Формулы косинуса и синуса двойного угла – Формулы двойного угла в тригонометрии

Содержание

Формулы двойного угла в тригонометрии

Формулы двойного угла дают возможность выразить тригонометрические функции (синус, косинус, тангенс, котангенс) угла ` 2\alpha` через эти самые функции угла `\alpha`.

Содержание статьи:

Перечень всех формул двойного угла

Записанный ниже список — это основные формулы двойного угла, которые наиболее часто используются в тригонометрии. Для косинуса их есть три, они все равносильны и одинаково важны.

`sin \ 2\alpha=` `2 \ sin \ \alpha \ cos \ \alpha`
`cos \ 2\alpha=cos^2 \alpha-sin^2 \alpha`, ` cos \ 2\alpha=1-2 \ sin^2 \alpha`, `cos \ 2\alpha=2 \ cos^2 \alpha-1`
`tg \ 2\alpha=\frac{2 \ tg \ \alpha}{1-tg^2 \alpha}`
`ctg \ 2\alpha=\frac{ctg^2 \alpha-1}{2 \ ctg \ \alpha}`

Следующие тождества выражают все тригонометрические функции угла ` 2\alpha` через функции тангенс и котангенс угла `\alpha`.

`sin \ 2\alpha=` `\frac {2 \ tg \ \alpha}{1+tg^2 \alpha}=\frac {2 \ ctg \ \alpha}{1+ctg^2 \alpha}=` `\frac 2{tg \ \alpha+ctg \ \alpha}`
`cos \ 2\alpha=` `\frac{1-tg^2\alpha}{1+tg^2\alpha}=\frac{ctg^2\alpha-1}{ctg^2\alpha+1}=` `\frac{ctg \ \alpha-tg \ \alpha}{ctg \ \alpha+tg \ \alpha}`
`tg \ 2\alpha=` `\frac{2 \ ctg \ \alpha}{ctg^2 \alpha-1}=` `\frac 2{ \ ctg \ \alpha-tg \ \alpha}`
`ctg \ 2\alpha=\frac { \ ctg \ \alpha-tg \ \alpha}2`

Формулы для косинуса и синуса двойного угла выполняются для любого угла `\alpha`. Формулы для тангенса двойного угла справедливы для тех `\alpha`, при которых определен `tg \ 2\alpha`, то  есть при ` \alpha\ne\frac\pi4+\frac\pi2 n, \ n \in Z`. Аналогично, для котангенса они имеют место для тех `\alpha`, при которых определен `ctg \ 2\alpha`, то  есть при ` \alpha\ne\frac\pi2 n, \ n \in Z`.

Доказательство формул двойного угла

Все формулы двойного угла выводятся из формул сумы и разности углов тригонометрических функций.

Возьмем две формулы, для сумы углов синуса и косинуса:

`sin(\alpha+\beta)=` `sin \ \alpha\ cos \ \beta+cos \ \alpha\ sin \ \beta` и `cos(\alpha+\beta)=` `cos \ \alpha\ cos \ \beta-sin \ \alpha\ sin \ \beta`. Возьмем `\beta=\alpha`, тогда `sin(\alpha+\alpha)=` `sin \ \alpha\ cos \ \alpha+cos \ \alpha\ sin \ \alpha=2 \ sin \ \alpha \ cos \ \alpha`, аналогично `cos(\alpha+\alpha)=` `cos \ \alpha\ cos \ \alpha-sin \ \alpha\ sin \ \alpha=cos^2 \alpha-sin^2 \alpha`, что и доказывает формулы двойного угла для синуса и косинуса.

Два другие равенства для косинуса ` cos \ 2\alpha=1-2 \ sin^2 \alpha` и `cos \ 2\alpha=2 \ cos^2 \alpha-1` сводятся к уже доказанному, если в них заменить 1 на `sin^2 \alpha+cos^2 \alpha=1`.  Так `1-2 \ sin^2 \alpha=` `sin^2 \alpha+cos^2 \alpha-2 \ sin^2 \alpha=` `cos^2 \alpha-sin^2 \alpha` и `2 \ cos^2 \alpha-1=` `2 \ cos^2 \alpha-(sin^2 \alpha+cos^2 \alpha)=` `cos^2 \alpha-sin^2 \alpha`.

Чтобы доказать формулы тангенса двойного угла и котангенса, воспользуемся определением этих функций. Запишем `tg \ 2\alpha` и `ctg \ 2\alpha` в виде `tg \ 2\alpha=\frac {sin \ 2\alpha}{cos \ 2\alpha}` и `ctg \ 2\alpha=\frac {cos \ 2\alpha}{sin \ 2\alpha}`. Применив уже доказанные формулы двойного угла для синуса и косинуса, получим `tg \ 2\alpha=\frac {sin \ 2\alpha}{cos \ 2\alpha}=\frac {2 \ sin \ \alpha \ cos \ \alpha}{cos^2 \alpha-sin^2 \alpha}` и `ctg \ 2\alpha=\frac {cos \ 2\alpha}{sin \ 2\alpha}=` `\frac {cos^2 \alpha-sin^2 \alpha}{2 \ sin \ \alpha \ cos \ \alpha}`.

В случае с тангенсом разделим числитель и знаменатель конечной дроби на `cos^2 \alpha`, для котангенса в свою очередь — на `sin^2 \alpha`.

`tg \ 2\alpha=\frac {sin \ 2\alpha}{cos \ 2\alpha}=\frac {2 \ sin \ \alpha \ cos \ \alpha}{cos^2 \alpha-sin^2 \alpha}=` `\frac {\frac{2 \ sin \ \alpha \ cos \ \alpha}{cos^2 \alpha}}{\frac{cos^2 \alpha-sin^2 \alpha}{cos^2 \alpha}}=` `\frac {2 \cdot \frac{ sin \alpha }{cos \alpha}}{1-\frac{sin^2 \alpha}{cos^2 \alpha}}=\frac{2 \ tg \ \alpha}{1-tg^2 \alpha}`.

`ctg \ 2\alpha=\frac {cos \ 2\alpha}{sin \ 2\alpha}=` `\frac {cos^2 \alpha-sin^2 \alpha}{2 \ sin \ \alpha \ cos \ \alpha}=` `\frac {\frac{cos^2 \alpha-sin^2 \alpha}{sin^2 \alpha}}{\frac{2 \ sin \ \alpha \ cos \ \alpha}{sin^2 \alpha}}=` `\frac {\frac{cos^2 \alpha}{sin^2 \alpha}-1}{2 \cdot \frac{cos \alpha}{ sin \alpha }}=\frac{ctg^2 \alpha-1}{2 \ ctg \ \alpha}`.

Предлагаем еще посмотреть видео, чтобы лучше закрепить теоретический материал:

Примеры использования формул при решении задач

Формулы двойного угла в большинстве случаев используются для преобразование тригонометрических выражений. Рассмотрим некоторые из случаем, как можно на практике применять их при решений конкретных задач.

Пример 1. Проверить справедливость тождеств двойного угла для `\alpha=30^\circ`.

Решение. В наших формулах используется два угла `\alpha` и `2\alpha`. Значение первого угла задано в условии, второго соответственно будет `2\alpha=60^\circ`. Также нам известны числовые значения для всех тригонометрических функций этих углов. Запишем их:

`sin 30^\circ=\frac 1 2`,  `cos 30^\circ=\frac {\sqrt 3}2`, `tg  30^\circ=\frac {\sqrt 3}3`, `ctg  30^\circ=\sqrt 3` и

`sin 60^\circ=\frac {\sqrt 3}2`,  `cos 60^\circ=\frac 1 2`, `tg  60^\circ=\sqrt 3`, `ctg  60^\circ=\frac {\sqrt 3}3`.

Тогда будем иметь

`sin 60^\circ=2  sin 30^\circ cos 30^\circ=` `2 \cdot \frac 1 2 \cdot \frac {\sqrt 3}2=\frac {\sqrt 3}2`,

`cos 60^\circ=cos^2 30^\circ-sin^2 30^\circ=` `(\frac {\sqrt 3}2)^2 \cdot (\frac 1 2)^2=\frac 1 2`,

`tg 60^\circ=\frac{2  tg 30^\circ}{1-tg^2 30^\circ}=` `\frac{2  \cdot \frac {\sqrt 3}3}{1-(\frac {\sqrt 3}3)^2}=\sqrt 3`,

`ctg  60^\circ=\frac{ctg^2 30^\circ-1}{2 \ ctg 30^\circ}=` `\frac{(\sqrt 3)^2-1}{2 \cdot \sqrt 3}=\frac {\sqrt 3}3`.

Что и доказывает справедливость равенств для заданного в условии угла.

Пример 2. Выразить `sin \frac {2\alpha}3` через тригонометрические функции угла `\frac {\alpha}6`.

Решение. Запишем угол синуса следующим образом ` \frac {2\alpha}3=4 \cdot \frac {\alpha}6`.  Тогда, применив два раза формулы двойного угла, мы сможем решить нашу задачу.

Вначале воспользуемся равенством синуса двойного угла: ` sin\frac {2\alpha}3=2 \cdot sin\frac {\alpha}3 \cdot cos\frac {\alpha}3 `, теперь снова применим наши формулы для синуса и косинуса соответственно. В результате получим:

` sin\frac {2\alpha}3=2 \cdot sin\frac {\alpha}3 \cdot cos\frac {\alpha}3=` `2 \cdot (2 \cdot sin\frac {\alpha}6 \cdot cos\frac {\alpha}6) \cdot (cos^2\frac {\alpha}6-sin^2\frac {\alpha}6)=` `4 \cdot sin\frac {\alpha}6 \cdot cos^3 \frac {\alpha}6-4 \cdot sin^3\frac {\alpha}6 \cdot cos \frac {\alpha}6`.

Ответ. ` sin\frac {2\alpha}3=` `4 \cdot sin\frac {\alpha}6 \cdot cos^3 \frac {\alpha}6-4 \cdot sin^3\frac {\alpha}6 \cdot cos \frac {\alpha}6`.

Формулы тройного угла

Эти формулы, аналогично к предыдущим, дают возможность выразить функции угла ` 3\alpha` через эти самые функции угла `\alpha`.

`sin \ 3\alpha=3 \ sin \ \alpha-4sin^3 \alpha`
`cos \ 3\alpha=4cos^3 \alpha-3 \ cos \ \alpha`
`tg \ 3\alpha=\frac{3 \ tg \ \alpha-tg^3 \alpha}{1-3 \ tg^2 \alpha}`
`ctg \ 3\alpha=\frac{ctg^3 \alpha-3 \ ctg \ \alpha}{3 \ ctg^2 \alpha-1}`

Доказать их можно, используя равенства сумы и разности углов, а также хорошо известные нам формулы двойного угла.

`sin \ 3\alpha= sin (2\alpha+ \alpha)=` `sin 2\alpha cos \alpha+cos 2\alpha sin \alpha=` `2 sin \alpha cos \alpha cos \alpha+(cos^2 \alpha-sin^2 \alpha) sin \alpha=` `3 sin \alpha cos^2 \alpha-sin^3 \alpha`.

Заменим в полученной формуле `sin \ 3\alpha=3 sin \alpha cos^2 \alpha-sin^3 \alpha` `cos^2\alpha` на `1-sin^2\alpha` и получим `sin \ 3\alpha=3 \ sin \ \alpha-4sin^3 \alpha`.

Также и для косинуса тройного угла:

`cos \ 3\alpha= cos (2\alpha+ \alpha)=` `cos 2\alpha cos \alpha-sin 2\alpha sin \alpha=` `(cos^2 \alpha-sin^2 \alpha) cos \alpha-2 sin \alpha cos \alpha sin \alpha+=` `cos^3 \alpha-3 sin^2 \alpha cos \alpha`.

Заменив в конечном равенстве `cos \ 3\alpha=cos^3 \alpha-3 sin^2 \alpha cos \alpha` `sin^2\alpha` на `1-cos^2\alpha`, получим `cos \ 3\alpha=4cos^3 \alpha-3 \ cos \ \alpha`.

С помощью доказанных тождеств для синуса и косинуса можно доказать для тангенса и котангенса:

`tg \ 3\alpha=\frac {sin \ 3\alpha}{cos \ 3\alpha}=` `\frac {3 sin \alpha cos^2 \alpha-sin^3 \alpha}{cos^3 \alpha-3 sin^2 \alpha cos \alpha}=` `\frac {\frac{3 sin \alpha cos^2 \alpha-sin^3 \alpha}{cos^3 \alpha}}{\frac{cos^3 \alpha-3 sin^2 \alpha cos \alpha}{cos^3 \alpha}}=` `\frac {3 \cdot \frac{ sin \alpha }{cos \alpha}-\frac{ sin^3 \alpha }{cos^3 \alpha}}{1-3\frac{sin^2 \alpha}{cos^2 \alpha}}=` `\frac{3 \ tg \ \alpha-tg^3 \alpha}{1-3tg^2 \alpha}`;

`ctg \ 3\alpha=\frac {cos \ 3\alpha}{sin \ 3\alpha}=` `\frac {cos^3 \alpha-3 sin^2 \alpha cos \alpha}{3 sin \alpha cos^2 \alpha-sin^3 \alpha}=` `\frac {\frac{cos^3 \alpha-3 sin^2 \alpha cos \alpha}{sin^3 \alpha}}{\frac{3 sin \alpha cos^2 \alpha-sin^3 \alpha}{sin^3 \alpha}}=` `\frac {\frac{ cos^3 \alpha }{sin^3 \alpha}-3 \cdot \frac{cos \alpha}{ sin \alpha }}{3\frac{cos^2 \alpha}{sin^2 \alpha}-1}=` `ctg \ 3\alpha=\frac{ctg^3 \alpha-3 \ ctg \ \alpha}{3 \ ctg^2 \alpha-1}`.

Для доказательства формул угла ` 4\alpha` можно представить его как ` 2 \cdot 2\alpha` и примерить два раза формулы двойного угла.

Для вывода аналогичных равенств для угла ` 5\alpha` можно записать его, как ` 3\alpha + 2\alpha` и применить тождества суммы и разности углов и двойного и тройного угла.

Аналогично выводятся все формулы для других кратных углов, то нужны они на практике крайне редко.

Материалы по теме:

Поделиться с друзьями:

Загрузка…

matemonline.com

Косинус двойного угла

В тригонометрии многие формулы легче вывести, чем вызубрить. Косинус двойного угла — замечательная формула! Она позволяет получить формулы понижения степени и формулы половинного угла.

Итак, нам нужны косинус двойного угла и тригонометрическая единица:

   

   

Они даже похожи: в формуле косинуса двойного угла — разность квадратов косинуса и синуса, а в тригонометрической единице — их сумма. Если из тригонометрической единицы выразить косинус:

   

и подставить его в косинус двойного угла, то получим:

   

Это — еще одна формула косинуса двойного угла:

   

Эта формула — ключ к получению формулы понижения степени:

   

Итак, формула понижения степени синуса:

   

Если в ней угол альфа заменить на половинный угол альфа пополам, а двойной угол два альфа — на угол альфа, то получим формулу половинного угла для синуса:

   

Теперь из тригонометрической единицы выразим синус:

   

Подставим это выражение в формулу косинуса двойного угла:

   

   

Получили еще одну формулу косинуса двойного угла:  

   

Эта формула — ключ к нахождению формулы понижения степени косинуса и половинного угла для косинуса.

   

Таким образом, формула понижения степени косинуса:

   

Если в ней заменить α на α/2, а 2α — на α, то получим формулу половинного аргумента для косинуса:

   

Так как тангенс — отношение синуса к косинусу то формула  для тангенса:

   

Котангенс — отношение косинуса к синусу. Поэтому формула для котангенса:

   

Конечно, в процессе упрощения тригонометрических выражений формулы половинного угла или понижения степени нет смысла каждый раз выводить. Гораздо проще перед собой положить листик с формулами. И упрощение продвинется быстрее, и зрительная память включится на запоминание.

Но несколько раз вывести эти формулы все же стоит. Тогда вы будете абсолютно уверены в том, что на экзамене, когда нет возможности воспользоваться шпаргалкой, вы без труда их получите, если возникнет необходимость.

www.uznateshe.ru

Косинус двойного угла

Косинус двойного угла cos2α=cos2α−sin2α

В тригонометрии многие формулы легче вывести, чем вызубрить. Косинус двойного угла — замечательная формула! Она позволяет получить формулы понижения степени и формулы половинного угла.

Итак, нам нужны косинус двойного угла и тригонометрическая единица:

    \[\cos 2\alpha = {\cos ^2}\alpha — {\sin ^2}\alpha \]

    \[{\cos ^2}\alpha + {\sin ^2}\alpha = 1\]

Они даже похожи: в формуле косинуса двойного угла — разность квадратов косинуса и синуса, а в тригонометрической единице — их сумма. Если из тригонометрической единицы выразить косинус:

    \[{\cos ^2}\alpha = 1 — {\sin ^2}\alpha \]

и подставить его в косинус двойного угла, то получим:

    \[\cos 2\alpha = 1 — {\sin ^2}\alpha — {\sin ^2}\alpha = 1 — 2{\sin ^2}\alpha \]

Это — еще одна формула косинуса двойного угла:

    \[\cos 2\alpha = 1 — 2{\sin ^2}\alpha \]

Эта формула — ключ к получению формулы понижения степени:

    \[2{\sin ^2}\alpha = 1 — \cos 2\alpha , \Rightarrow {\sin ^2}\alpha = \dfrac{{1 — \cos 2\alpha }}{2}\]

Итак, формула понижения степени синуса:

    \[{\sin ^2}\alpha = \dfrac{{1 — \cos 2\alpha }}{2}\]

Если в ней угол альфа заменить на половинный угол альфа пополам, а двойной угол два альфа — на угол альфа, то получим формулу половинного угла для синуса:

    \[{\sin ^2}\dfrac{\alpha }{2} = \dfrac{{1 — \cos \alpha }}{2}\]

Теперь из тригонометрической единицы выразим синус:

    \[{\sin ^2}\alpha = 1 — {\cos ^2}\alpha \]

Подставим это выражение в формулу косинуса двойного угла:

    \[\cos 2\alpha = {\cos ^2}\alpha — (1 — {\cos ^2}\alpha ) = {\cos ^2}\alpha — 1 + {\cos ^2}\alpha = \]

    \[ = 2{\cos ^2}\alpha — 1\]

Получили еще одну формулу косинуса двойного угла:  

    \[\cos 2\alpha = 2{\cos ^2}\alpha — 1\]

Эта формула — ключ к нахождению формулы понижения степени косинуса и половинного угла для косинуса.

    \[2{\cos ^2}\alpha = 1 + \cos 2\alpha , \Rightarrow {\cos ^2}\alpha = \dfrac{{1 + \cos 2\alpha }}{2}\]

Таким образом, формула понижения степени косинуса:

    \[{\cos ^2}\alpha = \dfrac{{1 + \cos 2\alpha }}{2}\]

Если в ней заменить α на α/2, а 2α — на α, то получим формулу половинного аргумента для косинуса:

    \[{\cos ^2}\dfrac{\alpha }{2} = \dfrac{{1 + \cos \alpha }}{2}\]

Так как тангенс — отношение синуса к косинусу то формула  для тангенса:

    \[t{g^2}\dfrac{\alpha }{2} = \dfrac{{1 — \cos \alpha }}{{1 + \cos \alpha }}\]

Котангенс — отношение косинуса к синусу. Поэтому формула для котангенса:

    \[ct{g^2}\dfrac{\alpha }{2} = \dfrac{{1 + \cos \alpha }}{{1 — \cos \alpha }}\]

Конечно, в процессе упрощения тригонометрических выражений формулы половинного угла или понижения степени нет смысла каждый раз выводить. Гораздо проще перед собой положить листик с формулами. И упрощение продвинется быстрее, и зрительная память включится на запоминание.

Но несколько раз вывести эти формулы все же стоит. Тогда вы будете абсолютно уверены в том, что на экзамене, когда нет возможности воспользоваться шпаргалкой, вы без труда их получите, если возникнет необходимость.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!