1.4. Π‘ΠΏΠΎΡΠΎΠ±Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ ΡΠ°ΡΡΠ΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ
Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΠΏΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΠΈ ΠΏΠΎ ΡΡ Π΅ΠΌΠ°ΠΌ Β«Π·Π²Π΅Π·Π΄Π°Β», Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ». Π Π°ΡΡΠ΅Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΡ ΡΠΏΡΠΎΡΠ°Π΅ΡΡΡ, Π΅ΡΠ»ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ Π·Π°ΠΌΠ΅Π½ΡΡΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ RΡΠΊΠ², ΠΈ Π²ΡΡ ΡΡ Π΅ΠΌΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΡ Π΅ΠΌΡ Π½Π° ΡΠΈΡ.Β 1.3, Π³Π΄Π΅ R=RΡΠΊΠ², Π° ΡΠ°ΡΡΠ΅Ρ ΡΠΎΠΊΠΎΠ² ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΠΌΠ° ΠΈ ΠΠΈΡΡ Π³ΠΎΡΠ°.
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
Π ΠΈΡ. 1.4 | Π ΠΈΡ. 1.5 |
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΠΎ Π²ΡΠ΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΡΠΎΠΊ I (ΡΠΈΡ.Β 1.4).
U = U1 + U2 + U3Β ΠΈΠ»ΠΈ IRΡΠΊΠ² = IR1 + IR2 + IR3,
ΠΎΡΠΊΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ
(1.5)
RΡΠΊΠ² = R1 + R2 + R3.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ ΠΎΠ±ΡΠ΅Π΅ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠΎΠ². Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ΅ΠΏΡ Ρ Π»ΡΠ±ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠ΅ΠΏΡΡ Ρ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ RΡΠΊΠ² (ΡΠΈΡ.Β 1.5). ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅Ρ ΡΠ΅ΠΏΠΈ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΠ° I Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°
,
ΠΈ ΠΏΠΎ Π²ΡΡΠ΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ ΡΠΎΡΠΌΡΠ»Π°ΠΌ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ U1, U2, U3 Π½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ (ΡΠΈΡ.Β 1.4).
ΠΠ΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΏΡΠΈ Π²ΡΡ ΠΎΠ΄Π΅ ΠΈΠ· ΡΡΡΠΎΡ Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°, ΠΏΡΠ΅ΠΊΡΠ°ΡΠ°Π΅ΡΡΡ ΡΠ°Π±ΠΎΡΠ° Π²ΡΠ΅Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ.
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΡΠ΅ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠ΅ΠΏΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΠΏΠΎΠ΄ ΠΎΠ΄Π½ΠΈΠΌ ΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ (ΡΠΈΡ.Β 1.6).
Π ΠΈΡ. 1.6
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ΠΈ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΊ Π΄Π²ΡΠΌ ΡΠ·Π»Π°ΠΌ ΡΠ΅ΠΏΠΈ Π° ΠΈ b, ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΠΈΡΡ Π³ΠΎΡΠ° (1.3) ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ, ΡΡΠΎ ΠΎΠ±ΡΠΈΠΉ ΡΠΎΠΊ I Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π΅Π½ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΊΠΎΠ² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²Π΅ΠΉ:
I = I1 + I2 + I3, Ρ.Π΅. ,
ΠΎΡΠΊΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ
(1.6)
.
Π
ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ
Π΄Π²Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R1 ΠΈ R
(1.7)
.
ΠΠ· ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ (1.6), ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Π°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½Π° Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠ΅ΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²Π΅ΠΉ:
gΡΠΊΠ² = g1 + g2 + g3.
ΠΠΎ ΠΌΠ΅ΡΠ΅ ΡΠΎΡΡΠ° ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ΅ΠΏΠΈ gΡΠΊΠ² Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, ΠΈ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ RΡΠΊΠ² ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠΌΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ (ΡΠΈΡ.Β 1.6)
U = IRΡΠΊΠ² = I1R1 = I2R2Β = I3R3.
ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ
,
Ρ.Π΅. ΡΠΎΠΊ Π² ΡΠ΅ΠΏΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ Π²Π΅ΡΠ²ΡΠΌΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ.
ΠΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π² Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅. ΠΡΠΈΡΠ΅ΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π½Π΅ ΠΎΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π½Π° ΡΠ°Π±ΠΎΡΠ΅ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ . ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ° ΡΡ Π΅ΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠΎΠΉ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΠΊ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ.
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ ΡΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
Π‘ΠΌΠ΅ΡΠ°Π½Π½ΡΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π² ΡΠ΅ΠΏΠΈ ΠΈΠΌΠ΅ΡΡΡΡ Π³ΡΡΠΏΠΏΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ.
Π ΠΈΡ. 1.7
ΠΠ»Ρ ΡΠ΅ΠΏΠΈ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΡΠΈΡ.Β 1.7, ΡΠ°ΡΡΠ΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ Ρ ΠΊΠΎΠ½ΡΠ° ΡΡ Π΅ΠΌΡ. ΠΠ»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΏΡΠΈΠΌΠ΅ΠΌ, ΡΡΠΎ Π²ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ: R1=R2=R3=R4=R5=R. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R4 ΠΈ R5 Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΡΠΎΠ³Π΄Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ cd ΡΠ°Π²Π½ΠΎ:
.
Π ΠΈΡ. 1.8
ΠΠ° ΡΡ Π΅ΠΌΠ΅ (ΡΠΈΡ.Β 1.8) ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R3 ΠΈ Rcd ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΈ ΡΠΎΠ³Π΄Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ ad ΡΠ°Π²Π½ΠΎ:
.
Π’ΠΎΠ³Π΄Π° ΡΡ Π΅ΠΌΡ (ΡΠΈΡ.Β 1.8) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠΌ Π²Π°ΡΠΈΠ°Π½ΡΠ΅ (ΡΠΈΡ.Β 1.9):
Π ΠΈΡ. 1.9
ΠΠ° ΡΡ Π΅ΠΌΠ΅ (ΡΠΈΡ.Β 1.9) ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R2 ΠΈ Rad ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΡΠΎΠ³Π΄Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ Π°b ΡΠ°Π²Π½ΠΎ
.
Π‘Ρ Π΅ΠΌΡ (ΡΠΈΡ.Β 1.9) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠΏΡΠΎΡΠ΅Π½Π½ΠΎΠΌ Π²Π°ΡΠΈΠ°Π½ΡΠ΅ (ΡΠΈΡ.Β 1.10), Π³Π΄Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R1 ΠΈ Rab Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ.
Π’ΠΎΠ³Π΄Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΡ Π΅ΠΌΡ (ΡΠΈΡ.Β 1.7) Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ:
.
Π ΠΈΡ. 1.10 | Π ΠΈΡ. 1.11 |
Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΡΡ ΠΎΠ΄Π½Π°Ρ ΡΡ Π΅ΠΌΠ° (ΡΠΈΡ.Β 1.7) ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π² Π²ΠΈΠ΄Π΅ ΡΡ Π΅ΠΌΡ (ΡΠΈΡ.Β 1.11) Ρ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ RΡΠΊΠ². Π Π°ΡΡΠ΅Ρ ΡΠΎΠΊΠΎΠ² ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΡ Π΅ΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Π°ΠΌ ΠΠΌΠ° ΠΈ ΠΠΈΡΡ Π³ΠΎΡΠ°.
Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΏΠΎ ΡΡ Π΅ΠΌΠ°ΠΌ Β«Π·Π²Π΅Π·Π΄Π°Β» ΠΈ Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ»
Π ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅ΠΏΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΏΠΎ ΠΌΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ (ΡΠΈΡ.Β 1.12). Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R12, R13, R24, R34 Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π² ΠΏΠ»Π΅ΡΠΈ ΠΌΠΎΡΡΠ°, Π² Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ 1β4 Π²ΠΊΠ»ΡΡΠ΅Π½ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΠΏΠΈΡΠ°Π½ΠΈΡ Ρ ΠΠΠ‘ Π, Π΄ΡΡΠ³Π°Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ 3β4 Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΡ ΠΌΠΎΡΡΠ°.
Π ΠΈΡ. 1.12 |
Π ΠΌΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R13, R12, R23 ΠΈ R24, R34, R23 ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎ ΡΡ Π΅ΠΌΠ΅ Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ». ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ Π·Π°ΠΌΠ΅Π½Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ², Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° R24 R34 R23 Π·Π²Π΅Π·Π΄ΠΎΠΉ R2 R3 R4 (ΡΠΈΡ.Β 1.13). Π’Π°ΠΊΠ°Ρ Π·Π°ΠΌΠ΅Π½Π° Π±ΡΠ΄Π΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ, Π΅ΡΠ»ΠΈ ΠΎΠ½Π° Π½Π΅ Π²ΡΠ·ΠΎΠ²Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² Π²ΡΠ΅Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π·Π²Π΅Π·Π΄Ρ Π΄ΠΎΠ»ΠΆΠ½Ρ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌ:
(1.8)
; ; .
ΠΠ»Ρ Π·Π°ΠΌΠ΅Π½Ρ ΡΡ Π΅ΠΌΡ Β«Π·Π²Π΅Π·Π΄Π°Β» ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠΌ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°:
(1.9)
; ; .
ΠΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ (ΡΠΈΡ.Β 1.13) ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΌΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΡ Π΅ΠΌΡ (ΡΠΈΡ.Β 1.12)
.
studfiles.net
Π Π°ΡΡΠ΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ β ΠΠ΅Π³Π°ΠΎΠ±ΡΡΠ°Π»ΠΊΠ°
ΠΡΠ±ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΠΠ‘. ΠΡΠΈΡΠ΅ΠΌ, ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π²ΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, Π° ΠΠΠ‘ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΠΠΠ‘ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅.
R4=20 ΠΠΌ, R5=40 ΠΠΌ, R6=15 ΠΠΌ (ΠΏΡΠΈΠΌΠ΅Ρ)
ΠΡΡΠ΅ΠΌ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΏΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΠΌΠΎΠΆΠ½ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΊΠΎΠ»Ρ ΡΠ³ΠΎΠ΄Π½ΠΎ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡ Π΅ΠΌΡ. ΠΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ»ΡΠΆΠ°Ρ ΡΠ΅ΠΏΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠ΅ ΠΏΠΎ ΡΡ Π΅ΠΌΠ΅ Π·Π²Π΅Π·Π΄Π° ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ.
Β
9. Π‘ΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠ Π Π’Π ΠΠ£ΠΠΠΠ¬ΠΠΠΠΠ
Π‘Ρ Π΅ΠΌΡ Π΅ΠΎΠ΅Π΄ΠΈΠΈΠ΅Π½ΠΈΡ ΡΡΠ΅Ρ Π²Π΅ΡΠ²Π΅ΠΉ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ Π·Π°ΠΌΠΊΠ½ΡΡΡΠΉ ΠΊΠΎΠ½ΡΡΡ Ρ ΡΡΠ΅ΠΌΡ ΡΠ·Π»Π°ΠΌΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠΌ.
Π²Π·Π°ΠΈΠΌΠ½ΡΠ΅ Π·Π°ΠΌΠ΅Π½Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ Π·Π²Π΅Π·Π΄Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌΠΈ, Ρ. Π΅. ΠΏΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΡΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡΡ ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΡΡΠΈΠ½Π°ΠΌΠΈ Π, Π ΠΈ Π ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ Π·Π²Π΅Π·Π΄Ρ ΡΠΎΠΊΠΈ IA, IΠ, 1Π Π² ΠΏΠΎΠ΄Π²ΠΎΠ΄ΡΡΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π°Ρ , ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΡ ΡΡΠΈ Π²Π΅ΡΡΠΈΠ½Ρ Ρ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΡΡ ΡΠ΅ΠΏΠΈ, Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΎΡΡΠ°ΡΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Π Π°Π²Π΅Π½ΡΡΠ²ΠΎ ΡΠΎΠΊΠΎΠ² Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΠΏΡΠΈ Π»ΡΠ±ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΡ ΠΈ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡΡ Π² ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΠ΅ΠΏΠΈ ΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΈ ΠΎΠ±ΡΡΠ²Π°Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π΅Π΅ Π²Π΅ΡΠ²Π΅ΠΉ.
Π ΠΈΡ 2.8 Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠΌ (Π°) ΠΈ Π·Π²Π΅Π·Π΄ΠΎΠΉ (Π±)
Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ Π·Π²Π΅Π·Π΄Ρ rΠ°, rΠ±, rΠ² Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΡ Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° r Π°Π±, rΠ±Π², rΠ²Π°. ΠΠ»Ρ Π²ΡΡΡΠ½Π΅Π½ΠΈΡ ΡΡΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ Π΄ΠΎΠΏΡΡΡΠΈΠΌ ΡΠ½Π°ΡΠ°Π»Π°, ΡΡΠΎ Π² Π²Π΅ΡΡΠΈΠ½Π΅ Π ΠΏΡΠΎΠΈΠ·ΠΎΡΠ΅Π» ΠΎΠ±ΡΡΠ² ΠΏΠΎΠ΄Π²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π° ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΎΠΊ IΠ°=0. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΎΡΡΠ°Π²ΡΠΈΠΌΠΈΡΡ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠΌΠΈ Π²Π΅ΡΡΠΈΠ½Π°ΠΌΠΈ Π ΠΈ Π Π΄Π»Ρ ΠΎΠ±Π΅ΠΈΡ ΡΡ Π΅ΠΌ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ, ΡΡΠΎΠ±Ρ Π±ΡΠ»ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Ρ ΡΠΎΠΊΠΈ IΠ ΠΈ IΠ² Π² ΠΎΠ±Π΅ΠΈΡ ΡΡ Π΅ΠΌΠ°Ρ .
Β
Π§ΡΠΎΠ±Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ Π² Π·Π²Π΅Π·Π΄Ρ ΠΏΡΠΈ Π·Π°Π΄Π°Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΡ ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° rΠ°Π±,rΠ±Π², rΠ²Π°, ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π»ΡΡΠ΅ΠΉ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ Π·Π²Π΅Π·Π΄Ρ rΠ°, rΠ±, rΠ² . ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²ΠΈΠΌ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΡ Π»Π΅Π²ΡΡ ΠΈ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ (2.15) ΠΈ (2.16):
Β
ΠΈ Π²ΡΡΡΠ΅ΠΌ ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½Π½ΡΠ΅ Π²Π΄Π²ΠΎΠ΅ Π»Π΅Π²ΡΡ ΠΈ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΠΈ (2.14). Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠΌ
(2.17)
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ
(2.18)
(2.19)
Β
ΡΠ»ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ: rΠ°Π± = rΠ±Π²=rΠ²Π°=rΞ, ΡΠΎ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²
Π»Π΅Π½ΠΈΡ Π·Π²Π΅Π·Π΄Ρ, Ρ. Π΅. rΠ° = rΠ±=rΠ²=r Ξ», ΠΏΡΠΈΡΠ΅ΠΌ ΠΈΠ· ΡΠΎΡΠΌΡΠ» (2.17)β(2.19) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΡΠΎΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅
(2.20)
ΠΡΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π·Π²Π΅Π·Π΄Ρ Π² ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Ρ. Π΅. ΠΏΡΠΈ Π·Π°Π΄Π°Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΡ rΠ°, rΠ±, rΠ², Π½Π°Π΄ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ (2.17)β(2 19) ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ rΠ°Π±, rΠ±Π²:
Β
Β
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π΄Π²ΡΡ Π»ΡΡΠ΅ΠΉ Π·Π²Π΅Π·Π΄Ρ, ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΊ ΡΠ΅ΠΌ ΠΆΠ΅ Π²Π΅ΡΡΠΈΠ½Π°ΠΌ, ΡΡΠΎ ΠΈ ΡΡΠΎΡΠΎΠ½Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΈ ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ, Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ Π»ΡΡΠ° Π·Π²Π΅Π·Π΄Ρ.
11. Π Π΅ΠΆΠΈΠΌΡ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ
Β· Π Π΅ΠΆΠΈΠΌ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΡ ( ΠΠ )
Π ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΠΏΠΈΡΠ°Π½ΠΈΡ Π·Π°ΠΌΠΊΠ½ΡΡ Π½Π°ΠΊΠΎΡΠΎΡΠΊΠΎ. Π Π΅ΠΆΠΈΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°Π²Π°ΡΠΈΠΉΠ½ΡΠΌ. Π’ΠΎΠΊ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΡ ΠΠ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ°Π· ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°.
RΠ½ = 0 I = max
Β· Π Π΅ΠΆΠΈΠΌ Ρ ΠΎΠ»ΠΎΡΡΠΎΠ³ΠΎ Ρ ΠΎΠ΄Π° ( Π₯Π₯ )
Π ΡΠ΅ΠΆΠΈΠΌΠ΅ Ρ ΠΎΠ»ΠΎΡΡΠΎΠ³ΠΎ Ρ ΠΎΠ΄Π° ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΠΏΠΈΡΠ°Π½ΠΈΡ ΠΎΡΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ ΠΎΡ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΠΈ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π²Ρ ΠΎΠ»ΠΎΡΡΡΡ. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ ΠΈ ΡΠΎΠΊ ΡΠ°Π²Π΅Π½ 0. RΠ½ = β
Β· Π Π΅ΠΆΠΈΠΌ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ β Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΡΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ, ΠΊΠΎΠ³Π΄Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠΎΠ²Π½ΠΎ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°.
RΠ½ = I0
ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ Ρ ΡΠΎΡΡΠΎΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠ°ΡΡΡΡ ΠΌΠΎΡΠ½ΠΎΡΡΡ Π½Π° Π½Π°Π³ΡΡΠ·ΠΊΠ΅ ΠΏΡΠΈ RΠ½ = I0 ΠΌΠΎΡΠ½ΠΎΡΡΡ Π½Π°Π³ΡΡΠ·ΠΊΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ°Ρ ΠΏΡΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΡΠΎΡΡΠ΅ RΠ½ β PRΠ½ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
ΠΠΎΡΠ½ΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΊΠ°
P = UI
Β
Β
megaobuchalka.ru
Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠΌΡΠ»Π° ΡΠ°ΡΡΠ΅ΡΠ° (ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ) ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΡΠ΅ΠΏΠΈ
ΠΡΠ»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ², ΡΠΎ Π΄Π»Ρ ΠΏΠΎΠ΄ΡΡΡΡΠ° Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² (ΡΠΈΠ»Ρ ΡΠΎΠΊΠ°, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΠΌΠΎΡΠ½ΠΎΡΡΠΈ) ΡΠ΄ΠΎΠ±Π½ΠΎ Π²ΡΠ΅ ΡΠ΅Π·ΠΈΡΡΠΈΠ²Π½ΡΠ΅ ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π½Π° ΠΎΠ΄Π½ΠΎ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ. Π’ΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ Π½Π΅Π³ΠΎ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅: Π΅Π³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΡΠ°Π²Π½ΡΠΌ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π²ΡΠ΅Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠΎ Π΅ΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ Π°ΠΌΠΏΠ΅ΡΠΌΠ΅ΡΡΠ° ΠΈ Π²ΠΎΠ»ΡΡΠΌΠ΅ΡΡΠ° Π² ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΠΈ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡΡ. Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ²ΡΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΏΠΈ.
ΠΠ΅ΡΠΎΠ΄ ΡΠ²ΡΡΡΡΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΏΠΈ
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅! Π Π°ΡΡΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ (ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΈΠ»ΠΈ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ³ΠΎ) ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠ°Π·Π½ΡΠΌ ΡΠΎΡΠΌΡΠ»Π°ΠΌ.
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
Π ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ ΠΏΡΠΈΠ±ΠΎΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³ Ρ Π΄ΡΡΠ³ΠΎΠΌ, Π° ΡΠΎΠ±ΡΠ°Π½Π½Π°Ρ ΡΠ΅ΠΏΡ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΠΉ.
ΠΡΠΈ ΡΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ ΡΠΈΠ»Π° ΡΠΎΠΊΠ°, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ΅Π·ΠΈΡΡΠΎΡ, Π±ΡΠ΄Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°Ρ, Π° ΠΎΠ±ΡΠ΅Π΅ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ ΠΈΠ· ΡΡΠΌΠΌΠ°ΡΠ½ΡΡ ΠΏΠ°Π΄Π΅Π½ΠΈΠΉ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΏΡΠΈΠ±ΠΎΡΠΎΠ².
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ±ΠΎΡΠΎΠ²
Π§ΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΠΠΌΠ°, ΠΊΠΎΡΠΎΡΡΠΉ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
I = U/R.
ΠΠ· Π²ΡΡΠ΅ΡΡΠΎΡΡΠ΅Π³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ R:
R = U/I (1).
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ:
- I = I1 = I2 =β¦= IN (2),
- U = U1 + U2 +β¦+ UN (3),
ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΡΠ°ΡΡΡΡΠ° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ (RΠΎΠ±Ρ ΠΈΠ»ΠΈ RΡΠΊΠ²) ΠΈΠ· (1) β (3) Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄:
- RΡΠΊΠ² = (U1 + U2 + β¦+ UN)/I,
- RΡΠΊΠ² = R1 + R2 + β¦ + RN (4).
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΅ΡΠ»ΠΈ ΠΈΠΌΠ΅Π΅ΡΡΡ N ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ½Π½ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠΎ ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π½Π° ΠΎΠ΄Π½ΠΎ ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ:
RΠΎΠ±Ρ = NΒ·R (5).
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅
ΠΡΠΈ ΡΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ Π²Ρ ΠΎΠ΄Ρ ΠΎΡ Π²ΡΠ΅Ρ ΡΡΡΡΠΎΠΉΡΡΠ² ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π² ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅, Π²ΡΡ ΠΎΠ΄Ρ β Π² Π΄ΡΡΠ³ΠΎΠΉ ΡΠΎΡΠΊΠ΅. ΠΡΠΈ ΡΠΎΡΠΊΠΈ Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΠΊΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠ·Π»Π°ΠΌΠΈ. ΠΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡ Π΅ΠΌΠ°Ρ ΡΠ·Π»Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΠΌΠ΅ΡΡΠ° ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅
Π Π°ΡΡΠ΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΆΠ΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ°.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ±ΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ ΠΈΠ· ΡΡΠΌΠΌΡ ΡΠΈΠ» ΡΠΎΠΊΠΎΠ², ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅ΡΠ²ΠΈ, Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΈ ΠΎΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅.
ΠΡΠ»ΠΈ ΠΈΠΌΠ΅ΡΡΡΡ N ΡΠ΅Π·ΠΈΡΡΠΈΠ²Π½ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ², ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΎ:
I = I1 + I2 Β + β¦ + IN (6),
U = U1 = U2 = β¦ = UN (7).
ΠΠ· Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ (1), (6) ΠΈ (7) ΠΈΠΌΠ΅Π΅ΠΌ:
- RΠΎΠ±Ρ = U/(I1 + I2 + β¦+ IN),
- 1/RΡΠΊΠ² = 1/R1 + 1/R2 +β¦+ 1/RN (8).
ΠΡΠ»ΠΈ ΠΈΠΌΠ΅Π΅ΡΡΡ N ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ², ΠΈΠΌΠ΅ΡΡΠΈΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ°, ΡΠΎ ΡΠΎΡΠΌΡΠ»Π° (8) ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
RΠΎΠ±Ρ = R Β· R / NΒ·R = R / N (9).
ΠΡΠ»ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠ°ΡΡΡΠ΅ΠΊ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ, ΡΠΎ ΠΈΡ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ΅ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ².
Π Π°ΡΡΡΡ ΠΏΡΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΡΡΡΠΎΠΉΡΡΠ²
Π ΡΠ»ΡΡΠ°Π΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ ΡΡΠ°ΡΡΠΊΠΈ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ².
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΏΠΈ (ΠΌΠ΅ΡΠΎΠ΄ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ). ΠΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π² ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ Π΅ΡΡΡ ΠΎΠ΄ΠΈΠ½ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΡΠ½Π΅ΡΠ³ΠΈΠΈ.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π·Π°Π΄Π°Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠ°Ρ Π·Π°Π΄Π°ΡΠ°. ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡ Π΅ΠΌΠ° (ΡΠΌ. ΡΠΈΡ. Π½ΠΈΠΆΠ΅) ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 7 ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ². Π Π°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ ΡΠΎΠΊΠΈ Π½Π° Π²ΡΠ΅Ρ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°Ρ , Π΅ΡΠ»ΠΈ ΠΈΠΌΠ΅ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΈΡΡ ΠΎΠ΄Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅:
- R1 = 1ΠΠΌ,
- R2 = 2ΠΠΌ,
- R3 = 3ΠΠΌ,
- R4 = 6ΠΠΌ,
- R5 = 9ΠΠΌ,
- R6 = 18ΠΠΌ,
- R7 = 2,8ΠΠΌ,
- U = 32Π.
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡ Π΅ΠΌΠ°
ΠΠ· Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ° ΠΈΠΌΠ΅Π΅ΠΌ:Β
I = U/R,
Π³Π΄Π΅ R β ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΠΏΡΠΈΠ±ΠΎΡΠΎΠ².
ΠΠ³ΠΎ Π±ΡΠ΄Π΅ΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΏΠΈ.
ΠΠ»Π΅ΠΌΠ΅Π½ΡΡ R2 ΠΈ R3 ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π½Π° R2,3, Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
R2,3= R2Β·R3 / (R2+R3).
R4, R5 ΠΈ R6 ΡΠ°ΠΊΠΆΠ΅ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΠΈ ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π½Π° R4,5,6, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
1/R4,5,6 = 1/R4+1/R5+1/R6.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡ Π΅ΠΌΡ, ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½Π½ΡΡ Π½Π° ΠΊΠ°ΡΡΠΈΠ½ΠΊΠ΅ Π²ΡΡΠ΅, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π½Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΠΌΠ΅ΡΡΠΎ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² R2, R3 ΠΈ R4, R5, R6 ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ R2,3 ΠΈ R4,5,6.
ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Π°Ρ ΡΡ Π΅ΠΌΠ°
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠ°ΡΡΠΈΠ½ΠΊΠ΅ Π²ΡΡΠ΅, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² R1, R2,3, R4,5,6 ΠΈ R7.
RΠΎΠ±Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π½Π°ΠΉΠ΄Π΅Π½ΠΎ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
RΠΎΠ±Ρ = R1 + R2,3 + R4,5,6 + R7.
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°Π΅ΠΌ R Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΡΡ ΡΡΠ°ΡΡΠΊΠΎΠ²:
- R2.3 = 2ΠΠΌΒ·3ΠΠΌ / (2ΠΠΌ + 3ΠΠΌ) = 1,2ΠΠΌ,
- 1/R4,5,6 = 1/6ΠΠΌ + 1/9ΠΠΌ + 1/18ΠΠΌ = 1/3ΠΠΌ,
- R4,5,6 = 3ΠΠΌ,
- RΡΠΊΠ² = 1ΠΠΌ + 1,2ΠΠΌ + 3ΠΠΌ + 2,8ΠΠΌ= 8ΠΠΌ.
Π’Π΅ΠΏΠ΅ΡΡ, ΠΏΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ Π½Π°ΡΠ»ΠΈ RΡΠΊΠ², ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ I:
I = 32Π / 8ΠΠΌ = 4Π.
ΠΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΊΠ°, ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ°, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ R1, R2,3, R4,5,6 ΠΈ R7 ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠΎ:
I1 = I2,3 = I4,5,6 = I7 = I = 4Π.
ΠΠ° ΡΡΠ°ΡΡΠΊΠ΅ R2,3 Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
- U2,3 = I2,3Β·R2,3,
- U2,3 = 4ΠΒ·1,2ΠΠΌ = 4,8Π.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ R2 ΠΈ R3 ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΡΠΎ U2,3 = U2 = U3, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ:
- I2 = U2 / R2,
- I2 = 4,8Π / 2ΠΠΌ = 2,4Π,
- I3 = U3 / R3,
- I3 = 4,8Π / 3ΠΠΌ = 1,6Π.
ΠΡΠΎΠ²Π΅ΡΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ:
- I2,3 = I2 + I3,
- I2,3 = 2,4Π + 1,6Π = 4Π.
ΠΠ° ΡΡΠ°ΡΡΠΊΠ΅ R4,5,Π± Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΆΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ, ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ°:
- U4,5,6 = I4,5,6Β·R4,5,6,
- U4,5,6 = 4ΠΒ·3ΠΠΌ = 12Π.
Π’Π°ΠΊ ΠΊΠ°ΠΊ R4, R5, RΠ± ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³ ΠΊ Π΄ΡΡΠ³Ρ, ΡΠΎ:
U4,5,6 = U4 = U5 = U6 = 12Π.
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ I4, I5, I6:
- I4 = U4 / R4,
- I4 = 12Π / 6ΠΠΌ = 2Π,
- I5 = U5 / R5,
- I5 = 12Π / 9ΠΠΌ Β» 1,3Π,
- I6 = U6 / R6,
- I5 = 12Π / 18ΠΠΌ Β» 0,7Π.
ΠΡΠΎΠ²Π΅ΡΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ:
I4,5,6 = 2Π + 1,3Π + 0,7Π = 4Π.
Π§ΡΠΎΠ±Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΡΡΠΎΠ² ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠΎΠ² ΡΠ΅ΠΏΠΈ, ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ΅ΡΠ²ΠΈΡΠ°ΠΌΠΈ ΡΠ΅ΡΠΈ ΠΠ½ΡΠ΅ΡΠ½Π΅Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ Π½Π° ΠΈΡ ΡΠ°ΠΉΡΠ°Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π½ΡΠΆΠ½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. Π‘Π΅ΡΠ²ΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΡΡΠΎΠ΅Π½Π½ΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ β ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π±ΡΡΡΡΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ°ΡΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ Π»ΡΠ±ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ°ΡΡΡΡΠ΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΡΠΎΡΡΠΈΡΡ ΠΈ ΡΡΠΊΠΎΡΠΈΡΡ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ².
ΠΠΈΠ΄Π΅ΠΎ
ΠΡΠ΅Π½ΠΈΡΠ΅ ΡΡΠ°ΡΡΡ:elquanta.ru
Π Π°ΡΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ
Π Π°ΡΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π°Π΄Π°Ρ ΠΏΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΠΊΠ΅. Π‘ΡΡΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΊ ΡΠ΅ΠΏΠΈ Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΡ Π½Π°Π·ΡΠ²Π°ΡΡΒ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΡΡ.Β
ΠΡΠΈΠΌΠ΅Ρ 1
Β
Π¦Π΅ΠΏΡ Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π΄Π²ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΈΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ. ΠΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅ ΠΎ Π²ΠΈΠ΄Π°Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉΒ ΡΡΡ.
ΠΠΎΠΏΡΡΡΠΈΠΌ, ΡΡΠΎ R1=10 ΠΠΌ R2=20 ΠΠΌ, ΡΠΎΠ³Π΄Π°Β
ΠΡΠΈΠΌΠ΅Ρ 2
Β
ΠΠ²Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, Π·Π½Π°ΡΠΈΡ ΠΏΡΠΈ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠΈ ΡΡ Π΅ΠΌΡ, ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ (Π·Π½Π°ΡΠ΅Π½ΠΈΡ R1,R2Β ΡΠ°ΠΊΠΈΠ΅ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ Π² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ 1)Β
ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΎΠ±ΡΠ΅Π΅Β ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅Β ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ Π² Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π·.Β
ΠΡΠΈΠΌΠ΅Ρ 3
Β
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠΈΡΡΠ°ΡΠΈΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½Π° ΠΏΡΠΈΠΌΠ΅ΡΡ 2, Π·Π° ΡΠ΅ΠΌ Π»ΠΈΡΡ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΡΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΡΠΈ. Π’ΠΎΠ³Π΄Π° ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ (R1,R2Β ΠΏΡΠ΅ΠΆΠ½ΠΈΠ΅, R3=105 ΠΠΌ)Β
Β
ΠΡΠΈΠΌΠ΅Ρ 4
Β
Π§ΡΠΎΠ±Ρ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π»Ρ Π½Π°ΡΠ°Π»Π° Π½Π°ΠΉΡΠΈ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² R1Β ΠΈ R2Β ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, Π° Π·Π°ΡΠ΅ΠΌ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ ΡΡΠΌΠΌΡ R12Β ΠΈ R3Β ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ.Β
Β ΠΡΠΈΠΌΠ΅Ρ 5
ΠΠ°Π½Π½Π°Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ ΡΠ»ΠΎΠΆΠ½Π΅Π΅, ΡΠ΅ΠΌ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΠ΅, Π½ΠΎ ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΡ, ΠΎΠ½Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°ΡΡ, ΠΏΡΠΈΠ²ΠΎΠ΄Ρ ΡΠ΅ΠΏΡ ΠΊ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R.
R4=20 ΠΠΌ, R5=40 ΠΠΌ, R6=15 ΠΠΌΒ
ΠΡΡΠ΅ΠΌ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΏΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΠΌΠΎΠΆΠ½ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΊΠΎΠ»Ρ ΡΠ³ΠΎΠ΄Π½ΠΎ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡ Π΅ΠΌΡ. ΠΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ»ΡΠΆΠ°Ρ ΡΠ΅ΠΏΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠ΅ ΠΏΠΎ ΡΡ Π΅ΠΌΠ΅ Π·Π²Π΅Π·Π΄Π° ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ.Β Β
electroandi.ru
Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
ΠΠ»Π°Π²Π½Π°Ρ β ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π’ΠΠ β Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉΠ Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
ΠΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΌΠΈ ΡΠ°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠ²Π»ΡΡΡΡΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΈΡΡ Π³ΠΎΡΠ°.
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΠΈΡΡ Π³ΠΎΡΠ° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΡΡΠ΄Β ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ ΡΠΎΠΊΡΠ°ΡΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΡΠΈΒ ΡΠ°ΡΡΠ΅ΡΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡ Π΅ΠΌ.
Π‘ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ, Π°Β Π²Β Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»ΡΡΠ°ΡΡ ΠΈΒ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΡΡΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ°, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΒ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡ Π΅ΠΌΡ.
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΠΈΒ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Β«Π·Π²Π΅Π·Π΄Π°Β» Π²Β ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΉ Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ» ΠΈΒ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ. ΠΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ Π·Π°ΠΌΠ΅Π½Ρ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ ΠΠΠ‘. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ Π»ΡΠ±ΡΡ ΡΠ΅ΠΏΡ, ΠΈΒ ΠΏΡΠΈΒ ΡΡΠΎΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΡΠΎΡΡΡΠ΅ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π°.Β ΠΠ»ΠΈΒ ΠΆΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠΊΒ Π²Β ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅ΡΠ²ΠΈ, Π±Π΅Π·Β ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΎΠΊΠΎΠ² Π΄ΡΡΠ³ΠΈΡ ΡΡΠ°ΡΡΠΊΠΎΠ² ΡΠ΅ΠΏΠΈ.
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΏΠΎΒ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π°ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΠΊΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ°ΡΡΠ΅ΡΠ° Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΡΒ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΈΠΏΠΎΠ²ΡΡ ΡΡ Π΅ΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΠΈΒ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ°ΡΡΠ΅ΡΠ½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠ»ΡΒ ΡΠ΅ΠΏΠΈ (ΡΠΈΡ. 1), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Ρ ΠΎΠ΄Π½ΡΡ Π·Π°ΠΆΠΈΠΌΠΎΠ² aβg, Π΅ΡΠ»ΠΈΒ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ: R1 = R2 = 0,5 ΠΠΌ, R3 = 8 ΠΠΌ, R4 = R5 = 1 ΠΠΌ, R6 = 12 ΠΠΌ, R7 = 15 ΠΠΌ, R8 = 2 ΠΠΌ, R9 = 10 ΠΠΌ, R10= 20 ΠΠΌ.
Π ΠΈΡ. 1
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ°ΡΠ½Π΅ΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΡ Π΅ΠΌΡ ΡΒ Π²Π΅ΡΠ²ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄Π°Π»Π΅Π½Π½ΠΎΠΉ ΠΎΡΒ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°, Ρ.Π΅. ΠΎΡΒ Π·Π°ΠΆΠΈΠΌΠΎΠ² aβg:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠ»ΡΒ ΡΠ΅ΠΏΠΈ (ΡΠΈΡ. 2, Π°), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Ρ ΠΎΠ΄Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π΅ΡΠ»ΠΈΒ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ: R1 = R2 = R3 = R4= 40 ΠΠΌ.
Π ΠΈΡ. 2
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΡ ΠΎΠ΄Π½ΡΡ ΡΡ Π΅ΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Ρ ΠΎΠ΄Π½ΡΡ Π·Π°ΠΆΠΈΠΌΠΎΠ² (ΡΠΈΡ. 2, Π±), ΠΈΠ·Β ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎΒ Π²ΡΠ΅Β ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ. Π’Π°ΠΊΒ ΠΊΠ°ΠΊΒ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ°Π²Π½Ρ, ΡΠΎΒ Π΄Π»ΡΒ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π³Π΄Π΅ R β Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, ΠΠΌ;
n β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π·Π°ΠΆΠΈΠΌΠΎΠ² aβb, Π΅ΡΠ»ΠΈΒ R1 = R2 = R3 = R4 = R5 = R6 = 10 ΠΠΌ (ΡΠΈΡ. 3, Π°).
Π ΠΈΡ. 3
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ» fβdβc Π²Β ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ Β«Π·Π²Π΅Π·Π΄ΡΒ». ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ (ΡΠΈΡ. 3, Π±):
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π²ΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ°Π²Π½Ρ, Π°Β Π·Π½Π°ΡΠΈΡ:
ΠΠ° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ·Π»Π°ΠΌΠΈ eβb, ΡΠΎΠ³Π΄Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ:
Π ΡΠΎΠ³Π΄Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΡ Π΅ΠΌΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ:
ΠΠ°Π΄Π°ΡΠ° 4. ΠΒ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ (ΡΠΈΡ. 4, Π°) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²Ρ ΠΎΠ΄Π½ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²Π΅ΡΠ²Π΅ΠΉ aβb, cβd ΠΈΒ fβb, Π΅ΡΠ»ΠΈΒ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ: R1 = 4 ΠΠΌ, R2 = 8 ΠΠΌ, R3 =4 ΠΠΌ, R4 = 8 ΠΠΌ, R5 = 2 ΠΠΌ, R6 = 8 ΠΠΌ, R7 = 6 ΠΠΌ, R8 =8 ΠΠΌ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²Π΅ΡΠ²Π΅ΠΉ ΠΈΡΠΊΠ»ΡΡΠ°ΡΡ ΠΈΠ·Β ΡΡ Π΅ΠΌΡ Π²ΡΠ΅Β ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ ΠΠΠ‘. ΠΡΠΈΒ ΡΡΠΎΠΌ ΡΠΎΡΠΊΠΈ c ΠΈΒ d, Π°Β ΡΠ°ΠΊΠΆΠ΅ b ΠΈΒ f ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ Π½Π°ΠΊΠΎΡΠΎΡΠΊΠΎ, Ρ.ΠΊ. Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Ρ Π½ΡΠ»Ρ.
Π ΠΈΡ. 4
ΠΠ΅ΡΠ²Ρ aβb ΡΠ°Π·ΡΡΠ²Π°ΡΡ, ΠΈΒ Ρ.ΠΊ. ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Raβb = 0, ΡΠΎΒ Π²Ρ ΠΎΠ΄Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²ΠΈ ΡΠ°Π²Π½ΠΎ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡ Π΅ΠΌΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠ΅ΠΊ a ΠΈΒ b (ΡΠΈΡ. 4, Π±):
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ Π²Ρ ΠΎΠ΄Π½ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²Π΅ΡΠ²Π΅ΠΉ Rcd ΠΈΒ Rbf. ΠΡΠΈΡΠ΅ΠΌ, ΠΏΡΠΈΒ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΡΡΠ΅Π½ΠΎ, ΡΡΠΎΒ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π½Π°ΠΊΠΎΡΠΎΡΠΊΠΎ ΡΠΎΡΠ΅ΠΊ a ΠΈΒ b ΠΈΡΠΊΠ»ΡΡΠ°Π΅Ρ ( Β«Π·Π°ΠΊΠΎΡΠ°ΡΠΈΠ²Π°Π΅ΡΒ») ΠΈΠ·Β ΡΡ Π΅ΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R1, R2, R3, R4 Π²Β ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΈΒ R5, R6, R7, R8 Π²ΠΎΒ Π²ΡΠΎΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΒ ΡΠ΅ΠΏΠΈ (ΡΠΈΡ. 5) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΎΠΊΠΈ I1, I2, I3 ΠΈΒ ΡΠΎΡΡΠ°Π²ΠΈΡΡ Π±Π°Π»Π°Π½Ρ ΠΌΠΎΡΠ½ΠΎΡΡΠ΅ΠΉ, Π΅ΡΠ»ΠΈΒ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ: R1 = 12 ΠΠΌ, R2 = 20 ΠΠΌ, R3 = 30 ΠΠΌ, U = 120 Π.
Π ΠΈΡ. 5
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅Π΄Π»ΡΒ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ:
ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ:
Π’ΠΎΠΊ Π²Β Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡ Π΅ΠΌΡ:
ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Β ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΡ :
Π’ΠΎΠΊΠΈ Π²Β ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²ΡΡ :
ΠΠ°Π»Π°Π½Ρ ΠΌΠΎΡΠ½ΠΎΡΡΠ΅ΠΉ:
ΠΠ°Π΄Π°ΡΠ° 6. ΠΒ ΡΠ΅ΠΏΠΈ (ΡΠΈΡ. 6, Π°), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ Π°ΠΌΠΏΠ΅ΡΠΌΠ΅ΡΡΠ°, Π΅ΡΠ»ΠΈΒ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ: R1 = 2 ΠΠΌ, R2 = 20 ΠΠΌ, R3 = 30 ΠΠΌ, R4 = 40 ΠΠΌ, R5 = 10 ΠΠΌ, R6 = 20 ΠΠΌ, E = 48 Π. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ΅ΡΠΌΠ΅ΡΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΡΠ°Π²Π½ΡΠΌ Π½ΡΠ»Ρ.
Π ΠΈΡ. 6
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ»ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ R2, R3, R4, R5 Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ RΠ, ΡΠΎΒ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡ Π΅ΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²Β ΡΠΏΡΠΎΡΠ΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅ (ΡΠΈΡ. 6, Π±).
ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ:
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π² ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ RΠ ΠΈΒ R6 ΡΡ Π΅ΠΌΡ (ΡΠΈΡ. 6, Π±), ΠΏΠΎΠ»ΡΡΠΈΠΌ Π·Π°ΠΌΠΊΠ½ΡΡΡΠΉ ΠΊΠΎΠ½ΡΡΡ, Π΄Π»ΡΒ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΒ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΈΡΡ Π³ΠΎΡΠ° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΎΡΠΊΡΠ΄Π° ΡΠΎΠΊΒ I1:
ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Β Π·Π°ΠΆΠΈΠΌΠ°Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²Π΅ΠΉ Uab Π²ΡΡΠ°Π·ΠΈΠΌ ΠΈΠ·Β ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΒ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ° Π΄Π»ΡΒ ΠΏΠ°ΡΡΠΈΠ²Π½ΠΎΠΉ Π²Π΅ΡΠ²ΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ RΠ ΠΈΒ R6:
Π’ΠΎΠ³Π΄Π° Π°ΠΌΠΏΠ΅ΡΠΌΠ΅ΡΡ ΠΏΠΎΠΊΠ°ΠΆΠ΅Ρ ΡΠΎΠΊ:
ΠΠ°Π΄Π°ΡΠ° 7. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠΊΠΈ Π²Π΅ΡΠ²Π΅ΠΉ ΡΡ Π΅ΠΌΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ (ΡΠΈΡ. 7, Π°), Π΅ΡΠ»ΠΈΒ R1 = R2 = R3 = R4 = 3 ΠΠΌ, J = 5 Π, R5 = 5 ΠΠΌ.
Π ΠΈΡ. 7
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ» ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ R1, R2, R3 Π²Β ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ Β«Π·Π²Π΅Π·Π΄ΡΒ» R6, R7, R8 (ΡΠΈΡ. 7, Π±) ΠΈΒ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ:
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ·Π»Π°ΠΌΠΈ 4 ΠΈΒ 5
Π’ΠΎΠΊ Π²Β ΠΊΠΎΠ½ΡΡΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌ Π²Β ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΡΠΈΡΠ°Π΅ΠΌ ΡΠ°Π²Π½ΡΠΌ ΡΠΎΠΊΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ° J, ΠΈΒ ΡΠΎΠ³Π΄Π° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅:
Π ΡΠ΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠΊΠΈ I4 ΠΈΒ I5:
ΠΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΡ ΠΊΒ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U32 ΠΈΠ·Β ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΒ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΈΡΡ Π³ΠΎΡΠ°:
Π’ΠΎΠ³Π΄Π° ΡΠΎΠΊΒ Π²Β Π²Π΅ΡΠ²ΠΈ ΡΒ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ R3 ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡΡ:
ΠΠ΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡΡΠ°Π²ΡΠΈΡ ΡΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ ΡΠΎΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ·Β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠΎΒ ΠΏΠ΅ΡΠ²ΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΈΡΡ Π³ΠΎΡΠ° Π΄Π»ΡΒ ΡΠ·Π»ΠΎΠ² 3 ΠΈΒ 1:
ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½Π°Ρ Π²Π΅ΡΡΠΈΡ ΡΡΠ°ΡΡΠΈ Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ
ΠΠ΅ΡΠΎΠ΄ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉΒ
02.09.2011, 237358Β ΠΏΡΠΎΡΠΌΠΎΡΡΠΎΠ².
rgr-toe.ru
1. ΠΠ°ΠΊΠΎΠ½Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°
1.1 ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ.
ΠΠ°ΠΊΠΎΠ½Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΈΠ·ΡΡΠ°ΡΡΡΡ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΈ Π²ΡΠ·ΠΎΠ²ΡΠΊΠΎΠΌ ΠΊΡΡΡΠ°Ρ ΡΠΈΠ·ΠΈΠΊΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ΅Π±Π½ΠΎΠΌ ΠΏΠΎΡΠΎΠ±ΠΈΠΈ ΠΈΠ·Π»Π°Π³Π°ΡΡΡΡ ΠΊΡΠ°ΡΠΊΠΎ. ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ Π»ΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠ².
Π£Π·Π»ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅ΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΡΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². ΠΠ΄Π½ΠΎΡΠΎΠ΄Π½ΡΠΉ ΡΡΠ°ΡΡΠΎΠΊ ΡΠ΅ΠΏΠΈ β ΡΡΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΡΠ°ΡΡΠΎΠΊ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π΅ Π΄Π΅ΠΉΡΡΠ²ΡΡΡ ΡΡΠΎΡΠΎΠ½Π½ΠΈΠ΅ ΡΠΈΠ»Ρ.
ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΡΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ Π²ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ°, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π΄ΡΡΠ³ΠΈΡ ΡΡΠ°ΡΡΠΊΠΎΠ² ΡΠ΅ΠΏΠΈ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡ.
1.2 ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Π·Π°ΠΊΠΎΠ½Ρ.
ΠΠ°ΠΊΠΎΠ½ ΠΠΌΠ° Π΄Π»Ρ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ:
Π‘ΠΈΠ»Π° ΡΠΎΠΊΠ° Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ ΡΠ΅ΠΏΠΈ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° ΡΡΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° Π΅Π³ΠΎ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ.
(1.1)
ΠΠ°ΠΊΠΎΠ½ ΠΠΌΠ° Π΄Π»Ρ ΠΏΠΎΠ»Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ:
Π‘ΠΈΠ»Π° ΡΠΎΠΊΠ° ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠΆΡΡΠ΅ΠΉ ΡΠΈΠ»Π΅ (Ρ.Π΄.Ρ.) ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ° ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° ΠΏΠΎΠ»Π½ΠΎΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΉ ΡΠ΅ΠΏΠΈ : . (1.2)
ΠΠ΄Π΅ΡΡ r β Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ°.
Π Π°ΡΡΡΠΈΡΠ°ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠ΅ΠΏΡ β Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠΊΠΈ ΠΈ ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° Π²ΡΠ΅Ρ Π΅Π΅ ΡΡΠ°ΡΡΠΊΠ°Ρ . Π§Π°ΡΡΠΎ ΠΏΡΠΈ ΡΠ°ΡΡΠ΅ΡΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΠ΅ΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΈΡΡ Π³ΠΎΡΠ°.
1-ΠΉ Π·Π°ΠΊΠΎΠ½ ΠΠΈΡΡ Π³ΠΎΡΠ°: ΠΠ»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠΌΠΌΠ° ΡΠΎΠΊΠΎΠ², ΡΡ ΠΎΠ΄ΡΡΠΈΡ ΡΡ Π² ΡΠ·Π»Π΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ:
Ξ£Ik = 0 (1.3)
ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΎΠΊΠΈ, Π²Ρ ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΡΠ·Π΅Π», ΠΈ Π²ΡΡ ΠΎΠ΄ΡΡΠΈΠ΅ ΠΈΠ· Π½Π΅Π³ΠΎ, Π±Π΅ΡΡΡΡΡ Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ.
ΠΡΡΠ³Π°Ρ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ° ΡΡΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π°: Π‘ΡΠΌΠΌΠ° Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² ΡΠ·Π΅Π» ΡΠΎΠΊΠΎΠ² ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΡΠΎΠΊΠΎΠ², Π²ΡΡ ΠΎΠ΄ΡΡΠΈΡ ΠΈΠ· Π½Π΅Π³ΠΎ.
2-ΠΉ Π·Π°ΠΊΠΎΠ½ ΠΠΈΡΡ Π³ΠΎΡΠ°: ΠΠ»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠΌΠΌΠ° Ρ.Π΄.Ρ., Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² Π·Π°ΠΌΠΊΠ½ΡΡΡΠΉ ΠΊΠΎΠ½ΡΡΡ, ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΏΠ°Π΄Π΅Π½ΠΈΠΉ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Ρ ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΡΠ°:
Ξ£Πk = Ξ£Uk (1.4)
ΠΡΠΈ ΡΡΠΎΠΌ Ρ.Π΄.Ρ., ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΠ΅ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ ΠΎΠ±Ρ ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½ΡΡΡΠ°, Π±Π΅ΡΡΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«+Β», Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ β ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«-Β».
ΠΠ°ΠΊΠΎΠ½ Π±Π°Π»Π°Π½ΡΠ° ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ: ΠΠ»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠΌΠΌΠ° ΠΌΠΎΡΠ½ΠΎΡΡΠ΅ΠΉ, Π³Π΅Π½Π΅ΡΠΈΡΡΠ΅ΠΌΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°ΠΌΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΌΠΎΡΠ½ΠΎΡΡΠ΅ΠΉ, ΠΏΠΎΡΡΠ΅Π±Π»ΡΠ΅ΠΌΡΡ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ°ΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ:
Ξ£Π ΠΈΡΡ= Ξ£Π ΠΏΡ (1.5)
ΠΠ°ΠΊΠΎΠ½ Π±Π°Π»Π°Π½ΡΠ° ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠΌ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ.
1.3 ΠΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΡ Π΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ².
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ².
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΎ Π½Π° ΡΠΈΡ.1.1.
Π¦Π΅ΠΏΡ, ΡΠ΅ΡΠ΅Π· Π²ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΡΠΎΠΊ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ.
ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΡΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²:
RΡΠΊΠ²= Ξ£Rk , (1.6)
ΠΈΠ»ΠΈ : RΡΠΊΠ²=R1 + R2 +β¦+ Rk (1.7)
ΠΠ°Π΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° Π»ΡΠ±ΠΎΠΌ ΠΈΠ· k ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π½Π°ΠΉΠ΄Π΅Π½ΠΎ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
Uk=IΞ Rk (1.8)
Π°) Π±)
Π ΠΈΡ.1.1 Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ (Π°)
ΠΈ Π΅Π΅ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Π°Ρ ΡΡ Π΅ΠΌΠ° (Π±)
ΠΡΠΈΠΌΠ΅Π½ΠΈΠ² 2-ΠΉ Π·Π°ΠΊΠΎΠ½ ΠΠΈΡΡ Π³ΠΎΡΠ° ΠΈ Π·Π°ΠΊΠΎΠ½ Π±Π°Π»Π°Π½ΡΠ° ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ Ρ
ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². ΠΠΎΠ»ΠΆΠ½Ρ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ (1.4) ΠΈ (1.5) Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ :
UΠΈΡΡ = Ξ£UΠΊ =U1 + U2 +β¦+Uk (1.9)
ΠΈ
Π ΠΈΡΡ =IΞUΠΈΡΡ= Ξ£Π ΠΏΡ ΠΊ = Π 1+Π 2+β¦+Π k (1.10)
Π·Π΄Π΅ΡΡ Π ΠΏΡ ΠΊ= Ik2ΞRk — ΠΌΠΎΡΠ½ΠΎΡΡΡ, ΠΏΠΎΡΡΠ΅Π±Π»ΡΠ΅ΠΌΠ°Ρ k-ΡΡΠΌ ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠΌ;
Π ΠΈΡΡ β ΠΌΠΎΡΠ½ΠΎΡΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ°.
studfiles.net
Π‘ΠΏΠΎΡΠΎΠ±Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ ΡΠ°ΡΡΠ΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ
ΠΠΎΠΈΡΠΊ ΠΠ΅ΠΊΡΠΈΠΉΠ‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΠΏΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΠΈ ΠΏΠΎ ΡΡ Π΅ΠΌΠ°ΠΌ Β«Π·Π²Π΅Π·Π΄Π°Β», Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ».
Β
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
Π ΠΈΡ. 2.1
Π ΠΈΡ. 2.2
Β
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΠΎ Π²ΡΠ΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΡΠΎΠΊ I (ΡΠΈΡ. 2.1).
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΠΈΡΡ Π³ΠΎΡΠ° (1.5) ΠΎΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠ°Ρ :
ΠΈΠ»ΠΈ ,
ΠΎΡΠΊΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ
(1.6).
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ ΠΎΠ±ΡΠ΅Π΅ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠΎΠ². Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ΅ΠΏΡ Ρ Π»ΡΠ±ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠ΅ΠΏΡΡ Ρ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ (ΡΠΈΡ. 2.2). ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅Ρ ΡΠ΅ΠΏΠΈ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΠ° I Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ° , ΠΈ ΠΏΠΎ Π²ΡΡΠ΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΌ ΡΠΎΡΠΌΡΠ»Π°ΠΌ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ , , Π½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ (ΡΠΈΡ. 2.1).
ΠΠ΅Π΄ΠΎΡΡΠ°ΡΠΎΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΏΡΠΈ Π²ΡΡ ΠΎΠ΄Π΅ ΠΈΠ· ΡΡΡΠΎΡ Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°, ΠΏΡΠ΅ΠΊΡΠ°ΡΠ°Π΅ΡΡΡ ΡΠ°Π±ΠΎΡΠ° Π²ΡΠ΅Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ.
Β
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΡΠ΅ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠ΅ΠΏΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΠΏΠΎΠ΄ ΠΎΠ΄Π½ΠΈΠΌ ΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ (ΡΠΈΡ. 2.3).
Β
Β
Π ΠΈΡ. 2.3
Β
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ΠΈ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΊ Π΄Π²ΡΠΌ ΡΠ·Π»Π°ΠΌ ΡΠ΅ΠΏΠΈ Π° ΠΈ b, ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΠΈΡΡ Π³ΠΎΡΠ° (1.3) ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ, ΡΡΠΎ ΠΎΠ±ΡΠΈΠΉ ΡΠΎΠΊ I Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π΅Π½ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΊΠΎΠ² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²Π΅ΠΉ:
, Ρ.Π΅. ,
ΠΎΡΠΊΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ
(1.7).
Π ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π΄Π²Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΈ , ΠΎΠ½ΠΈ Π·Π°ΠΌΠ΅Π½ΡΡΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ
(1.8).
ΠΠ· ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ (1.6), ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Π°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½Π° Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠ΅ΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π²Π΅ΡΠ²Π΅ΠΉ:
.
ΠΠΎ ΠΌΠ΅ΡΠ΅ ΡΠΎΡΡΠ° ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ΅ΠΏΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, ΠΈ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠΌΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ (ΡΠΈΡ. 2.3)
.
ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ
,Ρ.Π΅. ΡΠΎΠΊ Π² ΡΠ΅ΠΏΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ Π²Π΅ΡΠ²ΡΠΌΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ.
ΠΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π² Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅. ΠΡΠΈΡΠ΅ΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ Π½Π΅ ΠΎΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π½Π° ΡΠ°Π±ΠΎΡΠ΅ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ . ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ° ΡΡ Π΅ΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΡ Π΅ΠΌΠΎΠΉ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΠΊ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ.
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ ΡΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²
Π‘ΠΌΠ΅ΡΠ°Π½Π½ΡΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π² ΡΠ΅ΠΏΠΈ ΠΈΠΌΠ΅ΡΡΡΡ Π³ΡΡΠΏΠΏΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ.
Β
Β
Π ΠΈΡ. 2.4
Β
ΠΠ»Ρ ΡΠ΅ΠΏΠΈ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΡΠΈΡ. 2.4, ΡΠ°ΡΡΠ΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ Ρ ΠΊΠΎΠ½ΡΠ° ΡΡ Π΅ΠΌΡ. ΠΠ»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΏΡΠΈΠΌΠ΅ΠΌ, ΡΡΠΎ Π²ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ: . Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΈ , R5 Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΡΠΎΠ³Π΄Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ:
.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡ Π΅ΠΌΡ (ΡΠΈΡ. 2.4) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ (ΡΠΈΡ. 2.5):
Β
Β
Π ΠΈΡ. 2.5
Β
ΠΠ° ΡΡ Π΅ΠΌΠ΅ (ΡΠΈΡ. 2.5) ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΈ ΡΠΎΠ³Π΄Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ:
.
Π’ΠΎΠ³Π΄Π° ΡΡ Π΅ΠΌΡ (ΡΠΈΡ. 2.5) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠΌ Π²Π°ΡΠΈΠ°Π½ΡΠ΅ (ΡΠΈΡ. 2.6):
Β
Π ΠΈΡ. 2.6
ΠΠ° ΡΡ Π΅ΠΌΠ΅ (ΡΠΈΡ. 2.6) ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΡΠΎΠ³Π΄Π° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ:
.
Π‘Ρ Π΅ΠΌΡ (ΡΠΈΡ. 2.6) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΠΏΡΠΎΡΠ΅Π½Π½ΠΎΠΌ Π²Π°ΡΠΈΠ°Π½ΡΠ΅ (ΡΠΈΡ. 2.7), Π³Π΄Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΈ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ.
Π’ΠΎΠ³Π΄Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΡ Π΅ΠΌΡ (ΡΠΈΡ. 2.4) Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ:
Π ΠΈΡ. 2.7
Β
Π ΠΈΡ. 2.8
Β
Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΡΡ ΠΎΠ΄Π½Π°Ρ ΡΡ Π΅ΠΌΠ° (ΡΠΈΡ. 2.4) ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π² Π²ΠΈΠ΄Π΅ ΡΡ Π΅ΠΌΡ (ΡΠΈΡ. 2.8) Ρ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ . Π Π°ΡΡΠ΅Ρ ΡΠΎΠΊΠΎΠ² ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΡ Π΅ΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Π°ΠΌ ΠΠΌΠ° ΠΈ ΠΠΈΡΡ Π³ΠΎΡΠ°.
Β
Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΏΠΎ ΡΡ Π΅ΠΌΠ°ΠΌ Β«Π·Π²Π΅Π·Π΄Π°Β» ΠΈ Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ»
Π ΡΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅ΠΏΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΏΠΎ ΠΌΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ (ΡΠΈΡ. 2.9). Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ , , , Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π² ΠΏΠ»Π΅ΡΠΈ ΠΌΠΎΡΡΠ°, Π² Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ 1β4 Π²ΠΊΠ»ΡΡΠ΅Π½ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ ΠΏΠΈΡΠ°Π½ΠΈΡ Ρ ΠΠΠ‘ Π, Π΄ΡΡΠ³Π°Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ 3β4 Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΡ ΠΌΠΎΡΡΠ°.
Π ΠΈΡ. 2.9
Β
Π ΠΈΡ. 2.10
Β
Π ΠΌΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ , , ΠΈ , , ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΏΠΎ ΡΡ Π΅ΠΌΠ΅ Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ». ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ ΡΡ Π΅ΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ Π·Π°ΠΌΠ΅Π½Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ², Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π·Π²Π΅Π·Π΄ΠΎΠΉ (ΡΠΈΡ. 2.10). Π’Π°ΠΊΠ°Ρ Π·Π°ΠΌΠ΅Π½Π° Π±ΡΠ΄Π΅Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠΉ, Π΅ΡΠ»ΠΈ ΠΎΠ½Π° Π½Π΅ Π²ΡΠ·ΠΎΠ²Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² Π²ΡΠ΅Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π·Π²Π΅Π·Π΄Ρ Π΄ΠΎΠ»ΠΆΠ½Ρ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌ:
, , (1.9)
ΠΠ»Ρ Π·Π°ΠΌΠ΅Π½Ρ ΡΡ Π΅ΠΌΡ Β«Π·Π²Π΅Π·Π΄Π°Β» ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠΌ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°:
, , (1.10)
ΠΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ (ΡΠΈΡ. 2.10) ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΌΠΎΡΡΠΎΠ²ΠΎΠΉ ΡΡ Π΅ΠΌΡ (ΡΠΈΡ. 2.9)
.
Β
Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌΡΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ:
ΠΠΎΠΈΡΠΊ ΠΏΠΎ ΡΠ°ΠΉΡΡ
poisk-ru.ru