Математика для чайников логарифмы – ? . . .

Урок 3. Логарифм. Свойства логарифмов. Выражения с логарифмами. Теория

Подготовка к ЕГЭ по математике

Эксперимент

Урок 3. Логарифм. Свойства логарифмов. Выражения с логарифмами.

Теория

Конспект урока

На предыдущих уроках мы обсуждали показательную функцию, решение показательных уравнений и неравенств.

Когда мы обсуждали решение показательных уравнений, то нам всегда удавалось представить обе части в виде степеней с одинаковыми основаниями.

Но вполне логично, что может возникнуть ситуация, когда это сделать не удастся. Например, решить уже рассмотренными методами уравнение  не получится, так как 5 мы пока не умеем представлять в виде степени с основанием 2.

С другой стороны, мы обсуждали тот факт, что показательная функция принимает любое положительное значение. Поэтому, в какой-то точке значение функции  должно равняться 5.

Фактически, мы столкнулись с ситуацией, похожей на извлечение корня – мы точно знали, что есть число, квадрат которого равен 2, но не могли записать его доступными нам методами. В том случае мы поступили следующим образом: ввели новое понятие «корень» и операцию извлечение корня, которая была обратна возведению в степень.

Возвращаясь к нашей проблеме, нам придётся поступить аналогично. Обозначим степень, в которую надо возвести 2, чтобы получить 5, как  – логарифм пяти по основанию 2.

То есть, определение логарифма следующее: для . То есть, логарифм показывает: в какую степень необходимо возвести основание логарифма (), чтобы получилось подлогарифмическое выражение ().

Рассмотрим простейшие примеры вычисления логарифмов:

1) , так как .

2) , так как .

3) , так как .

4), так как .

Существует два специальных вида логарифмов: десятичный и натуральный.

Десятичный логарифм

– это логарифм с основанием 10. Он обозначается следующим образом: .

Натуральный логарифм – это логарифм с основанием  (напомним, что ). Он обозначается следующим образом: .

Исходя из определения логарифма , легко получить следующее свойство, которое называется основным логарифмическим тождеством. Для этого достаточно подставить вторую формулу в первую. В результате получаем: .

Это выражение называется основным логарифмическим тождеством.

Давайте сформулируем ещё несколько основных свойств логарифмов ().

1)      (т.к. ),  

2)      

3)    

4)     

5)    Формула перехода к новому основанию:  

6)    (т.к. )

7)    (т.к. )

На этом уроке мы с вами сформулировали определение логарифма, основное логарифмическое тождество и свойства логарифма.

В практической части урока мы научимся вычислять различные логарифмы, а также преобразовывать выражения, содержащие логарифмы.

Полезные ссылки:

1)      Алгебра 11 класс: «Понятие логарифма» 

2)      Алгебра 11 класс: «Понятие логарифма. Простейшие задачи»

3)      Алгебра 11 класс: «Свойства логарифмов. Логарифм произведения и частного» 

4)      Алгебра 11 класс: «Свойства логарифмов. Логарифм степени» 

5)      Алгебра 11 класс: «Свойства логарифмов. Решение более трудных задач» 

6)      Алгебра 11 класс: «Переход к новому основанию логарифма» 

7)      Алгебра 11 класс: «Переход к новому основанию логарифма. Решение задач» 

interneturok.ru

Логарифмы

Логарифмы изучаются в старших классах и считаются достаточно сложными для понимания. На самом же деле, ничего сложного здесь нет — надо только начать изучение.

По существу, нахождение логарифма — это операция, обратная возведению в степень. Отсюда возникают все свойства и ограничения логарифма.

Логарифмические функции часто попадаются на экзаменах в виде уравнений и неравенств. Поэтому умение работать с логарифмами и твердое знание их свойств совершенно необходимы.

Глава 1.
Понятие логарифма
§ 1.
Что такое логарифм
§ 2.
Тест к параграфу «Что такое логарифм» (легкий)
§ 3.
Тест к уроку «Что такое логарифм» (средний)
§ 4.
Тест к уроку «Что такое логарифм» (тяжелый)
§ 5.
Основные свойства логарифмов
Глава 2.
Логарифмические уравнения
§ 1.
Простейшие логарифмические уравнения — первые шаги
§ 2.
Логарифмические уравнения: комплект видеоуроков для изучения
§ 3.
Уравнения, квадратные относительно логарифма, и другие нестандартные ситуации
§ 4.
Решение логарифмических уравнений — заключительный комплект видеоуроков
Глава 3.
Логарифмические неравенства
§ 1.
Преобразование логарифмических неравенств с одинаковым основанием
§ 2.
Логарифмические неравенства с переменным основанием
§ 3.
Логарифмические неравенства, сводящиеся к квадратным
§ 4.
Неравенства, квадратные относительно логарифма
§ 5.
Дробно-рациональные неравенства с логарифмами
§ 6.
Сложные логарифмические неравенства
Глава 4.
Что такое логарифм
Глава 5.
Свойства логарифмов
Глава 6.
Логарифмические выражения
Глава 7.
Логарифмическая функция
§ 10.
Логарифм с переменным основанием и метод рационализации
§ 18.
Решение сложных логарифмических неравенств разными способами
§ 19.
Совмещение метода рационализации и метода интервалов
§ 20.
Подробное решение логарифмического неравенства методом рационализации
§ 21.
Метод рационализации логарифмических неравенств
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

www.berdov.com

Свойства логарифмов. Логарифм произведения и частного. Видеоурок. Алгебра 11 Класс

Напомним определение логарифма. Для этого рассмотрим показательную функцию . В левой части стоит показательная функция, если выполняются следующие условия: . Свойства показательной функции нам известны: она монотонна и принимает все положительные значения. Это значит, что любое положительное значение b функция принимает при единственном значении аргумента, то есть, уравнение  имеет единственный корень, который и называется логарифмом:

Определение:

Логарифмом числа b по основанию а называется такой показатель степени, в которую нужно возвести основание а, чтобы получить число b.

Исходя из определения, имеем основное логарифмическое тождество:

То есть, любое положительное число b можно представить при помощи основного логарифмического тождества.

Рассмотрим конкретный пример: .

Рис. 1. График уравнения

По графику очевидно, что каждое свое положительное значение функция достигает при единственном значении аргумента.

Решением заданного уравнения будет такое значение аргумента:

.

Перейдем к доказательству теорем, являющихся непосредственной целью данного урока.

Теорема 1:

Логарифм произведения двух положительных чисел равен сумме логарифмов этих чисел.

Здесь

Доказательство:

Представим числа b и с с помощью основного логарифмического тождества:

Тогда:

Согласно свойству степени при умножении степеней с одинаковым основанием, показатели складываются. Получаем:

По определению логарифма имеем:

Что и требовалось доказать.

Выведенная формула применяется для выполнения различного рода вычислений.

Пример 1 – вычислить:

а)

Несложно догадаться, что сумму логарифмов с одинаковым основанием можно представить как логарифм произведения:

б)

Аналогично предыдущему примеру представляем сумму десятичных логарифмов как логарифм произведения:

Комментарий: в ходе решения была применена формула

Обобщим выведенную формулу для произведения трех положительных чисел.

Доказать:

Здесь

Доказательство:

Применим дважды выведенную формулу, на первом шаге будем считать произведение bc за единое число:

Теперь раскроем первый логарифм по той же формуле:

Что и требовалось доказать.

Перейдем к следующей формуле.

Дано:

Доказать:

Представим числа b и с с помощью основного логарифмического тождества:

Тогда:

Согласно свойству степени, при умножении степеней с одинаковым основанием показатели складываются. Получаем:

По определению логарифма имеем:

Что и требовалось доказать.

Пример 2 – вычислить:

а)

Согласно выведенной формуле, разность логарифмов с одинаковым основанием можем представить как логарифм частного:

б)

Аналогично предыдущему примеру:

Итак, мы изучили некоторые важные свойства логарифма, вывели формулы для логарифма произведения и логарифма частного. Далее мы продолжим изучение свойств логарифма.

 

Список литературы

  1. Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
  2. Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
  3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Webmath.ru (Источник).
  2. Berdov.com (Источник).
  3. Ru.onlinemschool.com (Источник).

 

Домашнее задание

1. Алгебра и начала анализа, 10–11 класс (А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын) 1990, № 506;

2. Вычислить:

а) ; б) ; в) ; г) ;

3. Вычислить:

а) ; б) ;

в) ; г) .

interneturok.ru

вычисления логарифмов — Колпаков Александр Николаевич

Комплект простейших заданий уровня А на вычисление логарифмов, который репетитор по математике регулярно использует на своих занятиях с большинством учеников. Материал предназначен для учащихся 10-11 классов и преподавателей в помощь при подготовке к ЕГЭ, а также для текущей школьной работы, направленной на отработку вычислительных навыков.

Вычислите:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

Напутствие репетитора по математике:
Вычисляя логарифмы, применяйте следующие формулы:
и
Для решения каждого задания представьте основание логарифма и число под его знаком в виде степени с одним и тем же основанием и вынесите полученные показатели из-под логарифма в его коэффициент. Логарифм с оставшимися равными числами будет равен единице.

Надо сказать, что в 80% задачниках по математике (школьных учебниках и пособиях по подготовке к ЕГЭ) крайне мало вычислительных упражнений на логарифмы, связанных со свойствами степеней. Если репетитор по математике использует стандартные пособия, то в его распоряжении оказывается обычно не более 5 — 6 примеров на логарифмы по каждому алгоритму их вычисления. Я уже давно не пользуюсь никакими задачниками и предлагаю ученикам свои материалы. В заданиях перемешиваю различные виды чисел: десятичные, обыкновенные, корни, дроби, степени с отрицательными показателями.

Вычислите логарифмы с использованием следующих формул:
и

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

Задачи на основное логарифмическое тождество:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

Задачи на формулу перехода к новому основанию

1)

2)

3)

4)

5)

6)

7)

8)

9)

Комментарий репетитора по математике относительно состава задач. Задания на логарифмы составлены по классическим законам методики и дидактики и имеют достаточное количеством однотипных упражнений. На первый взгляд может показаться, что все номера, взятые из одного раздела, как две капли воды похожи друг на друга. Отличие наблюдается только в числах. Но любой опытный репетитор по математике Вам скажет, что достаточно в одном из таких однотипных примеров поменять какое-нибудь целое число, например, на иррациональное или на дробное и перед ученик мгновенно растеряется. Поэтому я постарался обыграть все возможные числовые ситуации разнообразить номера десятичными и обыкновенными дробями, корнями разных степеней, комбинациями действий и коэффициентов, окружающих логарифмы.

В реальности я подаю задания ученику на отдельном листочке А4 с максимально плотным расположением примеров. Все на одном листе! Один из таких планов с представлен ниже:

Ученикам:
Задания можно использовать для самостоятельной подготовки к ЕГЭ по математике с целью научиться решать простейшие задачи на логарифмы из части В. Регулярно повторяйте с репетитором формулы, ибо без их уверенного запоминания Вам будет нелегко соориентироваться в вычислениях, в которых применяются сразу две или даже три формулы сразу.

Преподавателям:
Напишите свое мнение о качестве материалов. Понравилась ли Вам подборка упражнений? Насколько велика потребность в таких задачах у репетитора по математике? Помогли ли мои упражнения в практической работе? Пишите, комментируйте! Присылайте интересные логарифмические задания на вычисления, которые встретились Вам в тот или иной период подготовки к ЕГЭ.

Колпаков А.Н. Репетитор по математике — автор комплекта.

ankolpakov.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *