число в какой степени будет равно 0?
тока 0 в любой степени, другие числа не имеют такой степени да и любое число в степени 0 равно 1 если вопрос не так задан
не согласна с Александром. . любое число в нулевой степени = единице
touch.otvet.mail.ru
1 в степени бесконечность — Энциклопедия научных парадоксов
Материал из Энциклопедия научных парадоксов
| ||
|
1∞{\displaystyle 1^{\infty }} — это один из примеров математической неопределённости.
Парадокс заключается в том, что любая степень единицы равна самой единице: 1a=1{\displaystyle 1^{a}=1}. Следственно, и 1∞=1{\displaystyle 1^{\infty }=1}. Таким образом, это не должно быть неопределённостью.
Так почему же это является неопределённостью?[править]
1∞{\displaystyle 1^{\infty }} — это неформальная запись предела lim(x;y)→(1;+∞)xy{\displaystyle \lim _{(x;y)\to (1;+\infty )}{x^{y}}}. Если сначала устремить x{\displaystyle x} к 1{\displaystyle 1}, а потом уже y{\displaystyle y} к +∞{\displaystyle +\infty }, то получится действительно 1{\displaystyle 1}. Но если сначала устремить y{\displaystyle y} к +∞{\displaystyle +\infty }, а потом x{\displaystyle x} к 1{\displaystyle 1} сверху, то получится +∞{\displaystyle +\infty }. А если сначала устремить y{\displaystyle y} к +∞{\displaystyle +\infty }, а потом x{\displaystyle x} к 1{\displaystyle 1} снизу, то получится 0{\displaystyle 0}. Сам же предел lim(x;y)→(1;+∞)xy{\displaystyle \lim _{(x;y)\to (1;+\infty )}{x^{y}}} может принимать любые значения от 0{\displaystyle 0} до +∞{\displaystyle +\infty }, например, limx→+∞(1+1/x)x=e=2,71…{\displaystyle \lim _{x\to +\infty }{(1+1/x)^{x}}=e=2,71…}
paradox.pifia.ru
Возведение в степень
В арифметике сложение равных чисел рассматривается как новое действие — умножение.
При этом число-слагаемое пишется только один раз, а за ним (после знака умножения) пишется число множитель, которое показывает, сколько раз надо взять слагаемым первое число. Например:
3 + 3 + 3 + 3 + 3 = 3 * 5;
.
В алгебре умножение равных между собой чисел рассматривается как новое действие, которое называется возведением в степень.
Если, например, число 5 умножается само на себя, то произведение 5 * 5 = 25 называется второй степенью числа 5; произведение 5 * 5 * 5 = 125 называется третьей степенью числа 5; число 5 * 5 * 5 * 5 = 625 — четвертой степенью этого числа и т. д. При этом говорят, что число 5 возводится во вторую, в третью, в четвертую и т. д. степень.
Определение. Действие, посредством которого находится произведение нескольких равных сомножителей, называется возведением в степень.
При этом:
- Произведение n сомножителей, равных a, называется n-й степенью числа a.
- Число, которое возводится в степень, называется основанием степени.
- Число, которое показывает, в какую степень возводится основание, называется показателем степени.
Так, в рассмотренном примере основанием степени был взято число 5; показателем степени в первом случае было число 2, во втором — число 3, а в третьем — число 4.
Степень коротко записывают так: пишут основание степени и справа от него вверху (более мелко) показатель степени:
52 = 25, 53 = 125, 54 = 625 и т. д.
В общем случаеПриведем примеры, поясняющие все сказанное.
1. Примем за основание число 3 и будем возводить его в различные степени:
32 = 3 * 3 = 9; 33 = 3 * 3 * 3 = 27; 34 = 3 * 3 * 3 * 3 = 81;
35 = 3 * 3 * 3 * 3 * 3 = 243 и т. д.
2. Примем за основание какое-нибудь отрицательное число, например –2, тогда получим:
(–2)2 = (–2) * (–2) = 4;
(–2)3 = (–2) * (–2) * (–2) = –8;
(–2)4 = (–2) * (–2) * (–2) * (–2) = 16;
(–2)5 = (–2) * (–2) * (–2) * (–2) * (–2) = –32 и т. д.
3. Приняв за основание дробное число, например , получим:
4. Приняв за основание дробное отрицательное число, например , получим:
Следует запомнить, что нуль в любой степени равен нулю, единица в любой степени равна 1, так как
Принято вторую степень числа называть квадратом, а третью степень — кубом этого числа.
Это объясняется тем, что площадь квадрата со стороной a выражается второй степенью числа a, то есть a * a = a2 (квадратных единиц), а объем куба с ребром, равным a, выражается третьей степенью этого числа: a * a * a = a
По смыслу определения действия возведения в степень показатель степени может равняться двум, трем, четырем и т. д., то есть может быть только натуральным числом, большим единицы.
Принято считать, что первая степень любого числа есть само это число, например:
51 = 5; 8,351 = 8,35; (–3)1 = –3.
Заметим, однако, что показатель 1 обычно не пишется.
Итак, если число записано без показателя степени, то подразумевается, что этот показатель равен 1.
В арифметике показателями степени пользуются для краткой записи разложения целых чисел на множители в том случае, когда среди простых множителей данного числа имеются равные между собой. Разложив, например, на простые множители число 60984, получим:
60984 = 2 * 2 * 2 * 3 * 3 * 7 * 11 * 11.
Кратко, пользуясь показателями степени, это число можно записать так:
60984 = 23 * 32 * 7 * 112.
Полезно запомнить запись единиц различных разрядов в виде степеней числа 10:
100 = 102; 1000 = 103; 10000 = 104; 100000 = 105;
1000000 = 106 и т. д.
Из приведенных числовых примеров видно, что при возведении отрицательного числа в четную степень получается положительное число, а при возведении в нечетную степень получается отрицательное число.
Это и понятно. Четная степень всякого числа есть произведение четного числа сомножителей, а четное число отрицательных сомножителей дает в произведении положительное число (§ 18).
Нечетная степень отрицательного числа, как произведение нечетного числа отрицательных сомножителей, будет отрицательным числом.
Итак, четная степень отрицательного числа положительна, нечетная степень отрицательна
mthm.ru