Cosx 1 график – Mathway | Популярные задачи

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

График функции y = 1/cos(x)

Решение

$$f{\left (x \right )} = \frac{1}{\cos{\left (x \right )}}$$

График функции

[LaTeX]

Область определения функции

[LaTeX]

Точки, в которых функция точно неопределена:
$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$

Точки пересечения с осью координат X

[LaTeX]

График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{1}{\cos{\left (x \right )}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X Точки пересечения с осью координат Y

[LaTeX]

График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 1/cos(x).
$$\frac{1}{\cos{\left (0 \right )}}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Экстремумы функции

[LaTeX]

Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{\sin{\left (x \right )}}{\cos^{2}{\left (x \right )}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = \pi$$
Зн. экстремумы в точках:
(0, 1)
(pi, -1)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 0$$
Максимумы функции в точках:
$$x_{2} = \pi$$
Убывает на промежутках

[0, pi]

Возрастает на промежутках
(-oo, 0] U [pi, oo)
Точки перегибов

[LaTeX]

Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{\cos{\left (x \right )}} \left(\frac{2 \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} + 1\right) = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет Вертикальные асимптоты

[LaTeX]

Есть:
$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$

Горизонтальные асимптоты

[LaTeX]

Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} \frac{1}{\cos{\left (x \right )}} = \langle -\infty, \infty\rangle$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \langle -\infty, \infty\rangle$$
$$\lim_{x \to \infty} \frac{1}{\cos{\left (x \right )}} = \langle -\infty, \infty\rangle$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \langle -\infty, \infty\rangle$$ Наклонные асимптоты

[LaTeX]

Наклонную асимптоту можно найти, подсчитав предел функции 1/cos(x), делённой на x при x->+oo и x ->-oo
True

Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x \lim_{x \to -\infty}\left(\frac{1}{x \cos{\left (x \right )}}\right)$$
True

Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x \lim_{x \to \infty}\left(\frac{1}{x \cos{\left (x \right )}}\right)$$ Чётность и нечётность функции

[LaTeX]

Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{1}{\cos{\left (x \right )}} = \frac{1}{\cos{\left (x \right )}}$$
— Да
$$\frac{1}{\cos{\left (x \right )}} = — \frac{1}{\cos{\left (x \right )}}$$
— Нет
значит, функция
является
чётной

www.kontrolnaya-rabota.ru

График функции y = cosx. 11-й класс

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (19,2 МБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.


Тема урока: “Функция у=cosx”

Урок  №1

Цели урока: Ознакомить учащихся со свойствами функции у=cosx, обучение построению графика функции у=cosx, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.

Задачи урока.

Образовательная – формирование функциональных представлений на наглядном материале, формирование умений построения графиков функции у=cosx, формировать навыки свободного чтения графиков, умение отражать свойства функции на графике.

Развивающая – формирование способности анализировать, обобщать полученные знания. Формирование логического мышления.

Воспитательная – активизировать интерес к получению новых знаний, воспитание графической культуры, формирование точности и аккуратности при выполнении чертежей.

Оснащене: мультимедийный проектор, экран, операционная система Microsoft Windows 98/Me/2000/XP, программа MS Office 2003: Power Point, Microsoft Word, Microsoft Excel.

  Ход урока

Этап урока Демонстрация слайдов Время
1 Организационный момент. Приветствие  

1

2 Объявление темы и цели урока

Слайд №2

2

3 Актуализация опорных знаний

Выполнение устных упражнений.

Фронтальный опрос

5

4 Изложение нового материала

Задача на построение графика у =cosx на отрезке

Обсуждение свойств функции у =cosx на отрезке

Задача на построение эскиза графика функции у = cosх

Обсуждение свойств функции у = cosx

Слайд №3

 

 

 

 

Слайд №4

Занесение свойств в таблицу

12

5 Закрепление первичных знаний.

Решение задач по учебнику №708, №709

Решение проходит в сопровождении cлайда №4

5

6 Задача на построение графика функции со сдвигом вдоль оси ординат и вдоль оси абсцисс.

Обсуждение свойств функции

Слайд №5

Слайд №6

9

7 Самостоятельная работа по учебнику

№710 (1;3), №711 (1;3), №711 (1;3)

6

8

Подведение итогов.

Итоги урока.

Выставление оценок.

 

3

9 Домашнее задание §40 №710(2;4), №711(2;4), №711(2;4). Построить графики функций у =cosx на и описать свойства этой функции.

Дополнительно №717 (1)

2

Цель урока: Ознакомить учащихся со свойствами функции у=cosx, обучение построению графика функции у=cosx, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.

1. Организационный момент. Приветствие.

2. Объявление темы и цели урока сопровождается слайдом №2

3. Актуализация опорных знаний

Выполнение устных упражнений.

  1. Повторить определение тригонометрических функций и знаки значений этих функций.
  2. Обратить внимание учащихся на то, что для любого действительного числа можно указать соответствующую точку на единичной окружности, а следовательно ее абсциссу и ординату, т.е. косинус и синус числа х: у = cosx и у = sinx, область определения которых – все действительные числа.

Затем учащиеся отвечают на вопросы:

  1. При каких значениях х функция у=cosx принимает значение, равное 0? 1? -1?
  2. Может ли функция у=cosx принимать значение больше 1, меньше -1?
  3. При каких значениях х функция у=cosx принимает наибольшее (наименьшее) значение?
  4. Каково множество значений функции у=cosx?

Ответы на эти и следующие вопросы сопровождаются иллюстрацией на единичной окружности.

Повторив знаки значений тригонометрических функций в каждой четверти координатной плоскости, учащимся предлагается показать несколько точек единичной окружности, соответствующих числам, косинус которых положительное (отрицательное) число. Затем ответить на вопросы:

1) Какой знак имеет значение функции у=cosx, если х=, х=,

0<х<, 0<х<, <х<, <х<2.5?

2) Укажите несколько значений х, при которых значения функции у = cosx положительны, отрицательны.

3) Можно ли назвать все значения числа , косинус которых положителен, отрицателен?

4) Можно ли назвать все значения аргумента х, при которых значения функции у = cosx положительны, отрицательны?

5) Четная или нечетная функция у= cosx.

6) Чему равен период этой функции?

4. Изложение нового материала.

Обобщение и конкретизация знаний полученных ранее: исследование области определения, множества значений, четности, периодичности позволяет построить график сначала на отрезке, затем на отрезке , а затем на всей числовой прямой. Объяснение сопровождается слайдом №3.

Затем учащиеся учатся изображать эскиз графика функции у= cosx по точкам (0;1), (;0),

(:-1), (;0), (;1) и обобщают свойства функции, записывая их в таблицу.

Проверяем с помощью слайда №4.

(На этом этапе выдаются опорные конспекты (приложение 1))

5. Закрепление первичных знаний.

С помощью эскиза графика функции у=cosx учащиеся отвечают на вопросы №708, с помощью таблицы свойств функции у=cosх отвечают на вопросы №709

6. Задача на построение графика функции со сдвигом вдоль оси ординат и вдоль оси абсцисс.

1. Слайд №5, 6

Слайд №6

В ходе беседы обсуждаются свойства этих функций.

7. Самостоятельная работа по учебнику

№710(1;3), №711(1;3), №711(1;3), №710

Разбить данный отрезок на два отрезка так, чтобы на одном из них функция у = cosx возрастала, а на другом убывала:

1)

— убывает; — возрастает

3)

— убывает; — возрастает

№711(1;3)

Используя свойство возрастания или убывания функции у = cosx, сравнить числа:

1)

, на отрезке функция у = cosx убывает; , следовательно, .

3) cos и cos

, , на отрезке функция у = cosx возрастает;

<, следовательно, cos < cos

№712 (1;3)

Найти все корни уравнения, принадлежащие отрезку :

1) cosx = х = ±+2n, nZ

Ответ: ; ; .

2) cosx = — х = ±

Ответ:

8. Подведение итогов.

Выставление оценок.

На уроке научились строить график функции у = cosx, читать свойства этого графика, строить эскиз графика, решать задачи связанные с использованием графика и свойств функции у = cosx.

9. Домашнее задание.

§40 №710(2;4), №711(2;4), №711(2;4). Построить графики функций у =cosx на и описать свойства этой функции.

Дополнительно №717(1).

Тема: “Функция у=cosx”

Урок №2

Цели урока: Повторить правила построения графика функции у=cosx, научиться применять приемы преобразования графика, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.

Задачи урока.

Образовательная – формирование функциональных представлений на наглядном материале, формирование умений построения графиков функции у=cosx при различных преобразованиях, формировать навыки свободного чтения графиков, умение отражать свойства функции на графике.

Развивающая – формирование способности анализировать, обобщать полученные знания. Формирование логического мышления.

Воспитательная – активизировать интерес к получению новых знаний, воспитание графической культуры, формирование точности и аккуратности при выполнении чертежей.

Оснащене: мультимедийный проектор, экран, операционная система Microsoft Windows 98/Me/2000/XP, программа MS Office 2003: Power Point, Microsoft Word, Microsoft Excel.

Ход урока

Этап урока Демонстрация слайдов Время
1 Организационный момент. Приветствие 1
2 Объявление темы и цели урока

Слайд №2

2
3 Проверка домашнего задания

№717(1), Слайд №7

5
4 Изложение нового материала

Задача на построение графика путем сжатия и растяжения к оси ОХ

Обсуждение свойств функции у =k·cosx при k>1 и 0<k<1.

Задача на построение графика путем сжатия и растяжения к ори ОУ

Обсуждение свойств функции у = cos(k·x) при k>1 и 0<k<1.

Слайд №8, 9

12
5 Закрепление первичных знаний. Решение задач по учебнику

№713(1;3), №715(1) №716(1)

№717(2) учебник стр. 208. При решении №715(1), №716(1) использовать построенный график функции у = cos2x. Слайд №10 5
6 Задача на построение графика функции симметричного относительно оси абсцисс. Обсуждение свойств функции

Слайд №11

6
7 Самостоятельная работа. Решение тестовых задач

Тест XL, тест Word

 

9

8 Подведение итогов. Итоги урока.

Выставление оценок

3
9 Домашнее задание §40 №717(3), №713(4), №715(4), №716(2).

Дополнительно №717(2)

2

Цели урока: Повторить правила построения графика функции у=cosx, научиться применять приемы преобразования графика, чтению этого графика, использование свойств и графика функции при решении уравнений и неравенств.

1. Организационный момент. Приветствие.

2. Объявление темы и цели урока сопровождается слайдом №2.

3. Проверка домашнего задания

Слайд №7

4. Изложение нового материала

1. Задача на построение графика путем сжатия и растяжения к оси ОХ.

Обсуждение свойств функции у =k·cosx при k>1 и 0<k<1.

Слайд № 8

2. Задача на построение графика путем сжатия и растяжения к оси ОУ.

Обсуждение свойств функции у = cos(kx) при k>1 и 0<k<1.

Слайд № 9

5. Закрепление первичных знаний

Решение задач по учебнику №713(1;3), №715(1) №716(1)

Задание №715(1) №716(1) проверяем с помощью слайда №10

6. Задача на построение графика функции симметричного относительно оси абсцисс

Обсуждение свой

xn--i1abbnckbmcl9fb.xn--p1ai

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *