Квадратные уравнения простые – Решение квадратных уравнений

Содержание

Способы решения квадратных уравнений



Наш проект посвящен способам решения квадратных уравнений. Цель проекта: научиться решать квадратные уравнения способами, не входящими в школьную программу. Задача: найти все возможные способы решения квадратных уравнений и научиться их использовать самим и познакомить одноклассников с этими способами.

Что же такое «квадратные уравнения»?

Квадратное уравнение — уравнение вида ax2+ bx + c = 0, где a, b, c — некоторые числа (a ≠ 0), x — неизвестное.

Числа a, b,c называются коэффициентами квадратного уравнения.

  • a называется первым коэффициентом;
  • b называется вторым коэффициентом;
  • c — свободным членом.

А кто же первый «изобрёл» квадратные уравнения?

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений.

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Вавилонские математики примерно с IV века до н.э. использовали метод дополнения квадрата для решения уравнений с положительными корнями. Около 300 года до н.э. Эвклид придумал более общий геометрический метод решения. Первым математиком, который нашел решения уравнения с отрицательными корнями в виде алгебраической формулы, был индийский ученый Брахмагупта (Индия, VII столетие нашей эры).

Брахмагупта изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax2 + bх = с, а>0

В этом уравнении коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. ах2 = bх.

2) «Квадраты равны числу», т. е. ах2 = с.

3) «Корни равны числу», т. е. ах2 = с.

4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.

5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах2.

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г.

М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья,Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Рассмотрим несколько способов решения квадратных уравнений.

Стандартные способы решения квадратных уравнений из школьной программы:

  1. Разложение левой части уравнения на множители.
  2. Метод выделения полного квадрата.
  3. Решение квадратных уравнений по формуле.
  4. Графическое решение квадратного уравнения.
  5. Решение уравнений с использованием теоремы Виета.

Остановимся подробнее на решение приведенных и не приведенных квадратных уравнений по теореме Виета.

Напомним, что для решения приведенных квадратных уравнений достаточно найти два числа такие, произведение которых равно свободному члену, а сумма — второму коэффициенту с противоположным знаком.

Пример.x2-5x+6=0

Нужно найти числа, произведение которых равно 6, а сумма 5. Такими числами будут 3 и 2.

Ответ: x1=2, x2=3.

Но можно использовать этот способ и для уравнений с первым коэффициентом не равным единице.

Пример.3x2+2x-5=0

Берём первый коэффициент и умножаем его на свободный член: x2+2x-15=0

Корнями этого уравнения будут числа, произведение которых равно — 15, а сумма равна — 2. Эти числа — 5 и 3. Чтобы найти корни исходного уравнения, полученные корни делим на первый коэффициент.

Ответ: x1=-5/3, x2=1

6. Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а≠0.

Умножая обе его части на а, получаем уравнение а2х2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильному данному. Его корни у

1 и у2 найдем с помощью теоремы Виета.

Окончательно получаем х1 = у1/а и х2 = у2/а.

При этом способе коэффициент a умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Пример.2 — 11х + 15 = 0.

«Перебросим» коэффициент 2 к свободному члену и сделав замену получим уравнение у2 — 11у + 30 = 0.

Согласно обратной теореме Виета

у1 = 5, х1 = 5/2, х1=2,5 ;у2 = 6, x2 = 6/2, x2 = 3.

Ответ: х1=2,5; х

2= 3.

7. Свойства коэффициентов квадратного уравнения.

Пусть дано квадратное уравнение ах2 + bх + с = 0, а ≠ 0.

1. Если a+ b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х1 = 1.

2. Если а — b + с = 0, или b = а + с, то х1 = — 1.

Пример.345х2 — 137х — 208 = 0.

Так как а + b + с = 0 (345 — 137 — 208 = 0), то х1 = 1, х2 = -208/345.

Ответ: х1=1; х2 = -208/345 .

Пример.132х2 + 247х + 115 = 0

Т.к. a-b+с = 0 (132 — 247 +115=0), то х1= — 1, х2= — 115/132

Ответ: х

1= — 1; х2=- 115/132

Существуют и другие свойства коэффициентов квадратного уравнения. но ихиспользование более сложное.

8. Решение квадратных уравнений с помощью номограммы.

Рис 1. Номограмма

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.

Таблица XXII. Номограмма для решения уравнения z2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена по формулам (рис. 1):

ОВ =AB =

Полагая ОС = р, ED = q, ОЕ = а (все в см), из рис.1 подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Рис. 2 Решение квадратных уравнения с помощью номограммы

Примеры.

1) Для уравнения z2 — 9z + 8 = 0 номограмма дает корни z1 = 8,0 и z2 = 1,0

Ответ:8,0; 1,0.

2) Решим с помощью номограммы уравнение

2z2 — 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение z2 — 4,5z + 1 = 0.

Номограмма дает корни z1 = 4 и z2 = 0,5.

Ответ: 4; 0,5.

9. Геометрический способ решения квадратных уравнений.

Пример.х2 + 10х = 39.

В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39».

Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5x. Полученную фигуру дополняют затем до нового квадрата АВСD, достраивая в углах четыре равных квадрата, сторона каждого из них 2,5, а площадь 6,25

Рис. 3 Графический способ решения уравнения х2 + 10х = 39

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х2, четырех прямоугольников (4∙2,5x = 10х) и четырех пристроенных квадратов (6,25∙ 4 = 25) , т.е. S = х2 + 10х = 25. Заменяя х2 + 10х числом 39, получим что S = 39+ 25 = 64, откуда следует, что сторона квадрата АВСD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

10. Решение уравнений с использованием теоремы Безу.

Теорема Безу. Остаток от деления многочлена P(x) на двучлен x — α равен P(α) (т.е. значению P(x) при x = α).

Если число α является корнем многочлена P(x), то этот многочлен делится на x -α без остатка.

Пример.х²-4х+3=0

Р(x)= х²-4х+3, α: ±1,±3, α =1, 1-4+3=0. Разделим Р(x) на (х-1):(х²-4х+3)/(х-1)=х-3

х²-4х+3=(х-1)(х-3), (х-1)(х-3)=0

х-1=0; х=1, или х-3=0, х=3; Ответ: х1=2, х2=3.

Вывод: Умение быстро и рационально решать квадратные уравнения просто необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений. Изучив все найденные способы решения квадратных уравнений, мы можем посоветовать одноклассникам, кроме стандартных способов, решение способом переброски (6) и решение уравнений по свойству коэффициентов (7), так как они являются более доступными для понимания.

Литература:

  1. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.
  2. Алгебра 8 класс: учебник для 8 кл. общеобразоват. учреждений Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. под ред. С. А. Теляковского 15-е изд., дораб. — М.: Просвещение, 2015
  3. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Глейзер Г.И. История математики в школе. Пособие для учителей. / Под ред. В.Н. Молодшего. — М.: Просвещение, 1964.

yun.moluch.ru

Квадратные уравнения (способы решения)

Разделы: Математика


Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать около 2000 лет до нашей эры в Вавилоне. Применяя современную алгебраическую запись, можно сказать, что в их книгописных текстах встречаются, кроме неполных, и такие, как полные квадратные уравнения.

Определение

Уравнение вида ax2 + bx + c = 0, где a, b, c — действительные числа, причем a ≠ 0, называют квадратным уравнением.

Если a = 1 , то квадратное уравнение называют приведенным; если a ≠ 1, то неприведенным .
Числа a, b, c носят следующие названия: a — первый коэффициент, b — второй коэффициент, c — свободный член.

Корни уравнения ax2 + bx + c = 0 находят по формуле

Выражение D = b2— 4ac называют дискриминантом квадратного уравнения.

  • если D < 0, то уравнение не имеет действительных корней;
  • если D = 0, то уравнение имеет один действительный корень;
  • если D > 0, то уравнение имеет два действительных корня.

В случае, когда D = 0, иногда говорят, что квадратное уравнение имеет два одинаковых корня.

Формулы

Полное квадратное уравнение

Неполные квадратные уравнения

Если в квадратном уравнении ax2 + bx + c = 0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным.

Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения — проще решить уравнение методом разложения его левой части на множители.

Способы решения неполных квадратных уравнений:

  1. c = 0, то уравнение примет вид
    ax2 + bx = 0.
    x(ax + b) = 0 ,
    x = 0 или ax + b = 0, x = —b : a.
  2. b = 0, то уравнение примет вид
    ax2 + c = 0,
    x2 = —c / a,
    x1, 2 = ±√(-c / a).
  3. b = 0 и c = 0 , то уравнение примет вид
    ax2 = 0,
    x = 0

Решение неполного квадратного уравнения

Квадратные уравнения с комплексными переменными

Сначала рассмотрим простейшее квадратное уравнение z2 = a, где a-заданное число, а z-неизвестное. На множестве действительных чисел это уравнение:

  1. имеет один корень z = 0, если а = 0;
  2. имеет два действительных корня z1, 2 = ±√a
  3. Не имеет действительных корней, если a < 0

Решение квадратных уравнений с помощью графиков

Не используя формул квадратное уравнение можно решить графическим способом. Например x2 + x + 1 = 0.
Решим уравнение. Для этого построим два графика y = x2; y = x + 1.

y = x2, квадратичная функция, график парабола.
y = x + 1, линейная функция, график прямая.

Графики пересекаются в двух точках, уравнение имеет два корня.
Ответ: x ≈ -0,6; x ≈ 2,6.

Решение задач с помощью квадратных уравнений

Процессы Скорость км/ч Время ч. Расстояние км.
Вверх по реке 10 — x 35 / (10 — x) 35
Вверх по протоку 10 — x + 1 18 / (10 — x + 1) 18
V течения x
V притока x + 1

Зная, что скорость в стоячей воде равна 10 км/ч, составим уравнение.

ОДЗ: ∀ x ≠ 9, 10.

Практикум


т.к. D1
Ответ: корней нет.
Ответ: x = 2,5.

Заключение

Ещё в древности люди пользовались ими не зная, что это – квадратные уравнения.

В наше время невозможно представить себе решение как простейших, так и сложных задач не только в математике, но и в других точных науках, без применения решения квадратных уравнений.

Надеюсь и вы открыли для себя что-нибудь новое

Презентация

20.06.2009

Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

Квадратные уравнения. Решение квадратных уравнений :: SYL.ru

Эта тема поначалу может показаться сложной из-за множества не самых простых формул. Мало того что сами квадратные уравнения имеют длинные записи, еще и корни находятся через дискриминант. Всего получается три новые формулы. Не очень просто запомнить. Это удается только после частого решения таких уравнений. Тогда все формулы будут вспоминаться сами собой.

Общий вид квадратного уравнения

Здесь предложена их явная запись, когда самая большая степень записана первой, и дальше — по убыванию. Часто бывают ситуации, когда слагаемые стоят вразнобой. Тогда лучше переписать уравнение в порядке убывания степени у переменной.

Введем обозначения. Они представлены в таблице ниже.

Обозначение величиныЕе название
а, в, скоэффициенты, которые являются произвольными числами
хпеременная
Ддискриминант
х1, х2корни уравнения

Если принять эти обозначения, все квадратные уравнения сводятся к следующей записи.

Причем коэффициент а ≠ 0. Пусть эта формула будет обозначена номером один.

Когда уравнение задано, то непонятно, сколько корней будет в ответе. Потому что всегда возможен один из трех вариантов:

  • в решении будет два корня;
  • ответом будет одно число;
  • корней у уравнения не будет совсем.

И пока решение не доведено до конца, сложно понять, какой из вариантов выпадет в конкретном случае.

Виды записей квадратных уравнений

В задачах могут встречаться их разные записи. Не всегда они будут выглядеть как общая формула квадратного уравнения. Иногда в ней будет не хватать некоторых слагаемых. То что было записано выше — это полное уравнение. Если в нем убрать второе или третье слагаемое, то получится нечто другое. Эти записи тоже называются квадратными уравнениями, только неполными.

Причем исчезнуть могут только слагаемые у которых коэффициенты «в» и «с». Число «а» не может быть равно нулю ни при каких условиях. Потому что в этом случае формула превращается в линейное уравнение. Формулы для неполного вида уравнений будут такими:

и

Итак, видов всего два, кроме полных, есть еще и неполные квадратные уравнения. Пусть первая формула будет иметь номер два, а вторая — три.

Дискриминант и зависимость количества корней от его значения

Это число нужно знать для того, чтобы вычислить корни уравнения. Оно может быть посчитано всегда, какой бы ни была формула квадратного уравнения. Для того чтобы вычислить дискриминант, нужно воспользоваться равенством, записанным ниже, которое будет иметь номер четыре.

После подстановки в эту формулу значений коэффициентов, можно получить числа с разными знаками. Если ответ положительный, то ответом уравнения будут два различных корня. При отрицательном числе корни квадратного уравнения будут отсутствовать. В случае его равенства нулю ответ будет один.

Как решается квадратное уравнение полного вида?

По сути, рассмотрение этого вопроса уже началось. Потому что сначала нужно найти дискриминант. После того как выяснено, что имеются корни квадратного уравнения, и известно их число, нужно воспользоваться формулами для переменных. Если корней два, то нужно применить такую формулу.

Поскольку в ней стоит знак «±», то значений будет два. Выражение под знаком квадратного корня — это дискриминант. Поэтому формулу можно переписать по-другому.

Формула номер пять. Из этой же записи видно, что если дискриминант равен нулю, то оба корня примут одинаковые значения.

Если решение квадратных уравнений еще не отработано, то лучше до того, как применять формулы дискриминанта и переменной, записать значения всех коэффициентов. Позже этот момент не будет вызывать трудностей. Но в самом начале бывает путаница.

Как решается квадратное уравнение неполного вида?

Здесь все гораздо проще. Даже нет необходимости в дополнительных формулах. И не понадобятся те, что уже были записаны для дискриминанта и неизвестной.

Сначала рассмотрим неполное уравнение под номером два. В этом равенстве полагается вынести неизвестную величину за скобку и решить линейное уравнение, которое останется в скобках. В ответе будет два корня. Первый — обязательно равен нулю, потому что имеется множитель, состоящий из самой переменной. Второй получится при решении линейного уравнения.

Неполное уравнение под номером три решается переносом числа из левой части равенства в правую. Потом нужно разделить на коэффициент, стоящий перед неизвестной. Останется только извлечь квадратный корень и не забыть записать его два раза с противоположными знаками.

Полезные советы

Далее записаны некоторые действия, помогащие научиться решать всевозможные виды равенств, которые превращаются в квадратные уравнения. Они будут способствовать тому, что ученик сможет избежать ошибок по невнимательности. Эти недочеты бывают причиной плохих оценок при изучении обширной темы «Квадратные уравнения (8 класс)». Впоследствии эти действия не нужно будет постоянно выполнять. Потому что появится устойчивый навык.

  • Сначала нужно записать уравнение в стандартном виде. То есть сначала слагаемое с самой большой степенью переменной, а потом — без степени и последним — просто число.
  • Если перед коэффициентом «а» появляется минус, то он может усложнить работу для начинающего изучать квадратные уравнения. От него лучше избавиться. Для этой цели все равенство нужно умножить на «-1». Это значит, что у всех слагаемых изменится знак на противоположный.
  • Таким же образом рекомендуется избавляться от дробей. Просто умножить уравнение на соответствующий множитель, чтобы знаменатели сократились.

Примеры

Требуется решить следующие квадратные уравнения:

х2 − 7х = 0;

2 — 30 = 0;

15 − 2х − х2 = 0;

х2 + 8 + 3х = 0;

12х + х2 + 36 = 0;

(х+1)2 + х + 1 = (х+1)(х+2).

Первое уравнение: х2 − 7х = 0. Оно неполное, поэтому решается так, как было описано для формулы под номером два.

После вынесения за скобки получается: х (х — 7) = 0.

Первый корень принимает значение: х1 = 0. Второй будет найден из линейного уравнения: х — 7 = 0. Легко заметить, что х2 = 7.

Второе уравнение: 5х2 + 30 = 0. Снова неполное. Только решается оно так, как описано для третьей формулы.

После перенесения 30 в правую часть равенства: 5х2 = 30. Теперь нужно выполнить деление на 5. Получается: х2 = 6. Ответами будут числа: х1 = √6, х2 = — √6.

Третье уравнение: 15 − 2х − х2 = 0. Здесь и далее решение квадратных уравнений будет начинаться с их переписывания в стандартный вид: − х2 − 2х + 15 = 0. Теперь пришло время воспользоваться вторым полезным советом и умножить все на минус единицу. Получается х2 + 2х — 15 = 0. По четвертой формуле нужно вычислить дискриминант: Д = 22 — 4 * (- 15) = 4 + 60 = 64. Он представляет собой положительное число. Из того, что сказано выше, получается, что уравнение имеет два корня. Их нужно вычислить по пятой формуле. По ней получается, что х = (-2 ± √64) / 2 = (-2 ± 8) / 2. Тогда х1 = 3, х2 = — 5.

Четвертое уравнение х2 + 8 + 3х = 0 преобразуется в такое: х2 + 3х + 8 = 0. Его дискриминант равен такому значению: -23. Поскольку это число отрицательное, то ответом к этому заданию будет следующая запись: «Корней нет».

Пятое уравнение 12х + х2 + 36 = 0 следует переписать так: х2 + 12х + 36 = 0. После применения формулы для дискриминанта получается число ноль. Это означает, что у него будет один корень, а именно: х = -12/ (2 * 1) = -6.

Шестое уравнение (х+1)2 + х + 1 = (х+1)(х+2) требует провести преобразования, которые заключаются в том, что нужно привести подобные слагаемые, до того раскрыв скобки. На месте первой окажется такое выражение: х2 + 2х + 1. После равенства появится эта запись: х2 + 3х + 2. После того как подобные слагаемые будут сосчитаны, уравнение примет вид: х2 — х = 0. Оно превратилось в неполное. Подобное ему уже рассматривалось чуть выше. Корнями этого будут числа 0 и 1.

www.syl.ru

10 способов решения квадратных уравнений

Копьевская сельская средняя общеобразовательная школа

10 способов решения квадратных уравнений

Автор: Реутова Екатерина Викторовна, 11 кл.

Руководитель: Патрикеева Галина Анатольевна,

учитель математики

с.Копьево, 2007

Содержание

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

1.2 Как составлял и решал Диофант квадратные уравнения

1.3 Квадратные уравнения в Индии

1.4 Квадратные уравнения у ал- Хорезми

1.5 Квадратные уравнения в Европе XIII — XVII вв

1.6 О теореме Виета

2. Способы решения квадратных уравнений

Заключение

Литература

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

X 2 + X = ¾; X 2 X = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

1.2 Как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 — х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 — х) = 96

или же:

100 — х2 = 96

х2 — 4 = 0 (1)

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 — у) = 96,

у2 — 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

1.3 Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах2 + b х = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 13.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

Соответствующее задаче 13 уравнение:

( x /8)2 + 12 = x

Бхаскара пишет под видом:

х2 — 64х = -768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322 , получая затем:

х2 — 64х + 322 = -768 + 1024,

(х — 32)2 = 256,

х — 32 = ± 16,

х1 = 16, х2 = 48.

1.4 Квадратные уравнения у ал – Хорезми

В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах2 + с = b х.

2) «Квадраты равны числу», т.е. ах2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т.е. ах2 + с = b х.

5) «Квадраты и корни равны числу», т.е. ах2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах2 .

Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал — джабр и ал — мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида

ал — Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

1.5 Квадратные уравнения в Европе XIII XVII вв

Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:

х2 + bx = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

1.6 О теореме Виета

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A A 2 , равно BD , то A равно В и равноD ».

Чтобы понять Виета, следует вспомнить, что А , как и всякая гласная буква, означало у него неизвестное (наше х ), гласные же В, D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

(а + b )х — х2 = ab ,

т.е.

х2 — (а + b )х + а b = 0,

то

х1 = а, х2 = b .

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

2. Способы решения квадратных уравнений

Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

mirznanii.com

10 способов решения квадратных уравнений

В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно в своей работе я разобрала каждый из них.

1. СПОСОБ : Разложение левой части уравнения на множители.

Решим уравнение

х2 + 10х — 24 = 0 .

Разложим левую часть на множители:

х2 + 10х — 24 = х2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так:

(х + 12)(х — 2) = 0

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2 , а также при х = — 12 . Это означает, что число 2 и — 12 являются корнями уравнения х2 + 10х — 24 = 0 .

2. СПОСОБ : Метод выделения полного квадрата.

Решим уравнение х2 + 6х — 7 = 0 .

Выделим в левой части полный квадрат.

Для этого запишем выражение х2 + 6х в следующем виде:

х2 + 6х = х2 + 2• х • 3.

В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32 , так как

х2 + 2• х • 3 + 32 = (х + 3)2 .

Преобразуем теперь левую часть уравнения

х2 + 6х — 7 = 0 ,

прибавляя к ней и вычитая 32 . Имеем:

х2 + 6х — 7 = х2 + 2• х • 3 + 32 — 32 — 7 = (х + 3)2 — 9 — 7 = (х + 3)2 — 16.

Таким образом, данное уравнение можно записать так:

(х + 3)2 — 16 =0, (х + 3)2 = 16.

Следовательно, х + 3 — 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.

3. СПОСОБ : Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах2 + b х + с = 0, а ≠ 0

на 4а и последовательно имеем:

2 х2 + 4а b х + 4ас = 0,

((2ах)2 + 2ах • b + b 2 ) — b 2 + 4 ac = 0,

(2ax + b)2 = b2 — 4ac,

2ax + b = ± √ b2 — 4ac,

2ax = — b ± √ b2 — 4ac,

Примеры .

а) Решим уравнение:2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 — 4 ac = 72 — 4 • 4 • 3 = 49 — 48 = 1,

D > 0, два разных корня;

Таким образом, в случае положительного дискриминанта, т.е. при

b 2 — 4 ac >0 , уравнение ах2 + b х + с = 0 имеет два различных корня.

б) Решим уравнение: 2 — 4х + 1 = 0,

а = 4, b = — 4, с = 1, D = b 2 — 4 ac = (-4)2 — 4 • 4 • 1= 16 — 16 = 0,

D = 0, один корень;

Итак, если дискриминант равен нулю, т.е. b 2 — 4 ac = 0 , то уравнение

ах2 + b х + с = 0 имеет единственный корень,

в) Решим уравнение: 2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b 2 — 4 ac = 32 — 4 • 2 • 4 = 9 — 32 = — 13 , D < 0.

Данное уравнение корней не имеет.

Итак, если дискриминант отрицателен, т.е. b 2 — 4 ac < 0 ,

уравнение ах2 + b х + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах2 + b х + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

х2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x 1 x 2 = q ,

x 1 + x 2 = — p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0 ), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p . Если р < 0 , то оба корня отрицательны, если р < 0 , то оба корня положительны.

Например,

x 2 – 3 x + 2 = 0; x 1 = 2 иx 2 = 1, так какq = 2 > 0 иp = — 3 < 0;

x 2 + 8 x + 7 = 0; x 1 = — 7 иx 2 = — 1, так какq = 7 > 0 иp = 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0 ), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

Например,

x 2 + 4 x – 5 = 0; x 1 = — 5 иx 2 = 1, так какq = — 5 < 0 иp = 4 > 0;

x 2 – 8 x – 9 = 0; x 1 = 9 иx 2 = — 1, так какq = — 9 < 0 иp = — 8 < 0.

5. СПОСОБ: Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение

ах2 + b х + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнение

а2 х2 + а b х + ас = 0.

Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению

у2 + by + ас = 0,

равносильно данному. Его корни у1 и у 2 найдем с помощью теоремы Виета.

Окончательно получаем

х1 = у1 и х1 = у2 .

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Пример.

Решим уравнение 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у2 – 11у + 30 = 0.

Согласно теореме Виета

у1 = 5 х1 = 5/2 x 1 = 2,5

у2 = 6 x 2 = 6/2 x 2 = 3.

Ответ: 2,5; 3.

6. СПОСОБ: Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение

ах2 + b х + с = 0, где а ≠ 0.

1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,

х2 = с/а.

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

x 2 + b / ax + c / a = 0.

Согласно теореме Виета

x 1 + x 2 = — b / a ,

x 1 x 2 = 1• c / a .

По условию а – b + с = 0, откуда b = а + с. Таким образом,

x1 + x2 = — а + b/a= -1 – c/a,

x1 x2 = — 1• ( — c/a),

т.е. х1 = -1 и х2 = c / a , что м требовалось доказать.

Примеры.

1) Решим уравнение 345х2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

х1 = 1, х2 = c / a = -208/345.

Ответ: 1; -208/345.

2)Решим уравнение 132х2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

х1 = 1, х2 = c / a = 115/132.

Ответ: 1; 115/132.

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

Пример.

Решим уравнение 3х2 — 14х + 16 = 0 .

Решение . Имеем: а = 3, b = — 14, с = 16, k = — 7 ;

D = k 2 ac = (- 7)2 – 3 • 16 = 49 – 48 = 1, D > 0, два различных корня;

Ответ: 2; 8/3

В. Приведенное уравнение

х2 + рх + q = 0

совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней

mirznanii.com

Решение квадратных уравнений, формулы и примеры

Коэффициент называется старшим коэффициентом, а — свободным членом.

Если старший коэффициент , то квадратное уравнение (1) имеет вид и называется приведенным.

Чтобы квадратное уравнение (1) записать в виде (2), необходимо его левую и правую части поделить на старший коэффициент .

Решение квадратных уравнений с помощью дискриминанта

Если дискриминант , то квадратное уравнение (1) имеет два различных действительных корня:

   

Если дискриминант , то уравнение имеет два равных действительных корня (или корень кратности два)

   

Если дискриминант , то квадратное уравнение (1) действительных корней не имеет, то есть

   

Решение квадратных уравнений с помощью выделения полного квадрата

В левой части уравнения (2) выделим полный квадрат при помощи формулы сокращенного умножения «квадрат суммы/разности»:

   

Таким образом, уравнение (2) принимает вид:

   

или

   

Если выражение , то применим к левой части последнего равенства формулу «разность квадратов», в результате будем иметь:

   

Использовав тот факт, что произведение равно нулю, когда хотя бы один из сомножителей равен нулю, придем к следующей совокупности линейных уравнений:

   

Если выражение , то уравнение запишется в виде

   

Оно имеет кратный корень .

В случае, когда , то квадратное уравнение \eqref{GrindEQ__1_} действительных корней не имеет: .

Решение квадратных уравнений с помощью теоремы Виета

Если приведенное квадратное уравнение \eqref{GrindEQ__2_} имеет корни и , то

   

Следствие. Таким образом, целые решения уравнения \eqref{GrindEQ__2_} являются делителями свободного коэффициента .

Решение квадратных уравнений способом переброски коэффициентов

Умножим левую и правую части уравнения (1) на старший коэффициент :

или .

В результате старший коэффициент умножается на свободный член, то есть как бы «перебрасывается» к нему.

Делаем замену

   

В результате получаем уравнение

   

которое является равносильным заданному уравнению (1). Его корни та находим, если это возможно, по теореме Виета (если нет, то вычисляем дискриминант).

Искомые решения исходного уравнения

   

Частные случаи квадратных уравнений

Если хотя бы один из коэффициентов или равен нулю, то уравнение (1) называется \textbf{неполным}.

Если , то уравнение (1) принимает вид: , его кратный корень .

Если , то уравнение (1) запишется в виде , откуда

   

Если права часть , то уравнение имеет два корня

   

В случае же, если , то уравнение корней не имеет: .

Если , то уравнение \eqref{GrindEQ__1_} принимает вид , откуда

   

то есть

   

ru.solverbook.com

РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ — алгоритмы и примеры

Квадратным уравнением называется уравнение вида

где a, b, c — коэффициенты, причем a ≠ 0, а x – неизвестное, которое нужно найти.

Квадратное уравнение можно свести к приведенному виду – это вид, при котором коэффициент a = 1.

Решение квадратного уравнения через дискриминант

Решение квадратного уравнения через дискриминант выполняется по строго определенному алгоритму:

1. Вычислить дискриминант по формуле

2. Если D < 0 — уравнение не имеет корней

3. Если D > 0 — уравнение имеет 2 корня, которые вычисляются по формулам:

4. Если D = 0 — уравнение имеет ровно 1 корень, который вычисляется по формуле:

Теорема Виета для решения квадратного уравнения

Квадратное уравнение можно решить и с помощью теоремы Виета.

Теорема: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а их произведение – свободному члену этого уравнения.

То есть, чтобы решить квадратное уравнение с помощью теоремы Виета, достаточно подобрать такие x1 и x2, чтобы выполнялось:

Пример решения квадратного уравнения

Решим квадратное уравнение 2x² — 16x + 30 = 0 двумя способами.

Решение через дискриминант:

a = 2, b = -16, c = 30

D = (-16)² — 4 ⋅ 2 ⋅ 30 = 256 — 240 = 16

D > 0 => имеется 2 различных корня

x1 = (-(-16) + √16) / (2 ⋅ 2) = (16 + 4) / 4 = 5

x2 = (-(-16) — √16) / (2 ⋅ 2) = (16 — 4) / 4 = 3

Ответ: 3 и 5

Решение через теорему Виета:

a = 2, b = -16, c = 30

x1 + x2 = -(-16) / 2 = 8

x1 ⋅ x2 = 30 / 2 = 15

Разложим 15 на возможные пары множителей:

15 = 1 ⋅ 15 = (-1) ⋅ (-15) = 3 ⋅ 5 = (-3) ⋅ (-5)

И проверим, какие из них подойдут в качестве решения:

1 + 15 = 16 ≠ 8

-1 — 15 = -16 ≠ 8

3 + 5 = 8

-3 — 5 = -8 ≠ 8

Таким образом, в качестве корней подойдут только 3 и 5.

Ответ: 3 и 5

После решения любого уравнения рекомендуется подставить полученные корни в начальное уравнение, чтобы проверить правильность решения.

Для проверки результатов можно воспользоваться онлайн-калькулятором для решения квадратных уравнений.

worksbase.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *