Линейные диофантовы уравнения с двумя переменными
Сначала калькулятор, теория под ним.
Множество всех х
Множество всех y
Сохранить share extension
Диофантово уравнение с двумя неизвестными имеет вид:
,
где a, b, c — заданные целые числа, x и y — неизвестные целые числа.
Для нахождения решений уравнения используется Расширенный алгоритм Евклида (исключая вырожденный случай, когда a = b = 0 и уравнение имеет либо бесконечно много решений, либо же не имеет решений вовсе).
Если числа a и b неотрицательны, тогда с помощью расширенного алгоритма Евклида мы можем найти их наибольший общий делитель g, а также такие коэффициенты и , что:
.
Утверждается, что если число c делится на g, то диофантово уравнение имеет решение; в противном случае диофантово уравнение решений не имеет. Это следует из очевидного факта, что линейная комбинация двух чисел по-прежнему должна делиться на их общий делитель.
То есть если c делится на g, тогда выполняется соотношение:
,
т. е. одним из решений диофантова уравнения являются числа:
Если одно из чисел a и b или они оба отрицательны, то можно взять их по модулю и применить к ним алгоритм Евклида, как было описано выше, а затем изменить знак найденных коэффициентов и в соответствии с настоящим знаком чисел a и b соответственно.
Если мы знаем одно из решений, мы можем получить выражение для всех остальных решений, которых бесконечное множество.
Итак, пусть g = НОД (a,b), выполняется условие:
.
Тогда, прибавив к число и одновременно отняв от , мы не нарушим равенства:
Этот процесс можно повторять сколько угодно, т. е. все числа вида:
,
где k принадлежит множеству целых чисел, являются множеством всех решений диофантова уравнения.
planetcalc.ru
Диофантовы уравнения с двумя переменными
Следующий калькулятор решает линейные диофантовы уравнения с 2-мя переменными.
Для начала, давайте же вспомним Диофантовы уравнение. И так, данное уравнение имеет следующий вид ( с двумя переменными):
где a, b, c — целые числа, которые заданы.
x и y — целые числа, которые неизвестны.
Кто хочет почитать о диофантовых уравнених по-больше, то вы можете сделать это на данной страничке:
The field is not filled.
‘%1’ is not a valid e-mail address.
Please fill in this field.
The field must contain at least% 1 characters.
The value must not be longer than% 1 characters.
Field value does not coincide with the field ‘%1’
An invalid character. Valid characters:’%1′.
Expected number.
It is expected a positive number.
Expected integer.
It is expected a positive integer.
The value should be in the range of [%1 .. %2]
The ‘% 1’ is already present in the set of valid characters.
The field must be less than 1%.
The first character must be a letter of the Latin alphabet.
Su
Mo
Tu
We
Th
Fr
Sa
January
February
March
April
May
June
July
August
September
October
November
December
century
B.C.
%1 century
An error occurred while importing data on line% 1. Value: ‘%2’. Error: %3
Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).
%3.%2.%1%4
%3.%2.%1%4 %6:%7
s.sh.
u.sh.
v.d.
z.d.
yes
no
Wrong file format. Only the following formats: %1
Please leave your phone number and / or email.
hostciti.net
Уравнения в целых числах (диофантовы уравнения) / math5school.ru
Немного теории
Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.
Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение
xn + yn = zn
не имеет ненулевых рациональных решений для всех натуральных n > 2.
Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.
В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.
При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:
способ перебора вариантов;
применение алгоритма Евклида;
представление чисел в виде непрерывных (цепных) дробей;
разложения на множители;
решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;
метод остатков;
метод бесконечного спуска.
Задачи с решениями
1. Решить в целых числах уравнение x2 – xy – 2y2 = 7.
РешениеЗапишем уравнение в виде (x – 2y)(x + y) = 7.
Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:
1) x – 2y = 7, x + y = 1;
2) x – 2y = 1, x + y = 7;
3) x – 2y = –7, x + y = –1;
4) x – 2y = –1, x + y = –7.
Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).
Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).
2. Решить в целых числах уравнение:
а) 20х + 12у = 2013;
б) 5х + 7у = 19;
в) 201х – 1999у = 12.
а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.
Ответ: решений нет.
б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,
x0 = 1, y0 = 2.
Тогда
5x0 + 7y0 = 19,
откуда
5(х – x0) + 7(у – y0) = 0,
5(х – x0) = –7(у – y0).
Поскольку числа 5 и 7 взаимно простые, то
х – x0 = 7k, у – y0 = –5k.
Значит, общее решение:
х = 1 + 7k, у = 2 – 5k,
где k – произвольное целое число.
Ответ: (1+7k; 2–5k), где k – целое число.
в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:
НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.
Запишем этот процесс в обратном порядке:
1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =
= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =
= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.
Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел
x0 = 1273·12 = 15276, y0 = 128·12 = 1536
является решением уравнения 201х – 1999у = 12.
Общее решение этого уравнения запишется в виде
х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,
или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),
х = 1283 + 1999n, у = 129 + 201n, где n – целое число.
Ответ: (1283+1999n, 129+201n), где n – целое число.
3. Решить в целых числах уравнение:
а) x3 + y
б) x3 + y3 = 4(x2y + xy2 + 1).
Решениеа) Так как x3 и y3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x3 + y3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
б) Перепишем исходное уравнение в виде (x + y)3 = 7(x2y + xy2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
4. Решить
а) в простых числах уравнение х2 – 7х – 144 = у2 – 25у;
б) в целых числах уравнение x + y = x2 – xy + y2
. Решениеа) Решим данное уравнение как квадратное относительно переменной у. Получим
у = х + 9 или у = 16 – х.
Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).
Так как х, у – простые, то из равенства у = 16 – х имеем
2 х 16, 2 у 16.
С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).
Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).
б) Рассмотрим данное уравнение как квадратное уравнение относительно x:
x2 – (y + 1)x + y2 – y = 0.
Дискриминант этого уравнения равен –3y2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.
Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).
5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x2 + y2 + z2 = x3 + y3 + z3 ?
РешениеПопробуем подбирать такие тройки, где у = –z. Тогда y3 и z3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид
x2 + 2y2 = x3
или, иначе,
x2(x–1) = 2y2.
Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n2+1. Подставляя в x2(x–1) = 2y2 такое число, после несложных преобразований получаем:
y = xn = n(2n2+1) = 2n3+n.
Все тройки, полученные таким образом, имеют вид (2n2+1; 2n3+n; –2n3– n).
Ответ: существует.
6. Найдите такие целые числа x, y, z, u, что x2 + y2 + z2 + u2 = 2xyzu.
РешениеЧисло x2 + y2 + z2 + u2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.
Если все четыре числа x, y, z, u нечётны, то x2 + y2 + z2 + u2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.
Если ровно два из чисел x, y, z, u нечётны, то x2 + y2 + z2 + u2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.
Поэтому все числа x, y, z, u чётны. Тогда можно записать, что
x = 2x1, y = 2y1, z = 2z1, u = 2u1,
и исходное уравнение примет вид
x12 + y12 + z12 + u12 = 8x1y1z1u1.
Теперь заметим, что (2k + 1)2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x12 + y12 + z12 + u12 не делится на 8. А если ровно два из этих чисел нечётно, то x12 + y12 + z12 + u12 не делится даже на 4. Значит,
x1 = 2x2, y1 = 2y2, z1 = 2z2, u1 = 2u2,
и мы получаем уравнение
x22 + y22 + z22 + u22 = 32x2y2z2u2.
Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2n при всех натуральных n, что возможно лишь при x = y = z = u = 0.
Ответ: (0; 0; 0; 0).
7. Докажите, что уравнение
(х – у)3 + (y – z)3 + (z – x)3 = 30
не имеет решений в целых числах.
РешениеВоспользуемся следующим тождеством:
(х – у)3 + (y – z)3 + (z – x)3 = 3(х – у)(y – z)(z – x).
Тогда исходное уравнение можно записать в виде
(х – у)(y – z)(z – x) = 10.
Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде
abc = 10.
Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.
8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у2.
РешениеОчевидно, что
если х = 1, то у2 = 1,
если х = 3, то у2 = 9.
Этим случаям соответствуют следующие пары чисел:
х1 = 1, у1 = 1;
х2 = 1, у2 = –1;
х3 = 3, у3 = 3;
х4 = 3, у4 = –3.
Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как
5! + 6! + . . . + х! = 10n,
можем записать, что
1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.
Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.
Ответ: (1; 1), (1; –1), (3; 3), (3; –3).
9. Решите следующую систему уравнений в натуральных числах:
a3 – b3 – c3 = 3abc, a2 = 2(b + c).
РешениеТак как
3abc > 0, то a3 > b3 + c3;
таким образом имеем
b
Складывая эти неравенства, получим, что
b + c
С учётом последнего неравенства, из второго уравнения системы получаем, что
a2
Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.
Ответ: (2; 1; 1)
10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х2 + х = у4 + у3 + у2 + у.
РешениеРазложив на множители обе части данного уравнения, получим:
х(х + 1) = у(у + 1)(у2 + 1),
или
х(х + 1) = (у2 + у)(у2 + 1)
Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:
х1 = 0, у1 = 0;
х2 = 0, у2 = –1;
х3 = –1, у3 = 0;
х4 = –1, у4 = –1.
Произведение (у2 + у)(у2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:
х5 = 5, у5 = 2;
х6 = –6, у6 = 2.
Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)
Задачи без решений
1. Решить в целых числах уравнение:
а) ху = х + у + 3;
б) х2 + у2 = х + у + 2.
2. Решить в целых числах уравнение:
а) х3 + 21у2 + 5 = 0;
б) 15х2 – 7у2 = 9.
3. Решить в натуральных числах уравнение:
а) 2х + 1 = у2;
б) 3·2х + 1 = у2.
4. Доказать, что уравнение х3 + 3у3 + 9z3 = 9xyz в рациональных числах имеет единственное решение
x = y = z = 0.
5. Доказать, что уравнение х2 + 5 = у3 в целых числах не имеет решений.
math4school.ru
Решение линейных диофантовых уравнений с любым числом неизвестных / Habr
Здравствуйте, уважаемые читатели! Продолжаю серию дилетантских статей о математике.
Сегодня предлагаю поразмышлять над некоторой интересной математической задачкой.
А именно, давайте-ка для разминки решим следующее линейной уравнение:
«Чего сложного?» — спросите вы. Действительно, лишь одно уравнение и целых четыре неизвестных. Следовательно, три переменных есть свободные, а последняя зависит от оных. Так давайте выразим скорее! Например, через переменную , тогда множество решений следующее:
где — множество любых действительных чисел.
Что же, решение действительно оказалось слишком тривиальным. Тогда будем нашу задачу усложнять и делать её более интересной.
Вспомним про линейные уравнения с целыми коэффициентами и целыми корнями, которые, собственно, являются разновидностью диофантовых уравнений. Конкретно — наложим на наше уравнение соответствующие ограничение на целочисленность коэффициентов и корней. Коэффициенты при неизвестных у нас и так целые (), а вот сами неизвестные необходимо ограничить следующим:
где — множество целых чисел.
Теперь решение, полученное в начале статьи, «не проканает», так как мы рискуем получить как рациональное (дробное) число. Так как же решить это уравнение исключительно в целых числах?
Заинтересовавшихся решением данной задачи прошу под кат.
А мы с вами продолжаем. Попробуем произвести некоторые элементарные преобразования искомого уравнения:
Задача выглядит по-прежнему непонятной, в таких случаях математики обычно производят какую-нибудь замену. Давайте и мы с вами её бахнем:
Опа, мы с вами достигли интересного результата! Коэффициент при у нас сейчас равен единице, а это значит, что мы с вами можем выразить эту неизвестную через остальные неизвестные в этом уравнении без всяких делений (чем грешили в самом начале статьи). Сделаем это:
Обращу внимание, что это говорит нам о том, что какие бы не были (в рамках диофантовых уравнений), всё равно останется целым числом, и это прекрасно.
Вспоминая, что справедливо говорить, что . А подставив заместо полученный выше результат получим:
Тут мы также видим, что что какие бы не были , всё равно останется целым числом, и это по-прежнему прекрасно.
Тогда в голову приходит гениальная идея: так давайте же объявим как свободные переменные, а будем выражать через них! На самом деле, мы уже это сделали. Осталось только записать ответ в систему решений:
Теперь можно лицезреть, что в системе решений нигде нет деления, а это значит, что всегда решения будут целочисленными. Попробуем найти частное решение исходного уравнения, положив, к примеру, что :
Подставим в исходное уравнение:
Тождественно, круто! Давайте попробуем ещё разок на другом примере?
Тут мы видим отрицательный коэффициент, он может доставить нам изрядных проблем, так что давайте от греха избавимся от него заменой , тогда уравнение будет следующим:
Как мы помним, наша задача сделать такие преобразования, чтобы в нашем уравнении оказалась неизвестная с единичным коэффициентом при ней (чтобы затем выразить её через остальные без любого деления). Для этого мы должны снова что-нибудь взять «за скобку», самое быстрое — это брать коэффициенты из уравнения которые самые близкие к единице. Однако нужно понимать, что за скобку можно взять только лишь то число, которое обязательно является каким-либо коэффициентом уравнения (ни больше, ни меньше), иначе наткнемся на тавтологию/противоречие или дроби (иными словами, нельзя чтобы свободные переменные появились где-то кроме как в последней замене). Итак:
Введем замену , тогда получим:
Вновь возьмем за скобку и наконец получим в уравнении неизвестную с единичным коэффициентом:
Введем замену , тогда:
Выразим отсюда нашу одинокую неизвестную :
Из этого следует, что какие бы мы не взяли, все равно останется целым числом. Тогда найдем из соотношения :
Аналогичным образом найдем из соотношения :
На этом наша система решений созрела — мы выразили абсолютно все неизвестные, не прибегая к делению, тем самым показывая, что решение точно будет целочисленным. Также не забываем, что , и нам надо ввести обратную замену. Тогда окончательная система решений следующая:
Таким образом, осталось ответить на вопрос — а любое ли подобное уравнение можно так решить? Ответ: нет, если уравнение в принципе нерешаемо. Такое возникает в тех случаях, если свободный член не делится нацело на НОД всех коэффициентов при неизвестных. Иными словами, имея уравнение:
Для его решения в целых числах достаточно выполнение следующего условия:
(где — наибольший общий делитель).
Доказательство
Доказательство в рамках этой статьи не рассматривается, так как это повод для отдельной статьи. Увидеть его вы можете, например, в чудесной книге В. Серпинского «О решении уравнений в целых числах» в §2.
Резюмируя вышесказанное, выпишем алгоритм действий для решения линейных диофантовых уравнений с любым числом неизвестных:
- Проверяем, а решаемо ли уравнение вообще (вышеописанным свойством ). Если ответ положительный — переходим к следующему пункту.
- Для ускорения процесса поделим все коэффициенты (включая свободный член) на их .
- Избавляемся от отрицательных коэффициентов в уравнении заменой
- Проводим серию замен (разваливая некоторые члены уравнения на суммы и объединяя их в скобки) таким образом, чтобы в конце концов один из членов уравнения был с единичным коэффициентов, и мы смогли вывести его без какого либо деления. Помня при этом, что за скобку можно взять только то число, которое обязательно является каким-либо коэффициентом уравнения (ни больше, ни меньше), иначе наткнемся на тавтологию/противоречие или дроби (иными словами, нельзя чтобы свободные переменные появились где-то кроме как в последней замене). Наконец, объявляем все переменные, через которые выражена оная, как свободные.
- Выводим остальные переменные через вышевыведенную (выводим из всех наших замен), не забывая также про обратные замены.
- Объединяем все в единую систему решений.
В заключение стоит сказать, что также можно добавить ограничения на каждый член уравнения в виде неравенства на оного (тогда к системе решений добавляется система неравенств, в соответствии с которой нужно будет скорректировать ответ), а также добавить ещё чего-нибудь интересное. Ещё не стоит забывать и про то, что алгоритм решения является строгим и поддается записи в виде программы для ЭВМ.
С вами был Петр,
спасибо за внимание.
habr.com
Линейное диофантово уравнение и 4 способа его решения
Разделы: Математика
Првило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.
Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Хо ; уо) уравнения ах + ву = 1; числа СХо , Суо составляют решение уравнения ах + ву = с.
Решить в целых числах (х,у) уравнение
5х — 8у = 19 … (1)
Решение.
Первый способ. Нахождение частного решения методом подбора и запись общего решения.
Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)
имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.
Итак, пара чисел (7;2) — частное решение уравнения (1).
Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)
Вопрос: Как имея одно решение записать все остальные решения?
Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у — 2) =0.
Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.
Тем самым все целые решения исходного уравнения можно записать в таком виде:
n Z.Второй способ. Решение уравнения относительно одного неизвестного.
Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х — 8у = 19 х = .
Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.
Если у = 0, то х = =.
Если у =1, то х = =.
Если у = 2, то х = = = 7 Z.
Если у =3, то х = =.
Если у = 4 то х = =.
Итак, частным решением является пара (7;2).
Тогда общее решение: n Z.
Третий способ. Универсальный способ поиска частного решения.
Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.
План решения:
1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.
2. Затем найдем частное решение уравнения (1)по правилу 2.
3. Запишем общее решение данного уравнения (1).
1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.
8 = 5 1 + 3.
5 = 3
3 = 2 .
Из этого равенства выразим 1. 1 = 3 — 2 = 3 – (5 — 3 ) =
= 3 — 5 = 3 = (8 — 5 — 5 82 -5
= 5(-2). Итак, m = -3, n = -2.
2. Частное решение уравнения (1): Хо = 19m; уо =19n.
Отсюда получим: Хо =19; уо =19 .
Пара (-57; -38)- частное решение (1).
3. Общее решение уравнения (1): n Z.
Четвертый способ. Геометрический.
План решения.
1. Решим уравнение 5х – 8у = 1 геометрически.
2. Запишем частное решение уравнения (1).
3. Запишем общее решение данного уравнения (1).
1
Отложим на окружности последовательно друг за другом равные дуги, составляющие
-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.
На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли — ю часть окружности, так что х = у + .
Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.
2. Частное решение уравнения (1): Хо = 19 уо =19
3. Общее решение уравнения (1): n Z.
21.01.2008
xn--i1abbnckbmcl9fb.xn--p1ai
Диофантовое уравнение • ru.knowledgr.com
В математике диофантовое уравнение — многочленное уравнение в двух или больше неизвестных, таким образом, что только решения для целого числа обысканы или изучены (решение для целого числа — решение, таким образом, что все неизвестные берут целочисленные значения). Линейное диофантовое уравнение — уравнение между двумя суммами одночленов ноля степени или один. Показательное диофантовое уравнение — то, в котором образцы на условиях могут быть неизвестными.
Диофантовые проблемы имеют меньше уравнений, чем неизвестные переменные и включают целые числа открытия, которые работают правильно на все уравнения. На большем количестве технического языка они определяют алгебраическую кривую, алгебраическую поверхность или более общий объект, и спрашивают о пунктах решетки на нем.
Диофантовое слово относится к Эллинистическому математику 3-го века, Диофанту Александрии, который сделал исследование таких уравнений и был одним из первых математиков, которые введут символику в алгебру. Математическое исследование диофантовых проблем, которые начал Диофант, теперь называют диофантовым анализом.
В то время как отдельные уравнения представляют своего рода загадку и были рассмотрены на протяжении всей истории, формулировка общих теорий диофантовых уравнений (вне теории квадратных форм) была успехом двадцатого века.
Примеры
В следующих диофантовых уравнениях x, y, и z являются неизвестными, и другим письмам дают константы:
:
Линейные диофантовые уравнения
Одно уравнение
Самое простое линейное диофантовое уравнение берет топор формы + = c, где a, b и c дают целые числа. Решения полностью описаны следующей теоремой: у Этого диофантового уравнения есть решение (где x и y — целые числа), если и только если c — кратное число самого большого общего делителя a и b. Кроме того, если (x, y) решение, то у других решений есть форма (x + kv, y — ku), где k — произвольное целое число, и u и v — факторы a и b (соответственно) самым большим общим делителем a и b.
Доказательство: Если d — этот самый большой общий делитель, личность Безута утверждает существование целых чисел e и f, таким образом что один + bf = d. Если c — кратное число d, то c = горячекатаный для некоторого целого числа h, и (а, fh) является решением. С другой стороны, для каждого целые числа x и y, самый большой общий делитель d a и b делит топор + на. Таким образом, если у уравнения есть решение, то c должен быть кратным числом d. Если = ud и b = vd, то для каждого решения (x, y), у нас есть
:,
показывая, который (x + kv, y — ku) другое решение. Наконец, учитывая два решения, таким образом, что, каждый выводит это. Поскольку u и v — coprime, аннотация Евклида показывает, что там существует целое число k таким образом что и. Поэтому и, который заканчивает доказательство.
Китайская теорема остатка
Китайская теорема остатка описывает важный класс линейных диофантовых систем уравнений: позвольте n…, n быть k попарные coprime целые числа, больше, чем одно, a…, быть k произвольными целыми числами и N быть продуктом n ··· n. Китайская теорема остатка утверждает, что у следующей линейной диофантовой системы есть точно одно решение, таким образом, который делится поскольку я ≤ k и для i> k. Если это условие выполнено, решения данной системы —
:
\begin {множество} {c }\
\frac {d_1} {b_ {1,1} }\\\
\vdots \\
\frac {d_k} {b_ {k, k} }\\\
h_ {k+1 }\\\
\vdots \\
h_n
\end {выстраивают }\
где произвольные целые числа.
Диофантовый анализ
Типичные вопросы
Вопросы, которые задают в диофантовом анализе включать:
- Есть ли какие-либо решения?
- Есть ли какие-либо решения вне некоторых, которые легко найдены контролем?
- Есть ли конечно или бесконечно много решений?
- Все решения могут быть найдены в теории?
- Можно на практике вычислить полный список решений?
Эти традиционные проблемы часто заключаются нерешенные в течение многих веков, и математики постепенно приезжали, чтобы понять их глубину (в некоторых случаях), вместо того, чтобы рассматривать их как загадки.
Типичная проблема
Данная информация — то, что возраст отца равняется 1 меньше чем дважды больше чем это его сына, и что цифры AB составление возраста отца полностью изменены в возрасте сына (т.е. BA). Это приводит к уравнению, таким образом. Контроль дает результат, и таким образом и. Можно легко показать, что нет никакого другого решения с A и положительными целыми числами B меньше чем 10.
17-е и 18-е века
В 1637 Пьер де Ферма набросал на краю его копии Arithmetica: «Невозможно разделить куб на два куба или четвертую власть в два четвертых полномочия, или в целом, любая власть выше, чем второе в два как полномочия». Заявленный на более современном языке, «У уравнения + b = c нет решений ни для какого n выше, чем 2». И затем он написал, интригующе: «Я обнаружил действительно чудесное доказательство этого суждения, которое этот край слишком узкий, чтобы содержать». Такое доказательство ускользало от математиков в течение многих веков, однако, и как таковой, его заявление стало известным как Последняя Теорема Ферма. Только в 1995, это было доказано британским математиком Эндрю Вайлсом.
В 1657 Ферма попытался решить диофантовое уравнение 61x + 1 = y (решенный Brahmagupta более чем 1 000 лет ранее). Уравнение было в конечном счете решено Эйлером в начале 18-го века, кто также решил много других диофантовых уравнений. Самое маленькое решение этого уравнения в положительных целых числах — x = 226153980, y = 1766319049 (см. метод Chakravala).
Десятая проблема Хилберта
В 1900, в знак признания их глубины, Дэвид Хилберт предложил разрешимость всех диофантовых проблем как десятая из его знаменитых проблем. В 1970 новый результат в математической логике, известной как теорема Матиясевича, уладил проблему отрицательно: в общих диофантовых проблемах неразрешимы.
Диофантовая геометрия
Диофантовая геометрия, которая является применением методов от алгебраической геометрии в этой области, продолжила расти в результате; начиная с рассмотрения произвольных уравнений тупик, внимание поворачивается к уравнениям, у которых также есть геометрическое значение. Центральная идея диофантовой геометрии — идея рационального пункта, а именно, решение многочленного уравнения или системы многочленных уравнений, которая является вектором в предписанной области К, когда K алгебраически не закрыт.
Современное исследование
Один из нескольких общих подходов через принцип Хассе. Спуск Бога — традиционный метод и был выдвинут длинный путь.
Глубину исследования общих диофантовых уравнений показывает характеристика диофантовых наборов, так же эквивалентно описанных как рекурсивно счетных. Другими словами, общая проблема диофантового анализа благословлена или проклята с универсальностью, и в любом случае не является чем-то, что будет решено кроме, повторно выражая его в других терминах.
Область диофантового приближения имеет дело со случаями диофантовых неравенств. Здесь переменные, как все еще предполагается, являются неотъемлемой частью, но некоторые коэффициенты могут быть иррациональными числами, и знак равенства заменен верхними и более низкими границами.
Самый знаменитый единственный вопрос в области, догадка, известная как Последняя Теорема Ферма, был решен Эндрю Вайлсом, но инструменты использования от алгебраической геометрии, развитой в течение прошлого века, а не в пределах теории чисел, где догадка была первоначально сформулирована. Другие главные результаты, такие как теорема Фэлтингса, избавились от старых догадок.
Бог диофантовые уравнения
Пример бесконечного диофантового уравнения:
:
N = A^2+2B^2+3C^2+4D^2+5E^2 +…,
который может быть выражен как, «Сколько путей может данное целое число N быть написанными как сумма квадрата плюс дважды квадрат плюс трижды квадрат и так далее?» Число способов, которыми это может быть сделано для каждого N, формирует последовательность целого числа. Бог диофантовые уравнения связан с функциями теты и бесконечными размерными решетками. У этого уравнения всегда есть решение для любого положительного N. Сравните это с:
:
N = A^2+4B^2+9C^2+16D^2+25E^2 +…,
у которого не всегда есть решение для положительного N.
Показательные диофантовые уравнения
Если диофантовое уравнение имеет как дополнительная переменная или переменные, происходящие как образцы, это — показательное диофантовое уравнение. Примеры включают уравнение Ramanujan–Nagell, 2 − 7 = x, и уравнение Fermat-каталонской догадки и догадки Била, + b = c по-разному ограничения на образцов. Общая теория для таких уравнений не доступна; занялись особыми случаями, такими как догадка каталонца. Однако большинство решено через специальные методы, такие как теорема Стырмера или даже метод проб и ошибок.
Примечания
Дополнительные материалы для чтения
Внешние ссылки
ru.knowledgr.com