный опрос |
5 |
4 | Изложение нового материала Задача на построение графика у =cosx на отрезке Обсуждение свойств функции у =cosx на отрезке Задача на построение эскиза графика функции у = cosх Обсуждение свойств функции у = cosx |
Слайд №3
Слайд №4 Занесение свойств в таблицу |
12 |
5 | Закрепление первичных знаний. Решение задач по учебнику №708, №709 |
Решение проходит в сопровождении cлайда №4 | 5 |
6 | Задача на построение графика
функции со сдвигом вдоль оси ординат и вдоль оси
абсцисс. Обсуждение свойств функции |
Слайд №5 Слайд №6 |
9 |
7 | Самостоятельная работа по учебнику | 6 |
|
8 |
Подведение итогов. Итоги урока. Выставление оценок. |
3 |
|
9 | Домашнее задание | §40 №710(2;4), №711(2;4), №711(2;4).
Построить графики функций у =cosx на и описать свойства этой
функции. Дополнительно №717 (1) |
2 |
Цель урока: Ознакомить учащихся со свойствами функции у=cosx, обучение построению графика функции у=cosx, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.
1. Организационный момент. Приветствие.
2. Объявление темы и цели урока сопровождается слайдом №2
3. Актуализация опорных знаний
Выполнение устных упражнений.
- Повторить определение тригонометрических функций и знаки значений этих функций.
- Обратить внимание учащихся на то, что для любого действительного числа можно указать соответствующую точку на единичной окружности, а следовательно ее абсциссу и ординату, т.е. косинус и синус числа х: у = cosx и у = sinx, область определения которых – все действительные числа.
Затем учащиеся отвечают на вопросы:
- При каких значениях х функция у=cosx принимает значение, равное 0? 1? -1?
- Может ли функция у=cosx принимать значение больше 1, меньше -1?
- При каких значениях х функция у=cosx принимает наибольшее (наименьшее) значение?
- Каково множество значений функции у=cosx?
Ответы на эти и следующие вопросы сопровождаются иллюстрацией на единичной окружности.
Повторив знаки значений тригонометрических функций в каждой четверти координатной плоскости, учащимся предлагается показать несколько точек единичной окружности, соответствующих числам, косинус которых положительное (отрицательное) число. Затем ответить на вопросы:
1) Какой знак имеет значение функции у=cosx, если х=, х=,
0<х<, 0<х<, <х<, <х<2.5?
2) Укажите несколько значений х, при которых значения функции у = cosx положительны, отрицательны.
3) Можно ли назвать все значения числа , косинус которых положителен, отрицателен?
4) Можно ли назвать все значения аргумента х, при которых значения функции у = cosx положительны, отрицательны?
5) Четная или нечетная функция у= cosx.
6) Чему равен период этой функции?
4. Изложение нового материала.
Обобщение и конкретизация знаний полученных ранее: исследование области определения, множества значений, четности, периодичности позволяет построить график сначала на отрезке, затем на отрезке , а затем на всей числовой прямой. Объяснение сопровождается слайдом №3.
Затем учащиеся учатся изображать эскиз графика функции у= cosx по точкам (0;1), (;0),
(:-1), (;0), (;1) и обобщают свойства функции, записывая их в таблицу.
Проверяем с помощью слайда №4.
(На этом этапе выдаются опорные конспекты (приложение 1))
5. Закрепление первичных знаний.
С помощью эскиза графика функции у=cosx учащиеся отвечают на вопросы №708, с помощью таблицы свойств функции у=cosх отвечают на вопросы №709
6. Задача на построение графика функции со сдвигом вдоль оси ординат и вдоль оси абсцисс.
1. Слайд №5, 6
Слайд №6
В ходе беседы обсуждаются свойства этих функций.
7. Самостоятельная работа по учебнику
№710(1;3), №711(1;3), №711(1;3), №710
Разбить данный отрезок на два отрезка так, чтобы на одном из них функция у = cosx возрастала, а на другом убывала:
1)
— убывает; — возрастает
3)
— убывает; — возрастает
№711(1;3)
Используя свойство возрастания или убывания функции у = cosx, сравнить числа:
1)
, на отрезке функция у = cosx убывает; , следовательно, .
3) cos и cos
, , на отрезке функция у = cosx возрастает;
<, следовательно, cos < cos
№712 (1;3)
Найти все корни уравнения, принадлежащие отрезку :
1) cosx = х = ±+2n, nZ
Ответ: ; ; .
2) cosx = — х = ±
Ответ:
8. Подведение итогов.
Выставление оценок.
На уроке научились строить график функции у = cosx, читать свойства этого графика, строить эскиз графика, решать задачи связанные с использованием графика и свойств функции у = cosx.
9. Домашнее задание.
§40 №710(2;4), №711(2;4), №711(2;4). Построить графики функций у =cosx на и описать свойства этой функции.
Дополнительно №717(1).
Тема: “Функция у=cosx”
Урок №2
Цели урока: Повторить правила построения графика функции у=cosx, научиться применять приемы преобразования графика, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.
Задачи урока.
Образовательная – формирование функциональных представлений на наглядном материале, формирование умений построения графиков функции у=cosx при различных преобразованиях, формировать навыки свободного чтения графиков, умение отражать свойства функции на графике.
Развивающая – формирование способности анализировать, обобщать полученные знания. Формирование логического мышления.
Воспитательная – активизировать интерес к получению новых знаний, воспитание графической культуры, формирование точности и аккуратности при выполнении чертежей.
Оснащене: мультимедийный проектор, экран, операционная система Microsoft Windows 98/Me/2000/XP, программа MS Office 2003: Power Point, Microsoft Word, Microsoft Excel.
Ход урока
№ | Этап урока | Демонстрация слайдов | Время |
1 | Организационный момент. Приветствие | 1 | |
2 | Объявление темы и цели урока | Слайд №2 |
2 |
3 | Проверка домашнего задания | №717(1), Слайд №7 |
5 |
4 | Изложение нового материала Задача на построение графика путем сжатия и растяжения к оси ОХ Обсуждение свойств функции у =k·cosx при k>1 и 0<k<1. Задача на построение графика путем сжатия и растяжения к ори ОУ Обсуждение свойств функции у = cos(k·x) при k>1 и 0<k<1. |
Слайд №8, 9 |
12 |
5 | Закрепление первичных знаний. Решение
задач по учебнику №713(1;3), №715(1) №716(1) |
№717(2) учебник стр. 208. При решении №715(1), №716(1) использовать построенный график функции у = cos2x. Слайд №10 | 5 |
6 | Задача на построение графика функции симметричного относительно оси абсцисс. Обсуждение свойств функции | Слайд №11 |
6 |
7 | Самостоятельная работа. Решение тестовых задач | Тест XL, тест Word |
9 |
8 | Подведение итогов. Итоги
урока. Выставление оценок |
3 | |
9 | Домашнее задание | §40 №717(3), №713(4), №715(4), №716(2). Дополнительно №717(2) |
2 |
Цели урока: Повторить правила построения графика функции у=cosx, научиться применять приемы преобразования графика, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.
1. Организационный момент. Приветствие.
2. Объявление темы и цели урока сопровождается слайдом №2.
3. Проверка домашнего задания
Слайд №7
4. Изложение нового материала
1. Задача на построение графика путем сжатия и растяжения к оси ОХ.
Обсуждение свойств функции у =k·cosx при k>1 и 0<k<1.
Слайд № 8
2. Задача на построение графика путем сжатия и растяжения к оси ОУ.
Обсуждение свойств функции у = cos(kx) при k>1 и 0<k<1.
Слайд № 9
5. Закрепление первичных знаний
Решение задач по учебнику №713(1;3), №715(1) №716(1)
Задание №715(1) №716(1) проверяем с помощью слайда №10
6. Задача на построение графика функции симметричного относительно оси абсцисс
Обсуждение свой
xn--i1abbnckbmcl9fb.xn--p1ai