Как построить график по уравнению – График линейного уравнения с двумя переменными: алгоритм построения

График линейного уравнения с двумя переменными: алгоритм построения

 

Линейное уравнение с двумя переменными — любое уравнение, которое имеет следующий вид: a*x + b*y =с. Здесь x и y есть две переменные, a,b,c – некоторые числа.

Решением линейного уравнения a*x + b*y = с , называется любая пара чисел (x,y) которая удовлетворяет этому уравнению, то есть обращает уравнение с переменными x и y в верное числовое равенство. Линейное уравнение имеет бесконечное множество решений.

Если каждую пару чисел, которые являются решением линейного уравнения с двумя переменными, изобразить на координатной плоскости в виде точек, то все эти точки образуют график линейного уравнения с двумя переменными. Координатами точками будут служить наши значения x и у. При этом значение х будет являться абсциссой, а значение у – ординатой.

График линейного уравнения с двумя переменными

Графиком линейного уравнения с двумя переменными называется множество всевозможных точек координатной плоскости, координаты которых будут являться решениями этого линейного уравнения. Несложно догадаться, что график будет представлять собой прямую линию. Поэтому такие уравнения и называются линейными.

Алгоритм построения

Алгоритм построения графика линейного уравнения с двумя переменным.

1. Начертить координатные оси, подписать их и отметить единичный масштаб.

2. В линейном уравнении положить х = 0, и решить полученное уравнение относительно у. Отметить полученную точку на графике.

3. В линейном уравнении в качестве у взять число 0, и решить полученное уравнение относительно х. Отметить полученную точку на графике

4. При необходимости взять произвольное значение х, и решить полученное уравнение относительно у. Отметить полученную точку на графике.

5. Соединить полученные точки, продолжить график за них. Подписать получившуюся прямую.

Пример: Построить график уравнения 3*x – 2*y =6;

Положим х=0, тогда – 2*y =6; y= -3;

Положим y=0, тогда 3*x = 6; x=2;

Отмечаем полученные точки на графике, проводим через них прямую и подписываем её. Посмотрите на рисунок ниже, график должен получиться именно таким.

Нужна помощь в учебе?



Предыдущая тема: Линейное уравнение с двумя переменными: решение и свойства
Следующая тема:&nbsp&nbsp&nbspСистемы линейных уравнений с двумя переменными

Все неприличные комментарии будут удаляться.

www.nado5.ru

Графики уравнений. Видеоурок. Алгебра 9 Класс

Тема: Системы уравнений

Урок: Графики уравнений

 

Мы рассматриваем рациональное уравнение вида  и системы рациональных уравнений вида

Мы говорили, что каждое уравнение в этой системе имеет свой график, если конечно имеются решения уравнений. Мы рассмотрели несколько графиков различных уравнений.

Сейчас мы систематически рассмотрим каждое из известных нам уравнений, т.е. выполним обзор по графикам уравнений.

1. Линейное уравнение с двумя переменными  

x, y – в первой степени; a,b,c – конкретные числа.

Пример:

 

Графиком этого уравнения является прямая линия.

Мы действовали равносильными преобразованиями – y оставили на месте, всё остальное перенесли в другую сторону с противоположными знаками. Исходное и полученное уравнения равносильны, т.е. имеют одно и то же множество решений. График этого уравнения мы умеем строить, и методика его построения такова: находим точки пересечения с координатными осями и по ним строим прямую.

  X  

  0  

    

Y

1

0

В данном случае

Зная график уравнения, мы можем многое сказать о решениях исходного уравнения, а именно: если сли

Эта функция возрастает, т.е. с увеличением x увеличивается y. Мы получили два частных решения, а как записать множество всех решений?

Если точка имеет абсциссу x, то ордината этой точки  

Значит, решением исходного уравнения является множество пар чисел

У нас было уравнение, мы построили график, нашли решения. Множество всех пар – сколько их? Бесчисленное множество.

2.  

Это рациональное уравнение,

Найдем y, равносильными преобразованиями получаем  

Положим  и получаем квадратичную функцию, ее график нам известен.

Пример:  Построить график рационального уравнения.

 

 

Графиком является парабола, ветви направлены вверх.

Найдем корни уравнения: 

Схематически изобразим график (Рис. 2).

С помощью графика мы получаем всевозможные сведения и о функции, и о решениях рационального уравнения. Мы определили промежутки знакопостоянства, теперь найдем координаты вершины параболы.

 

 

У уравнения  бесчисленное множество решений, т.е. бесчисленное множество пар , удовлетворяющих уравнению, но все  А каким может быть x? Любым!

Если мы зададим любое x, то получим точку

Решением исходного уравнения является множество пар

3. Построить график уравнения

Необходимо выразить y. Рассмотрим два варианта.

 

Графиком функции является гипербола, функция не определена при

Функция   убывающая.

Если

Если мы возьмем точку с абсциссой , то ее ордината будет равна

Решением исходного уравнения является множество пар

Построенную гиперболу можно сдвигать относительно осей координат.

Например, график функции  – тоже гипербола – будет сдвинут на единицу вверх по оси ординат.

4. Уравнение окружности  

Это рациональное уравнение с двумя переменными. Множеством решений являются точки окружности. Центр в точке  радиус равен R (Рис. 4).

Рассмотрим конкретные примеры.

a.

Приведем уравнение к стандартному виду уравнения окружности, для этого выделим полный квадрат суммы:

 

 – получили уравнение окружности с центром в .

Построим график уравнения (Рис. 5).

b. Построить график уравнения

Вспомним, что произведение равно нулю тогда и только тогда, когда один из сомножителей равен нулю, а второй существует.

 

График заданного уравнения состоит из совокупности графиков первого и второго уравнений, т.е. двух прямых.

Построим его (Рис. 6).

Построим график функции  Прямая будет проходить через точку (0; -1). Но как она пройдет – будет возрастать или убывать? Определить это нам поможет угловой коэффициент, коэффициент при x, он отрицательный, значит функция убывает. Найдем точку пересечения с осью ox, это точка (-1; 0).

Аналогично строим график второго уравнения. Прямая проходит через точку (0; 1), но возрастает, т.к. угловой коэффициент положителен.

Координаты всех точек двух построенных прямых и являются решением уравнения.

Итак, мы проанализировали графики важнейших рациональных уравнений, они будут использоваться и в графическом методе и в иллюстрации других методов решения систем уравнений.

 

Список рекомендованной литературы

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. — М., 2011. — 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

 

Рекомендованные ссылки на интернет-ресурсы

1. Раздел College.ru по математике (Источник).

2. Интернет-проект «Задачи» (Источник).

3. Образовательный портал «РЕШУ ЕГЭ» (Источник).

 

Рекомендованное домашнее задание

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 95-102.

interneturok.ru

Строим график функции, заданный системой уравнений, в MS EXCEL. Примеры и методы

Построим в MS EXCEL график функции, заданный системой уравнений. Эта задача часто встречается в лабораторных работах и почему-то является «камнем преткновения» для многих учащихся.

Пусть дана система уравнений 

Требуется на отрезке  [-1; 4] построить график функции f(x). Параметры a = 5 и b = 2 необходимо задать в отдельных ячейках.

Решение (1 ряд данных)

Чтобы построить график функции в MS EXCEL можно использовать диаграмму типа График или Точечная. 

СОВЕТ: О построении диаграмм см. статью Основы построения диаграмм в MS EXCEL. О различии диаграмм Точечная и График см. статью График vs Точечная диаграмма в MS EXCEL.

Создадим таблицу с исходными данными для x от -1 до 4, включая граничные значения (см. файл примера, лист Ряд1):

Шаг по х выберем равным 0,2, чтобы график содержал более 20 точек.

Чтобы построить диаграмму типа Точечная: 

  • выделите любую ячейку таблицы;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму Точечная с прямыми отрезками и маркерами.

Чтобы построить диаграмму типа График: 

  • выделите любую столбец f(x) вместе с заголовком;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму График маркерами.

У обеих диаграмм один общий недостаток — обе части графика соединены линией (в диапазоне х от 1 до 1,2). Из этого можно сделать ошибочный вывод, что, например, для х=1,1 значение функции равно около -15. Это, конечно же, не так. Кроме того, обе части графика одного цвета, что не удобно. Поэтому, построим график используя 2 ряда данных.

Решение (2 ряда данных)

Создадим другую таблицу с исходными данными в файле примера, лист График:

Второй и третий столбец таблицы будут использоваться для построения 2-х рядов данных. Первый столбец — для подписей по оси х. Для значений x>1 будет построен второй график (в степени 3/2), для остальных — парабола. Значения #Н/Д (нет данных) использованы для удобства — в качестве исходных данных для ряда можно брать значения из целого столбца. В противном случае пришлось бы указывать диапазоны соответствующих ячеек при построении диаграммы. При изменении шага по х — это вызвало бы необходимость перестроения диаграммы.

У такой диаграммы имеется недостаток — в диапазоне х от 1 до 1,2 на диаграмме теперь нет вообще значений. Чтобы избежать этого недостатка — построим диаграмму типа Точечная с 3-мя рядами данных.

Решение (3 ряда данных)

Для построения графика используем 2 таблицы с данными для каждого уравнения, см. файл примера, лист График.

Первое значение второго графика возьмем чуть больше 1, например, 1,00001, чтобы как можно ближе приблизиться к значению, в котором происходит разрыв двух графиков. Также для точки со значением х=1 построим на диаграмме одну точку (ряд №3), чтобы показать, что для этого х значение второго уравнения не вычисляется (хотя фактически вычисляется). 

excel2.ru

Применение графиков в решении уравнений

.

I ) Графическое решение квадратного уравнения:

Рассмотрим приведённое квадратное уравнение : x2+px+q=0;

Перепишем его так:x2=-px-q.(1)

Построим графики зависимостей:y=x2 и y=-px-q.

График первой зависимости нам известен, это есть парабола; вторая зависимость- линейная; её график есть прямая линия. Из уравнения (1) видно, что в том случае, когда х является его решением, рдинаты точек обоих графиков равны между собой. Значит, данному значению х соответствует одна и та же точка как на параболе, так и на прямой, то есть парабола и прямая пересекаются в точке с абциссой х.

Отсюда следующий графический способ решения квадратного уравнения:чертим параболу у=х2, чертим(по точкам) прямую у=-рх-q.

Если прямая и парабола пересекаются, то абциссы точек пересечения являются корнями квадратного уравнения. Этот способ удобен, если не требуется большой точности.

Примеры:

1.Решить уравнение:4×2-12x+7=0

Представим его в виде x2=3x-7/4.

Построим параболу y=x2 и прямую y=3x-7/4.

Рисунок 1.


Для построения прямой можно взять, например, точки(0;-7/4) и (2;17/4).Парабола и прямая пересекаются в двух точках с абциссами x1=0.8 и x2=2.2 (см. рисунок 1).

2.Решить уравнение : x2-x+1=0.

Запишем уравнение в виде: x2=x-1.

Построив параболу у=х2 и прямую у=х-1, увидим, что они не пересекаются(рисунок 2), значит уравнение не имеет корней.

Рисунок 2.

Проверим это. Вычислим дискриминант:

D=(-1)2-4=-3<0,

А поэтому уравнение не имеет корней.

3. Решить уравнение: x2-2x+1=0

Рисунок 3.

Если аккуратно начертить параболу у=х2 и прямую у=2х-1, то увидим, что они имеют одну общую точку(прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением).

II ) Системы уравнений.

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х2 –2 –парабола, уравнения х2 +у2=4 – окружность, и т.д..

Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какого-либо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого – многочлен стандартного вида, а правая- нуль. Рассмотрим графический способ решения.

Пример1:решить систему ⌠ x2 +y2 =25 (1)

⌠y=-x2+2x+5 (2)

Построим в одной системе координат графики уравнений(Рисунок4):

Построим в одной системе координат графи)

х2 +у2=25 и у=-х2+2х+5

Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т.е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А(-2,2; -4,5), В(0;5), С(2,2;4,5), D(4;-3).Следовательно, система уравнений имеет четыре решения:

х1≈-2,2 , у1≈-4,5; х2≈0, у2≈5;

х3≈2,2 , у3≈4,5; х4≈4, у4≈-3.

Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье – приближёнными.

III) Тригонометрические уравнения:

Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере.

Рисунок5.

Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1-cosx.(рисунок 5)


Из графика видно, что уравнение имеет 2 решения: х=2πп,где пЄZ и х=π/2+2πk,где kЄZ(Обязательно проверить это вычислениями). Рисунок 6.

Пример2:Решить уравнение:tg2x+tgx=0. Решать это уравнение будем по принципу решения предыдущего. Сначала построим графики(См. рисунок 6)функций: y=tg2x u y=-tgx. По графику видно что уравнение имеет 2 решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями)

Применение графиков в решении неравенств.

1)Неравенства с модулем.

Пример1.

Решить неравенство |x-1|+|x+1|<4.

На интеграле(-1;-∞) по определению модуля имеем |х-1|=-х+1,|х+1|=-х-1, и, следовательно, на этом интеграле неравенство равносиьно линейному неравенству –2х<4,которое справедливо при х>-2. Таким образом, в множество решений входит интеграл(-2;-1).На отрезке [-1,1] исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решний.

На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (-2;2) и только они.

Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y=f(x)=|x-1|+|x+1| и y=4.

Рисунок 7.


На интеграле (-2;2) график функции y=f(x) расположен под графиком функции у=4, а это означает, что неравенство f(x)

II)Неравенства с параметрами.

Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют.

Например, неравенство√а+х+√а-х>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1-х>1.

Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1.

Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения.

Пример1:

Решить неравенство|х-а|+|х+а|<b, a<>0.

Для решения данного неравенства с двумя параметрами aub воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций.

Y=f(x)=|x-a|+|x+a| uy=b.

Очевидно, что при b<=2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|x-a|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b>2|a|, то прямая y=b пересекает график функции y=f(x) в двух точках (-b/2;b) u (b/2;b)(рисунок 6) и неравенство в этом случае справедливо при –b/2<x<b/2,так как при этих значениях переменной кривая y=|x+a|+|x-a| расположена под прямой y=b.

Ответ:Если b<=2|a| , то решений нет,

Если b>2|a|, то x €(-b/2;b/2).

III ) Тригонометрические неравенства:

При решении неравенств с тригонометрическими функциями существенно используется периодичность этих функций и их монотонность на соответствующих промежутках. Простейшие тригонометрические неравенства. Функция sinx имеет положительный период 2π. Поэтому неравенства вида: sinx>a, sinx>=a,

sin x<a, sin x<=a.

Достаточно решить сначала на каком-либо отрезке лдины 2π. Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2πп, пЄZ.

Пример 1: Решить неравенство sinx>-1/2.(рисунок 10)

Сначала решим это неравенство на отрезке[-π/2;3π/2]. Рассмотрим его левую часть – отрезок [-π/2;3π/2].Здесь уравнение sinx=-1/2 имеет одно решение х=-π/6; а функция sinx монотонно возрастает. Значит, если –π/2<=x<= -π/6, то sinx<=sin(-π/6)=-1/2, т.е. эти значения х решениями неравенства не являются. Если же –π/6<х<=π/2 то sinx>sin(-π/6) = –1/2. Все эти значения х не являются решениями неравенства.

На оставшемся отрезке [π/2;3π/2] функция sinx монотонно убывает и уравнение sinx = -1/2 имеет одно решение х=7π/6. Следовательно, если π/2<=x<7π/, то sinx>sin(7π/6)=-1/2, т.е. все эти значения х являются решениями неравенства. Для x Є[7π/6;3π/2] имеем sinx<= sin(7

mirznanii.com

Графики уравнений. Экологическое воспитание

Дополнительные сочинения

На этом уроке мы подробно рассмотрим построение графиков уравнений. Вначале вспомним, что такое рациональное уравнение и множество его решений, образующее график уравнения. Подробно рассмотрим график линейного уравнения и свойства линейной функции, научимся читать графики. Далее рассмотрим график квадратного уравнения и свойства квадратичной функции. Рассмотрим гиперболическую функцию и ее график и график уравнения окружности. Далее перейдем к построению и изучению совокупности графиков.

Тема: Системы уравнений

Урок: Графики уравнений

1. Тема урока, введение

Мы рассматриваем рациональное уравнение вида и системы рациональных уравнений вида

Мы говорили, что каждое уравнение в этой системе имеет свой график, если конечно имеются решения уравнений. Мы рассмотрели несколько графиков различных уравнений.

Сейчас мы систематически рассмотрим каждое из известных нам уравнений, т. е. выполним обзор по графикам уравнений.

2. График линейного уравнения

1. Линейное уравнение с двумя переменными

x, y – в первой степени; a, b,c – конкретные числа.

Пример:

Графиком этого уравнения является прямая линия.

Мы действовали равносильными преобразованиями – y оставили на месте, всё остальное перенесли в другую сторону с противоположными знаками. Исходное и полученное уравнения равносильны, т. е. имеют одно и то же множество решений. График этого уравнения мы умеем строить, и методика его построения такова: находим точки пересечения с координатными осями и по ним строим прямую.

X

0

Y

1

0

В данном случае

Зная график уравнения, мы можем многое сказать о решениях исходного уравнения, а именно: если сли

Эта функция возрастает, т. е. с увеличением x увеличивается y. Мы получили два частных решения, а как записать множество всех решений?

Если точка имеет абсциссу x, то ордината этой точки

Значит, решением исходного уравнения является множество пар чисел

У нас было уравнение, мы построили график, нашли решения. Множество всех пар – сколько их? Бесчисленное множество.

3. График рационального уравнения

2.

Это рациональное уравнение,

Найдем y, равносильными преобразованиями получаем

Положим и получаем квадратичную функцию, ее график нам известен.

Пример: Построить график рационального уравнения.

Графиком является парабола, ветви направлены вверх.

Найдем корни уравнения:

Схематически изобразим график (Рис. 2).

С помощью графика мы получаем всевозможные сведения и о функции, и о решениях рационального уравнения. Мы определили промежутки знакопостоянства, теперь найдем координаты вершины параболы.

У уравнения бесчисленное множество решений, т. е. бесчисленное множество пар , удовлетворяющих уравнению, но все А каким может быть x? Любым!

Если мы зададим любое x, то получим точку

Решением исходного уравнения является множество пар

4. График уравнения – гипербола

3. Построить график уравнения

Необходимо выразить y. Рассмотрим два варианта.

       

Графиком функции является гипербола, функция не определена при

Функция убывающая.

Если

Если мы возьмем точку с абсциссой , то ее ордината будет равна

Решением исходного уравнения является множество пар

Построенную гиперболу можно сдвигать относительно осей координат.

Например, график функции – тоже гипербола – будет сдвинут на единицу вверх по оси ординат.

5. График уравнения окружности

4. Уравнение окружности

Это рациональное уравнение с двумя переменными. Множеством решений являются точки окружности. Центр в точке радиус равен R (Рис. 4).

Рассмотрим конкретные примеры.

a.

Приведем уравнение к стандартному виду уравнения окружности, для этого выделим полный квадрат суммы:

– получили уравнение окружности с центром в .

Построим график уравнения (Рис. 5).

b. Построить график уравнения

Вспомним, что произведение равно нулю тогда и только тогда, когда один из сомножителей равен нулю, а второй существует.

График заданного уравнения состоит из совокупности графиков первого и второго уравнений, т. е. двух прямых.

Построим его (Рис. 6).

Построим график функции Прямая будет проходить через точку (0; -1). Но как она пройдет – будет возрастать или убывать? Определить это нам поможет угловой коэффициент, коэффициент при x, он отрицательный, значит функция убывает. Найдем точку пересечения с осью ox, это точка (-1; 0).

Аналогично строим график второго уравнения. Прямая проходит через точку (0; 1), но возрастает, т. к. угловой коэффициент положителен.

Координаты всех точек двух построенных прямых и являются решением уравнения.

6. Вывод

Итак, мы проанализировали графики важнейших рациональных уравнений, они будут использоваться и в графическом методе и в иллюстрации других методов решения систем уравнений.

Список рекомендованной литературы

1. Мордкович А. Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш. А., Колягин Ю. М., Сидоров Ю. В. Алгебра. 9 класс. 16-е изд. — М., 2011. — 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

Рекомендованные ссылки на интернет-ресурсы

1. Раздел College. ru по математике .

2. Интернет-проект «Задачи» .

3. Образовательный портал «РЕШУ ЕГЭ» .

Рекомендованное домашнее задание

1. Мордкович А. Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 95-102.

dp-adilet.kz

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *