Формулы интегрирование – .

Содержание

Основные формулы и методы интегрирования

Ниже перечислены четыре основных метода интегрирования.

1)   Правило интегрирования суммы или разности.
.
Здесь и далее u, v, w – функции от переменной интегрирования x.

2)   Вынесение постоянной за знак интеграла.
Пусть c – постоянная, не зависящая от x. Тогда ее можно вынести за знак интеграла.

См. подробнее: Вычисление интегралов от многочленов >>>

3)   Метод замены переменной.
Рассмотрим неопределенный интеграл   .
Если удастся подобрать такую функцию φ(x) от x, так что
,
то, выполнив замену переменной t = φ(x), имеем
.

См. подробнее: Интегрирование методом замены переменной >>>

4)   Формула интегрирования по частям.
,
где u и v – это функции от переменной интегрирования.

См. подробнее: Метод интегрирования неопределенного интеграла по частям >>>

Конечная цель вычисления неопределенных интегралов – это, путем преобразований, привести заданный интеграл к простейшим интегралам, которые называются табличными. Табличные интегралы выражаются через элементарные функции по известным формулам.
См. Таблица интегралов >>>

Пример

Вычислить неопределенный интеграл

Решение

Замечаем, что подынтегральная функция является суммой и разностью трех членов:
,     и   .
Применяем метод 1.

Далее замечаем, что подынтегральные функции новых интегралов умножены на постоянные 5, 4, и 2, соответственно. Применяем метод 2.

В таблице интегралов находим формулу
.
Полагая n = 2, находим первый интеграл.

Перепишем второй интеграл в виде
.
Замечаем, что   . Тогда

Применяем третий метод. Делаем замену переменной   t = φ(x) = ln x.
.
В таблице интегралов находим формулу

Поскольку переменная интегрирования может обозначаться любой буквой, то

Перепишем третий интеграл в виде
.
Применяем формулу интегрирования по частям.
Положим   .
Тогда
;
;

;
;
.

Окончательно имеем
.
Соберем члены с   x3.
.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов.     Опубликовано:

1cov-edu.ru

Формулы и уравнения неопределенных интегралов

Функция F(x) называется первообразной для функции f(x) на интервале (a, b), если F(x) дифференцируема на (a, b) и F'(x)=f(x).
Совокупность всех первообразных для функции f(x) на интервале (a, b) называется неопределенным интегралом от функции f(x) и обозначается ∫f(x)dx.

    Свойства неопределенного интеграла
  • где C – постоянная;
  • .
Таблица неопределенных интегралов
, α ≠ −1
, α > 0, a ≠ 1

Замена переменной в неопределенном интеграле (подстановка, подведение под знак дифференциала)
Если то

Формула интегрирования по частям:

    Основные типы интегралов, вычисляемые с помощью интегрирования по частям
    Интегрирование рациональных дробей
  • Разложение рациональной дроби на простейшие:




  • Тип дроби 1.
    Простейшая дробь:
  • Тип дроби 2.
    Простейшая дробь:
  • Тип дроби 3.
    Простейшая дробь: < 0.
  • Тип дроби 4.
    Простейшая дробь: < 0, kN.

matematika.electrichelp.ru

Метод интегрирования по частям

Формула интегрирования по частям

Формула интегрирования по частям имеет вид:
.

Метод интегрирования по частям состоит в применении этой формулы. При практическом применении стоит отметить, что u и v являются функциями от переменной интегрирования. Пусть переменная интегрирования обозначена как x (символ после знака дифференциала d в конце записи интеграла) . Тогда u и v являются функциями от x: u(x) и v(x).
Тогда
,     .
И формула интегрирования по частям принимает вид:
.

То есть подынтегральная функция должна состоять из произведения двух функций:
,
одну из которых обозначаем как u:   g(x) = u, а у другой должен вычисляться интеграл (точнее находиться первообразная):
, тогда dv = f(x) dx.

В некоторых случаях f(x) = 1. То есть в интеграле
,
можно положить g(x) = u, x = v.

Резюме

Итак, в данном методе, формулу интегрирования по частям стоит запомнить и применять в двух видах:
;
.

Интегралы, вычисляющиеся интегрированием по частям

Интегралы, содержащие логарифм и обратные тригонометрические (гиперболические) функции

По частям часто интегрируются интегралы, содержащие логарифм и обратные тригонометрические или гиперболические функции. При этом ту часть, которая содержит логарифм или обратные тригонометрические (гиперболические) функции обозначают через u, оставшуюся часть – через dv.

Вот примеры таких интегралов, которые вычисляются методом интегрирования по частям:
,   ,   ,   ,   ,   ,   .
Подробное решение этих интегралов >>>

Интегралы, содержащие произведение многочлена и sin x, cos x или ex

По формуле интегрирования частям находятся интегралы вида:
,   ,   ,
где P(x) – многочлен от x. При интегрировании, многочлен P(x) обозначают через u, а eax dx, cos ax dx или sin ax dx – через dv.

Вот примеры таких интегралов:
,   ,   .
Подробное решение этих интегралов >>>

Примеры вычисления интегралов методом интегрирования по частям

Примеры интегралов, содержащих логарифм и обратные тригонометрические функции

Пример

Вычислить интеграл:

Подробное решение

Здесь подынтегральное выражение содержит логарифм. Делаем подстановки
u = ln x,
dv = x2 dx.
Тогда
,
.

.

Вычисляем оставшийся интеграл:
.
Тогда
.
В конце вычислений нужно обязательно добавить постоянную C, поскольку неопределенный интеграл – это множество всех первообразных. Также ее можно было добавлять и в промежуточных вычислениях, но это лишь загромождало бы выкладки.

Более короткое решение

Можно представить решение и в более коротком варианте. Для этого не нужно делать подстановки с u и v, а можно сгруппировать сомножители и применить формулу интегрирования по частям во втором виде.

.
Ответ

Еще примеры решений подобных интегралов >>>

Примеры интегралов, содержащих произведение многочлена и sin x, cos x или ex

Пример

Вычислить интеграл:
.

Решение

Введем экспоненту под знак дифференциала:
e – x dx = – e – x d(–x) = – d(e – x).

Интегрируем по частям.
.
Также применяем метод интегрирования по частям.
.
.
.
Окончательно имеем:
.

Ответ

.

Еще примеры решений подобных интегралов >>>

Автор: Олег Одинцов.     Опубликовано:

1cov-edu.ru

Формулы интеграла

Неопределенный интеграл есть множество всех первообразных, то есть

   

где – некоторая константа.

Найти неопределенный интеграл – это значит найти определенную функцию пользуясь некоторыми правилами, приемами и таблицей интегралов. Ниже подробно разобраны все правила интегрирования и формулы интеграла.

Таблица интегралов

Правила интегрирования

   

   

   

   

   

Если

   

то

   

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Первообразная и интеграл | Формулы с примерами

Формула
Первообразная формула

Основное свойство первообразной

Неопределенный интеграл, формула

Простейшие правила интегрирования, формулы

Таблица интегралов, формулы

Определенный интеграл функции, формула

Формула Ньютона Лейбница

Свойства определенного интеграла, формулы

Площадь фигуры, ограниченной линиями, формула

Объем тела, площадь поперечного сечения которого задается функцией S (x), формула

Объем тела, образованного вращением вокруг оси OX криволинейной трапеции, ограниченной линиями

Работа переменной силы F (x) при прямолинейном перемещении материальной точки вдоль оси OX из точки a в точку b, формула

formula-xyz.ru

Формулы интегрирования функций

Множество всех первообразных некоторой функции называется неопределенным интегралом этой функции и обозначается

   

где – произвольная постоянная. Ниже описаны основные свойства и формулы интегрирования функций:

Свойства неопределенного интеграла

Константу можно выносить за знак интеграла:

   

Интеграл суммы/разности двух функций равен сумме/разности интегралов от каждой из них:

   

Производная от неопределенного интеграла равна подынтегральной функции:

   

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Интегрирование по частям: объяснение, решение примеров

Следующая формула называется формулой интегрирования по частям в неопределённом интеграле:

Для применения формулы интегрирования по частям подынтегральное выражение нужно разбить на два множителя. Один из них обозначается через u, а остальная часть относится ко второму множителю и обозначается через dv. Затем дифференцированием находится du и интегрированием — функция v. При этом за u следует брать такую часть подынтегральной функции, которая при дифференцировании сильно не усложняется, а за dv — такую часть подынтегрального выражения, которая легко интегрируется.

Когда выгодно применять метод интегрирования по частям? Тогда, когда подынтегральная функция содержит:

1) — логарифмические функции, а также обратные тригонометрические функции (с приставкой «arc»), тогда на основании продолжительного опыта интегрирования по частям эти функции обозначаются через u;

2) , , — синус, косинус и экспоненту, умноженные на P(x) — произвольный многочлен от икса, тогда эти функции обозначают через dv, а многочлен — через u;

3) , , , , в этом случае интегрирование по частям применяется дважды.

Поясним ценность метода интегрирования по частям на примере первого случая. Пусть выражение под знаком интеграла содержит логарифмическую функцию (таким будет пример 1). Применением интегрирования по частям такой интеграл сводится вычислению интеграла только алгебраических функций (чаще всего многочлена), то есть не содержащих логарифмическую или обратную тригонометрическую функцию. Применяя данную в самом начале урока формулу интегрирования по частям

,

получаем в первом слагаемом (без интеграла) логарифмическую функцию, а во втором слагаемом (под знаком интеграла) — функцию, не содержащую логарифма. Интеграл алгебраической функции намного проще интеграла, под знаком которого находятся отдельно или вместе с алгебраическим множителем логарифмическая или обратная тригонометрическая функция.

Таким образом, с помощью формулы интегрирования по частям интегрирование не выполняется сразу: нахождение данного интеграла сводится к нахождению другого. Смысл формулы интегрирования по частям состоит в том, чтобы в результате её применения новый интеграл оказался табличным или хотя бы стал проще первоначального.

Метод интегрирования по частям основан на использовании формулы дифференцирования произведения двух функций:

Так как

то её можно записать в виде

,

который и был приведён в самом начале урока.

При нахождении интегрированием функции v для неё получается бесконечное множество первообразных функций. Чтобы применить формулу интегрирования по частям, можно взять любую из них, а значит, и ту, которая соответствует произвольной постоянной С, равной нулю. Поэтому при нахождении функции v произвольную постоянную С вводить не следует.

Есть у метода интегрирования по частям совершенно особенное применение: с его помощью можно выводить рекуррентные формулы для нахождения первообразных функций, когда требуется понизить степень функций под знаком интеграла. Понижение степени необходимо, когда не существует табличных интегралов для таких, например, функций, как синусы и косинусы в степени более второй и их произведения. Рекуррентная формула — это формула для нахождения очередного члена последовательности через предыдущий член. Для обозначенных случаев цель достигается последовательным понижением степени. Так, если подынтегральная функция — синус в четвёртой степени от икса, то методом интегрирования по частям можно найти формулу для интеграла синуса в третьей степени и так далее. Описанной задаче посвящен последний параграф этого урока.

Пример 1. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. В подынтегральном выражении — логарифм, который, как мы уже знаем, разумно обозначить через

u. Полагаем, что , .

Тогда , .

Находим (как уже говорилось в пояснении к теоретической справке, сразу же получаем в первом слагаемом (без интеграла) логарифмическую функцию, а во втором слагаемом (под знаком интеграла) — функцию, не содержащую логарифма):

И снова логарифм…

Пример 2.  Найти неопределённый интеграл:

.

Решение. Пусть , .

Логарифм присутствует в квадрате. Это значит, что его нужно дифференцировать как сложную функцию. Находим
,
.

Применяя формулу интегрирования по частям, получаем:

Второй интеграл вновь находим по частям и получаем уже упомянутое преимущество (в первом слагаемом (без интеграла) логарифмическую функцию, а во втором слагаемом (под знаком интеграла) — функцию, не содержащую логарифма).

Находим изначальный интеграл:

Пример 3.  Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Арктангенс, как и логарифм, лучше обозначить через u. Итак, пусть , .

Тогда ,
.

Применяя формулу интегрирования по частям, получаем:

Второй интеграл находим методом замены переменной.

Возвращаясь к переменной x, получаем

.

Находим изначальный интеграл:

.

Пример 4. Найти неопределённый интеграл методом интегрирования по частям:


Решение. Экспоненту лучше обозначить через dv. Разбиваем подынтегральное выражение на два множителя. Полагая, что

находим

Пример 6. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Синус, как и экспоненту, удобно обозначить через dv. Пусть , .

Тогда , .

По формуле интегрирования по частям находим:

Пример 10. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Как и во всех подобных случаях, косинус удобно обозначить через dv. Обозначаем , .

Тогда , .

По формуле интегрирования по частям получаем:

Ко второму слагаемому также применяем интегрирование по частям. Обозначаем , .

Тогда , .

Применив эти обозначения, интегрируем упомянутое слагаемое:

Теперь находим требуемый интеграл:

Среди интегралов, которые можно решить методом интегрирования по частям, есть и такие, которые не входят ни в одну из трёх упомянутых в теоретической части групп, относительно которых из практики известно, что лучше обозначать через u, а что через dv. Поэтому в этих случаях нужно пользоваться соображением удобства, также приведённым в параграфе «Суть метода интегрирования по частям»: за u следует брать такую часть подынтегральной функции, которая при дифференцировании сильно не усложняется, а за dv — такую часть подынтегрального выражения, которая легко интегрируется. Последний пример этого урока — решение именно такого интеграла.

Пример 11. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Примем как руководство к действию общее соображение относительно обозначений. Обозначаем , .

Тогда , .

По формуле интегрирования по частям получаем:

Случаев, когда требуется понижения степени подынтегральной функции, мы уже коснулись во вводной части урока. Теперь — практика использования для этой цели метода интегрирования по частям.

Пример 12. Используя интегрирование по частям, вывести рекуррентную формулу для

,

найти I4.

Решение. Для удобства приведём исходный интеграл к такому выражению, в котором присутствовали бы и синус, и косинус. Используя тригонометрические тождества, получаем

Ко второму слагаемому — интегралу — применяем метод интегрирования по частям. Для этого обозначим

Тогда

Находим это второе слагаемое — интеграл:

Теперь находим рекуррентную формулу для исходного интеграла:

С помощью полученной формулы найдём I4:

Начало темы «Интеграл»

Продолжение темы «Интеграл»

Поделиться с друзьями

function-x.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *