что это такое? Как отмечать точки и строить фигуры на координатной плоскости?
Математика – наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.
Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.
Определение понятия
Координатная плоскость — это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.
В школьном курсе математики школьникам приходится довольно тесно работать с системой координат – строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.
Историческая справка
Идеи о создании системы координат были еще во времена Птоломея. Уже тогда астрономы и математики думали о том, как научиться задавать положение точки на плоскости. К сожалению, в то время еще не было известной нам системы координат, и ученым приходилось пользоваться другими системами.
Изначально они задавали точки с помощью указания широты и долготы. Долгое время это был один из наиболее используемых способов нанесения на карту той или иной информации. Но в 1637 году Рене Декарт создал собственную систему координат, названную впоследствии в честь великого математика «декартовой».
После опубликования труда «Геометрия» система координат Рене Декарта завоевала признание в научных кругах.
Уже в конце XVII в. понятие «координатная плоскость» стало широко использоваться в мире математики. Несмотря на то что с момента создания данной системы прошло уже несколько веков, она до сих пор широко используется в математике и даже в жизни.
Примеры координатной плоскости
Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты – одну координату буквенную, вторую – цифровую. С ее помощью можно определить положение той или иной фигуры на доске.
Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.
Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.
Оси координат
Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.
Первая ось — абсцисс — горизонтальная. Она обозначается как (Ox). Вторая ось — ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0. Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.
Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.
Четверти
Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.
Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината — положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной — ордината.
Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.
Работа с координатной плоскостью
Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.
Далее мы поговорим подробнее о построении системы и непосредственно нанесении точек и фигур.
Правила построения плоскости
Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная — ординат. При этом важно помнить, что оси пересекаются под прямым углом.
Далее на каждой оси указывают направление и подписывают их с помощью общепринятых обозначений x и y. Также отмечается точка пересечения осей и подписывается цифрой 0.
Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.
Отмечаем точку
Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.
При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая — по оси ординат.
Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy. Далее провести воображаемые линии от данных обозначений и найти место их пересечения — это и будет заданная точка.
Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.
Размещаем фигуру
Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.
В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами геометрические фигуры. Рассмотрим нанесение прямоугольника, треугольника и окружности.
Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.
Нанесение треугольника ничем не отличается. Единственное – углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.
Касательно окружности тут следует знать координаты двух точек. Первая точка – центр окружности, вторая – точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.
Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.
Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.
Выводы
Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.
Мы с вами выяснили, что координатная плоскость – это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.
Основной навык, который следует выработать при работе с координатной плоскостью, – умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.
Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.
fb.ru
Координатная плоскость. Видеоурок. Математика 6 Класс
Как известно, на каждом доме указаны его номер и название улицы – это адрес дома. На билете в любой зрительный зал написаны номер ряда и номер места – это адрес кресла. Для определения положения точки на глобусе надо знать долготу и широту – это адрес географической точки (географические координаты). Каждый объект имеет свой упорядоченный адрес (координаты). Таким образом, адрес или координаты – это числовое или буквенное обозначение того места, где находится объект.
Математиками была разработана модель, которая, в частности, позволяет описать любой зрительный зал (расположение мест в зале). Такая модель получила название координатная плоскость.
Чтобы из обычной плоскости получить координатную, необходимо начертить две перпендикулярные прямые, отмечая стрелками направления «вправо» и «вверх» (см. Рис. 1). На прямые наносят деления, как на линейку, причем точка пересечения прямых – это нулевая отметка для обеих шкал. Горизонтальную прямую обозначают и называют
Две перпендикулярные оси и с разметкой называют прямоугольной, или декартовой, системой координат. Название «декартова» происходит от фамилии французского философа и математика Рене Декарта, который ее придумал.
Рис. 1. Координатная плоскость
Для любой точки на координатной плоскости можно указать два числа (координаты). На рисунке 2 показана точка на координатной плоскости. Для получения координат этой точки необходимо через точку провести две прямые, параллельные координатным осям (обозначены пунктирной линией). Пересечение одной из прямых с осью абсцисс – это координата точки , пересечение другой прямой с осью ординат – это координата точки . Сначала указывают координату , потом . Точка имеет координаты . Аналогично находим координаты точки , она имеет координаты (см. Рис. 2).
Рис. 2. Определение координат точек на координатной плоскости
Можно сделать все и в обратном порядке. То есть изобразить точку на плоскости по известным координатам.
Пример
1. Построить точки по заданным координатам ,
Для построения точки необходимо отложить число 2 на оси и провести перпендикулярную прямую; на оси откладываем число 5 и проводим перпендикулярную оси прямую (см. Рис. 3). На пересечении перпендикуляров получим точку с координатами .
Для построения точки необходимо отложить на оси число 3 и провести перпендикулярную оси прямую; на оси откладываем число (–1) и проводим перпендикулярную оси прямую. На пересечении перпендикуляров получим точку с координатами . (см. Рис. 3).
Рис. 3. Построение точек на координатной плоскости по заданным координатам
2. Построить точки по заданным координатам ,
Для построения точки необходимо отложить число 3 на оси . Координата равна нулю, следовательно, точка лежит на оси (см. Рис. 4).
Для построения точки необходимо отложить число 2 на оси . Координата равна нулю, следовательно, точка лежит на оси (см. Рис. 4).
Рис. 4. Построение точек на координатной плоскости по заданным координатам
Таким образом, если нулю равна координата , то точка лежит на оси , а если нулю равна координата , то точка лежит на оси .
1. Выписать координаты точек , , , (см. Рис. 5).
2. Изобразить точки , , , , .
Рис. 5. Иллюстрация к задаче
Решение
1. Для определения координат точки проведем через нее две прямые, параллельные координатным осям. Пересечение одной из прямых с осью абсцисс – это координата , пересечение другой прямой с осью ординат – это координата . Следовательно, точка имеет координаты (см. Рис. 6).
Для определения координат точки проведем через нее две прямые, параллельные координатным осям. Пересечение одной из прямых с осью абсцисс – это координата , пересечение другой прямой с осью ординат – это координата . Следовательно, точка имеет координаты .
Точка находится на оси , поэтому координата равна нулю. Координата этой точки равна (–2). Следовательно, точка имеет координаты .
Точка находится на оси , поэтому координата равна нулю. Координата этой точки равна –5. Следовательно, точка имеет координаты .
Рис. 6. Иллюстрация к задаче
2. Для построения точки откладываем число (–3) на оси и проводим перпендикулярную прямую; на оси откладываем число (–2) и проводим перпендикулярную оси прямую (см. Рис. 7). На пересечении перпендикуляров получим точку с координатами .
Координата точки равна нулю, поэтому эта точка лежит на оси . Отложим на оси число 5 и получим точку с координатами .
Для построения точки откладываем число 3 на оси и проводим перпендикулярную оси прямую; на оси откладываем число 4 и проводим перпендикулярную оси прямую. На пересечении перпендикуляров получим точку с координатами .
Координата точки равна нулю, поэтому эта точка лежит на оси . Отложим на оси число (–4) и получим точку с координатами .
Две координаты точки равны нулю, следовательно, эта точка лежит на оси и на оси , то есть является точкой пересечения двух осей (начало координат).
Рис. 7. Иллюстрация к задаче
Координатные оси разбивают координатную плоскость на четыре части – четверти. Порядковые номера четвертей принято считать против часовой стрелки (см. Рис. 8).
Рис. 8. Нумерация четвертей координатной плоскости
Если точка имеет положительную координату и положительную координату , то она лежит в первой четверти.
Если точка имеет отрицательную координату и положительную координату , то она лежит во второй четверти.
Если точка имеет отрицательную координату и отрицательную координату , то она лежит в третьей четверти.
Если точка имеет положительную координату и отрицательную координату , то она лежит в четвертой четверти.
Например, у точки координата положительная, а координата отрицательная, следовательно, эта точка находится в четвертой четверти.
Другие системы координат
Чтобы присвоить точке числовой «адрес» (координаты), используются и другие системы координат.
Причины использования различных систем координат:
1. Размерность.
На этом уроке мы рассматривали прямоугольную систему координат на плоскости. Размерность такого пространства равна 2, то есть точка задавалась двумя координатами. Однако пространство может иметь другую размерность, например равную единице, когда точка может менять свое положение только в одном направлении (двигаться вперед-назад или вверх-вниз). В качестве примера можно привести движение автомобиля по ровной дороге или движение лифта. Для указания местоположения точки нужна только одна координата. Эта координата будет означать то расстояние, которое проехал автомобиль (см. Рис. 9), или этаж, на котором находится лифт (см. Рис. 10).
Рис. 9. Координата в данном случае – это расстояние, на которое отъехал автомобиль
Рис. 10. Координата в данном случае – этаж, на котором находится лифт
В математике такая система координат представлена числовой или координатной осью. Чтобы из любой прямой получить координатную ось, необходимо отметить на прямой начало отсчета, масштаб и направление отсчета (см. Рис. 11). По одной координате можно однозначно понять, где находится точка.
Рис. 11. Координатная ось
Размерность пространства может быть равной трем (пространство, в котором мы живем, имеет три измерения). Для указания места положения точки в этом случае нужны три координаты. Например, если в высотном здании на каждом этаже находится кинотеатр, то для указания места в билете должны быть указаны три координаты – этаж, ряд, номер кресла. В математике такая система координат строится точно так же, как на п
interneturok.ru
Координатная плоскость. Координаты точки на плоскости
Если построить на плоскости две взаимно перпендикулярные числовые оси: OX и OY, то они будут называться осями координат
. Горизонтальная ось OX называется осью абсцисс (осью x), вертикальная ось OY – осью ординат (осью y).Точка O, стоящая на пересечении осей, называется началом координат. Она является нулевой
точкой для обеих осей. Положительные числа изображаются на оси абсцисс точками вправо, а на оси ординат – точками вверх от нулевой точки. Отрицательные числа изображаются точками влево и вниз от начала координат (точки O). Плоскость, на которой лежат оси координат, называется координатной плоскостью.
Оси координат делят плоскость на четыре части, называемые четвертями или квадрантами. Принято эти четверти нумеровать римскими цифрами в том порядке, в котором они пронумерованы на чертеже.
Координаты точки на плоскости
Если взять на координатной плоскости произвольную точку A и провести от неё перпендикуляры к осям координат, то основания перпендикуляров лягут на два числа. Число, на которое указывает вертикальный перпендикуляр, называется абсциссой точки A. Число, на которое указывает горизонтальный перпендикуляр, – ординатой точки A.
На чертеже абсцисса точки A равна 3, а ордината 5.
Абсцисса и ордината называются координатами данной точки на плоскости.
Координаты точки записываются в скобках справа от обозначения точки. Первой записывается абсцисса, а за ней ордината. Так запись A(3; 5) обозначает, что абсцисса точки A равна трём, а ордината – пяти.
Координаты точки – это числа, определяющие её положение на плоскости.
Если точка лежит на оси абсцисс, то её ордината равна нулю (например, точка B с координатами -2 и 0). Если точка лежит на оси ординат, то её абсцисса равна нулю (например, точка C с координатами 0 и -4).
Начало координат – точка O – имеет и абсциссу и ординату равные нулю: O (0; 0).
Данная система координат называется прямоугольной или декартовой.
naobumium.info
Координаты на плоскости
Основные сведения о координатной плоскости
Каждый объект (например, дом, место в зрительном зале, точка на карте) имеет свой упорядоченный адрес (координаты), который имеет числовое или буквенное обозначение.
Математики разработали модель, которая позволяет определять положение объекта и называется координатной плоскостью.
Чтобы построить координатную плоскость нужно провести $2$ перпендикулярные прямые, на конце которых указываются с помощью стрелок направления «вправо» и «вверх». На прямые наносятся деления, а точка пересечения прямых является нулевой отметкой для обеих шкал.
Определение 1
Горизонтальная прямая называется осью абсцисс и обозначается х, а вертикальная прямая называется осью ординат и обозначается у.
Две перпендикулярные оси х и у с делениями составляют прямоугольную, или декартовую, систему координат, которую предложил французский философ и математик Рене Декарт.
Координатная плоскость
Координаты точки
Точка на координатной плоскости определяется двумя координатами.
Чтобы определить координаты точки $A$ на координатной плоскости нужно через нее провести прямые, которые будут параллельны координатным осям (на рисунке выделены пунктирной линией). Пересечение прямой с осью абсцисс дает координату $x$ точки $A$, а пересечение с осью ординат дает координату у точки $A$. При записи координат точки сначала записывается координата $x$, а затем координата $y$.
Точка $A$ на рисунке имеет координаты $(3; 2)$, а точка $B (–1; 4)$.
Для нанесения точки на координатную плоскость действуют в обратном порядке.
Построение точки по заданным координатам
Пример 1
На координатной плоскости построить точки $A(2;5)$ и $B(3; –1).$
Решение.
Построение точки $A$:
- отложим число $2$ на оси $x$ и проведем перпендикулярную прямую;
- на оси у отложим число $5$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $A$ с координатами $(2; 5)$.
Построение точки $B$:
- отложим на оси $x$ число $3$ и проведем перпендикулярную оси х прямую;
- на оси $y$ отложим число $(–1)$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $B$ с координатами $(3; –1)$.
Пример 2
Построить на координатной плоскости точки с заданными координатами $C (3; 0)$ и $D(0; 2)$.
Решение.
Построение точки $C$:
- отложим число $3$ на оси $x$;
- координата $y$ равна нулю, значит точка $C$ будет лежать на оси $x$.
Построение точки $D$:
- отложим число $2$ на оси $y$;
- координата $x$ равна нулю, значит, точка $D$ будет лежать на оси $y$.
Замечание 1
Следовательно, при координате $x=0$ точка будет лежать на оси $y$, а при координате $y=0$ точка будет лежать на оси $x$.
Пример 3
Определить координаты точек A, B, C, D.$
Решение.
Определим координаты точки $A$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Таким образом, получаем, что точка $A (1; 3).$
Определим координаты точки $B$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Получаем, что точка $B (–2; 4).$
Определим координаты точки $C$. Т.к. она расположена на оси $y$, то координата $x$ этой точки равна нулю. Координата у равна $–2$. Таким образом, точка $C (0; –2)$.
Определим координаты точки $D$. Т.к. она находится на оси $x$, то координата $y$ равна нулю. Координата $x$ этой точки равна $–5$. Таким образом, точка $D (5; 0).$
Пример 4
Построить точки $E(–3; –2), F(5; 0), G(3; 4), H(0; –4), O(0; 0).$
Решение.
Построение точки $E$:
- отложим число $(–3)$ на оси $x$ и проведем перпендикулярную прямую;
- на оси $y$ отложим число $(–2)$ и проведем перпендикулярную прямую к оси $y$;
- на пересечении перпендикулярных прямых получаем точку $E (–3; –2).$
Построение точки $F$:
- координата $y=0$, значит, точка лежит на оси $x$;
- отложим на оси $x$ число $5$ и получим точку $F(5; 0).$
Построение точки $G$:
- отложим число $3$ на оси $x$ и проведем перпендикулярную прямую к оси $x$;
- на оси $y$ отложим число $4$ и проведем перпендикулярную прямую к оси $y$;
- на пересечении перпендикулярных прямых получаем точку $G(3; 4).$
Построение точки $H$:
- координата $x=0$, значит, точка лежит на оси $y$;
- отложим на оси $y$ число $(–4)$ и получим точку $H(0; –4).$
Построение точки $O$:
- обе координаты точки равны нулю, значит, точка лежит одновременно и на оси $y$, и на оси $x$, следовательно является точкой пересечения обеих осей (началом координат).
spravochnick.ru
Координаты точки. Координатная плоскость — урок. Математика, 6 класс.
Во многих ситуациях реальной жизни мы используем два числа (или другие символы), чтобы точно описать нужный нам объект.
Место в зрительном зале задаётся номером ряда и номером кресла в ряду.
На шахматной доске позиция шахматной фигуры задаётся названием столбца и номером ряда.
Любая карта (или глобус) разделена на квадраты, и, подобно шахматной доске, каждый квадрат задаётся двумя номерами.
На экране компьютера каждая точка задаётся двумя номерами.
Система координат
Французский философ и математик Рене Декарт (\(1596\)–\(1650\)) уже в XVII веке предложил метод двух координат для нахождения точки на плоскости. Поэтому система координат названа его именем.
Декартовую систему координат образуют:
1. две перпендикулярные прямые, на которых указано направление возрастания чисел. Горизонтальная прямая называется осью Ox, или осью абсцисс. Вертикальная прямая называется осью Oy, или осью ординат.
2. Точка пересечения прямых — начало координатной системы, она часто обозначается через букву O.
3. Отрезки на каждой оси длиной в одну единицу измерения.
Для любой точки находят две координаты \(x\) и \(y\) (абсциссу и ординату) и записывают как AxA;yA.
На рисунке показаны координаты A2;4, то есть абсцисса точки \(A\) равна \(2\), а ордината точки \(A\) равна \(4\).
Если на плоскости выбрана система координат, то такую плоскость называют координатной плоскостью.
Так как оси координат делят плоскость на \(4\) части, каждая из них имеет номер и называется квадрантом.
В I квадранте находится положительная часть оси абсцисс и оси ординат.
Во II квадранте находится положительная часть оси ординат и отрицательная часть оси абсцисс.
В III квадранте находится отрицательная часть оси абсцисс и оси ординат.
В IV квадранте находится положительная часть оси абсцисс и отрицательная часть оси ординат.
www.yaklass.ru
что это такое? Как отмечать точки и строить фигуры на координатной плоскости?
Математика – наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.
Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.
Определение понятия
Координатная плоскость — это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.
В школьном курсе математики школьникам приходится довольно тесно работать с системой координат – строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.
Историческая справка
Идеи о создании системы координат были еще во времена Птоломея. Уже тогда астрономы и математики думали о том, как научиться задавать положение точки на плоскости. К сожалению, в то время еще не было известной нам системы координат, и ученым приходилось пользоваться другими системами.
Изначально они задавали точки с помощью указания широты и долготы. Долгое время это был один из наиболее используемых способов нанесения на карту той или иной информации. Но в 1637 году Рене Декарт создал собственную систему координат, названную впоследствии в честь великого математика «декартовой».
После опубликования труда «Геометрия» система координат Рене Декарта завоевала признание в научных кругах.
Уже в конце XVII в. понятие «координатная плоскость» стало широко использоваться в мире математики. Несмотря на то что с момента создания данной системы прошло уже несколько веков, она до сих пор широко используется в математике и даже в жизни.
Примеры координатной плоскости
Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты – одну координату буквенную, вторую – цифровую. С ее помощью можно определить положение той или иной фигуры на доске.
Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.
Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.
Оси координат
Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.
Первая ось — абсцисс — горизонтальная. Она обозначается как (Ox). Вторая ось — ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0. Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.
Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.
Четверти
Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.
Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината — положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной — ордината.
Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.
Работа с координатной плоскостью
Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.
В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.
Далее мы поговорим подробнее о построении системы и непосредственно нанесении точек и фигур.
Правила построения плоскости
Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная — ординат. При этом важно помнить, что оси пересекаются под прямым углом.
Далее на каждой оси указывают направление и подписывают их с помощью общепринятых обозначений x и y. Также отмечается точка пересечения осей и подписывается цифрой 0.
Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.
Отмечаем точку
Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.
При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая — по оси ординат.
Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy. Далее провести воображаемые линии от данных обозначений и найти место их пересечения — это и будет заданная точка.
Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.
Размещаем фигуру
Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.
В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами геометрические фигуры. Рассмотрим нанесение прямоугольника, треугольника и окружности.
Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.
Нанесение треугольника ничем не отличается. Единственное – углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.
Касательно окружности тут следует знать координаты двух точек. Первая точка – центр окружности, вторая – точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.
Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.
Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.
Выводы
Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.
Мы с вами выяснили, что координатная плоскость – это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.
Основной навык, который следует выработать при работе с координатной плоскостью, – умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.
Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.
autogear.ru
Координатная плоскость
Координатная плоскость.
Возьмем две координатные прямые на плоскости. Пусть одна будет x, другая – y. И пусть эти прямые будут взаимно перпендикулярны (то есть пересекаются под прямым углом). Причем точка их пересечения будет началом координат для обеих прямых, а единичный отрезок одинаков (рис. 1).
Таким образом, мы получили прямоугольную систему координат, а наша плоскость стала координатной. Прямые x и y называют осями координат. Причем, ось x – осью абсцисс, а ось y – осью ординат. Обозначается подобная плоскость обычно по названию осей и точке отсчета – xOy. Прямоугольную систему координат также называют декартовой системой координат, так как впервые ее начал активно использовать французский математик и философ — Рене Декарт.
Прямоугольные углы, образованные прямыми x и y, называют координатными углами. Каждый угол имеет свой номер как показано на рис. 2.
Итак, когда мы говорили про координатную прямую у всякой точки этой прямой была одна координата. Теперь, когда идет речь о координатной плоскости, то у каждой точки этой плоскости уже будут две координаты. Одна соответствует прямой x (эту координату называют абсциссой), другая соответствует прямой y (эту координату называют ординатой). Записывается это таким образом: M(x;y), где x – абсцисса, а y – ордината. Читается как: «Точка M с координатами x, y».
Как определить координаты точки на плоскости?
Теперь мы знаем, что у каждой точки на плоскости есть две координаты. Для того чтобы узнать ее координаты нам достаточно через эту точку провести две прямые, перпендикулярные осям координат. Точки пересечения этих прямых с координатными осями и будут искомыми координатами. Так, например, на рис. 3 мы определили, что координатами точки M являются 5 и 3.
Как построить точку на плоскости по ее координатам?
Бывает и так, что мы уже знаем координаты точки на плоскости. И нам нужно найти ее расположение. Допустим у нас координаты точки (-2;5). То есть, абцисса равна -2, а ордината равна 5. Возьмем на прямой x (оси абсцисс) точку с координатой -2 и проведем через нее прямую a, параллельную оси y. Заметим, что любая точка на этой прямой будет иметь абсциссу равную -2. Теперь найдем на прямой y (оси ординат) точку с координатой 5 и проведем через нее прямую b, параллельную оси x. Заметим, что любая точка на этой прямой будет иметь ординату равную 5. На пересечении прямых a и b как раз и будет находиться точка с координатами (-2;5). Обозначим ее буквой P (рис. 4).
Добавим также, что прямая a, все точки которой имеют абсциссу -2, задается уравнением
x = -2 или что x = -2 – уравнение прямой a. Можно для удобства говорить не «прямая, которая задается уравнением x = -2», а просто «прямая x = -2». Действительно, для любой точки прямой a справедливо равенство x = -2. А прямая b, все точки которой имеют ординату 5, в свою очередь задается уравнением y = 5 или что y = 5 – уравнение прямой b.
Дата публикации:
Теги: алгебра :: 7 класс :: геометрия :: координатная плоскость
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Методика обучения математике в начальной школе, Зайцева С.А., Румянцева И.Б., Целищева И.И., 2008
- Алгебра и начала математического анализа, книга для учителя, 11 класс, базовый и профил. уровни, Потапов М.К., Шевкин А.В., 2009
- Алгебра и начала математического анализа, книга для учителя, 10 класс, Потапов, Шевкин, 2008
- Линейное уравнение первой степени с двумя переменными
Предыдущие статьи:
nashol.com