Метод электронного баланса и ионно-электронный метод (метод полуреакций)
Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение. Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.
Метод электронного баланса
В его основе лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители.
В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.
- Сначала необходимо составить схему реакции: записать вещества в начале и конце реакции, учитывая, что в кислой среде MnO4— восстанавливается до Mn2+ (см. схему):
Na2SO3 + KMnO4 + H2SO4 = Na2SO4 + MnSO4 + K2SO4 + H2O
- Далее определим какие из соединений являются окислителем и восстановителем; найдем их степень окисления в начале и конце реакции:
Na2S+4O3 + KMn+7O4 + H2SO4 = Na2S+6O4 + Mn+2SO4 + K2SO4 + H2O
Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6, таким образом, S+4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn+7 принимает 5 электронов и является окислителем.
- Составим электронные уравнения и найдем коэффициенты при окислителе и восстановителе.
S+4 – 2e— = S+6 ¦ 5 восстановитель, процесс окисления
Mn+7 +5e— = Mn+2 ¦ 2 окислитель, процесс восстановления
Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:
- Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
- Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.
Таким образом, 5 электронов, принимаемых окислителем Mn+7, ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S+4 коэффициентом перед окислителем:
5Na2S+4O3 + 2KMn+7O4 + H2SO4 = 5Na2S+6O4 + 2Mn+2SO4 + K2SO4 + H2O
- Далее надо уравнять количества атомов элементов, не изменяющих степень окисления, в такой последовательности: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.
Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.
По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.
В результате реакции образуется 8 кислотных остатков SO42-, из которых 5 – за счет превращения 5SO32- → 5SO42-, а 3 – за счет молекул серной кислоты 8SO42-— 5SO42- = 3SO42-.
Таким образом, серной кислоты надо взять 3 молекулы:
5Na2SO3 + 2KMnO4 + 3H2SO4 = 5Na2SO4 + 2MnSO4 + K2SO4 + H2O
- Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты
6H+ + 3O-2 = 3H2O
Окончательный вид уравнения следующий:
5Na2SO3 + 2KMnO4 + 3H2SO4 = 5Na2SO4 + 2MnSO4 + K2SO4 + 3H2O
Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.
Ионно-электронный метод (метод полуреакций)
Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления. При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде). В ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы: H+ — кислая среда, OH— — щелочная среда и H2O – нейтральная среда.
Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.
- Сначала необходимо составить схему реакции: записать вещества в начале и конце реакции:
Na2SO3 + KMnO4 + H2SO4 = Na2SO4 + MnSO4 + K2SO4 + H2O
- Запишем уравнение в ионном виде, сократив те ионы, которые не принимают участие в процессе окисления-восстановления:
SO32- + MnO4— + 2H+ = Mn2+ + SO42- + H2O
- Далее определим окислитель и восстановитель и составим полуреакции процессов восстановления и окисления.
В приведенной реакции окислитель — MnO4— принимает 5 электронов восстанавливаясь в кислой среде до Mn2+. При этом освобождается кислород, входящий в состав MnO4—, который, соединяясь с H+, образует воду:
MnO4— + 8H+ + 5e— = Mn2+ + 4H2O
Восстановитель SO32- — окисляется до SO42-, отдав 2 электрона. Как видно образовавшийся ион SO42- содержит больше кислорода, чем исходный SO32-. Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H+:
SO32- + H2O — 2e— = SO42- + 2H+
- Находим коэффициент для окислителя и восстановителя, учитывая, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:
MnO4— + 8H+ + 5e— = Mn2+ + 4H2O ¦2 окислитель, процесс восстановления
SO32- + H2O — 2e— = SO42- + 2H+ ¦5 восстановитель, процесс окисления
- Затем необходимо просуммировать обе полуреакции, предварительно умножая на найденные коэффициенты, получаем:
2MnO4— + 16H+ + 5SO32- + 5H2O = 2Mn2+ + 8H2O + 5SO42- + 10H+
Сократив подобные члены, находим ионное уравнение:
2MnO4— + 5SO32- + 6H+ = 2Mn2+ + 5SO42- + 3H2O
- Запишем молекулярное уравнение, которое имеет следующий вид:
5Na2SO3 + 2KMnO4 + 3H2SO4 = 5Na2SO4 + 2MnSO4 + K2SO4 + 3H2O
Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.
Na2SO3 + KMnO4 + H2O = Na2SO4 + MnO2 + KOH
В ионном виде уравнение принимает вид:
SO32- + MnO4— + H2O = MnO2 + SO42- + OH—
Также, как и предыдущем примере, окислителем является MnO4—, а восстановителем SO32-.
В нейтральной и слабощелочной среде MnO4— принимает 3 электрона и восстанавливается до MnО2. SO32-— окисляется до SO42-, отдав 2 электрона.
Полуреакции имеют следующий вид:
MnO4— + 2H2O + 3e— = MnО2 + 4OH— ¦2 окислитель, процесс восстановления
SO32- + 2OH—— 2e— = SO42- + H2O ¦3 восстановитель, процесс окисления
Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:
3SO32- + 2MnO4— + H2O =2 MnO2 + 3SO42- + 2OH—
3Na2SO3 + 2KMnO4 + H2O = 2MnO2 + 3Na2SO4 + 2KOH
И еще один пример — составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.
Na2SO3 + KMnO4 + KOH = Na2SO4 + K2MnO4 + H2O
В ионном виде уравнение принимает вид:
SO32- + MnO4— + OH— = MnO2 + SO42- + H2O
В щелочной среде окислитель MnO4— принимает 1 электрон и восстанавливается до MnО42-. Восстановитель SO32-— окисляется до SO42-, отдав 2 электрона.
Полуреакции имеют следующий вид:
MnO4— + e— = MnО2 ¦2 окислитель, процесс восстановления
SO32- + 2OH—— 2e— = SO42- + H2O ¦1 восстановитель, процесс окисления
Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:
SO32- + 2MnO4— + 2OH— = 2MnО42- + SO42- + H2O
Na2SO3 + 2KMnO4 + H2O = 2K2MnO4 + 3Na2SO4 + 2KOH
Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.
zadachi-po-khimii.ru
Химия. ОВР — метод полуреакций
Сегодня мы научимся расставлять коэффициенты в окислительно-восстановительных реакциях (сокращенно ОВР) методом электронно-ионного баланса.
Задание обычно звучит так:
Подберите коэффициенты к уравнениям окислительно-восстановительной реакции, используя метод электронно-ионного баланса, укажите окислитель и восстановитель, процессы окисления и восстановления.
Для примера разберем следующую ОВР:
Cl2 + K2S + KOH → KCl + K2SO4 + H2O
С чего начать?
Первым делом «растворяем то, что растворяется», иначе говоря, растворимые соединения разбиваем на анионы (отрицательно заряженные ионы) и катионы (положительно заряженные ионы).
Для нашей реакции:
Сl20 + K21+ + S2- + K1+ + OH1- → K1+ + Cl1- + K21+ + SO42- + H2O
Сl20 + S2- + OH1- → Cl1- + SO42- + H2O
Определим среду нашей ОВР. Ионы OH- в левой части реакции говорят нам, что среда щелочная. Это хуже, чем кислотная, но мы справимся ☺
Расставим степени окисления над каждым атомом. Принцип очень простой: степень окисления кислорода (почти) всегда 2-; водорода – 1+; степень окисления металлов равна порядковому номеру группы в таблице Менделеева, где живет этот металл. Степени окисления оставшихся атомов вычисляем, вычитая из степени окисления всего иона степени окисления известных атомов.
Сl20 + S2- + O2-H1+ → Cl1- + S6+O42- + H2O2-
Видно, что в ОВР изменяются степени окисления хлора (было 0, стало 1-) и серы (было 2-, стало 6+).
Степень окисления хлора уменьшилась, т.е. он забрал себе лишние электроны. Степень окисления серы увеличилась, т.е. она электроны отдала. Ион, отдавший ионы, называется восстановителем; получивший электроны – окислителем.
Теперь записываем две полуреакции для серы и для хлора:
Cl20 → Cl1- — окислитель, полуреакция восстановления
S2- → SO42- — восстановитель, полуреакция окисления
После десятка-другого ОВР все описанное выше делается в уме за несколько секунд.
Теперь начинаем работать с выделенными полуреакциями.
Cl20 → Cl1-
Шаг первый: уравниваем количество атомов главного элемента (хлора).
Cl20 → 2Cl1-
Шаг второй: уравниваем количество атомов кислорода. У нас кислорода нет, едем дальше.
Шаг третий: уравниваем количество атомов водорода. Водорода тоже нет, едем дальше.
Шаг четвертый: уравниваем заряды с помощью электронов. В нашем случае слева заряд 0, справа 2 заряда по -1, достаточно очевидно, что нужно добавить 2 электрона слева. Что мы и делаем:
Cl20 + 2е → 2Cl1-
Одна полуреакция готова. Принимаемся за вторую.
S2- → SO42-
Шаг первый: уравниваем количество атомов главного элемента (серы). У нас они уже равны, едем дальше.
Поскольку среда щелочная, шаг второй и шаг третий объединяем: нужно уравнять количества атомов кислорода и водорода, причем делать это нужно, добавляя слева ионы OH-, а справа молекулы воды. Я это делаю обычно перебором. В нашем случае справа нужно добавить 8 ионов OH—, а слева – 4 молекулы воды.
S2- + 8OH— → SO42- + 4H2O
Все атомы уравнялись.
Шаг четвертый: уравниваем заряды с помощью электронов. В нашем случае слева заряд -10, справа -2, вычитаем слева 8 электронов:
S2- + 8OH— — 8e → SO42- + 4H2O
Теперь выписываем наши уравненные полуреакции рядом. Хлор забирает 2 электрона, сера отдает 8 электронов, значит, чтобы все сошлось, необходимо умножить полуреакцию хлора на 4.
А если делать на автомате, то записываем количество электронов, сокращаем (если сокращается) и меняем местами. На получившееся число умножаем полуреакцию и собираем обратно в молекулярно-ионную запись.
Cl20 + 2е → 2Cl— 2→1→4
S2- + 8OH— — 8e → SO42- + 4H2O 8→4→1
4Сl20 + S2- + 8OH— → 8Cl— + SO42- + 4H2O
Проверяем, все ли сходится: хлора – по 8 атомов с каждой стороны, серы – по 1, водорода – по 8, кислорода – по 8.
С теми же коэффициентами переписываем полную ОВР.
4Cl2 + K2S + 8KOH → 8KCl + K2SO4 + 4H2O
Готово.
Для закрепления рассмотрим еще одну реакцию, на этот раз с кислой средой. Не буду расписывать так же подробно, только ключевые моменты.
K2Cr2O7 + Al + H2SO4 → Cr2(SO4)3 + Al2(SO4)3 + K2SO4 + H2O
Наметанным глазом сразу видно: степени окисления меняются у алюминия и у хрома. Выписываем полуреакции и уравниваем их.
Первая полуреакция:
Al0 → Al3+
Шаг первый: уравниваем количество атомов главного элемента – выполнено.
Шаг второй: уравниваем количество атомов кислорода – выполнено.
Шаг третий: уравниваем количество атомов водорода – выполнено.
Шаг четвертый: уравниваем заряды с помощью электронов. Слева заряд 0, справа +3, нужно вычесть слева 3 электрона. Алюминий электроны отдает, значит, он в реакции восстановитель, а его полуреакция является полуреакцией окисления.
Al0 – 3e → Al3+
Вторая полуреакция:
Cr2O72- → Cr3+
Шаг первый: уравниваем количество атомов главного элемента.
Cr2O72- → 2Cr3+
Шаг второй: уравниваем количество атомов кислорода с помощью воды.
Cr2O72- → 2Cr3+ + 7H2O
Шаг третий: уравниваем количество атомов водорода c помощью ионов H+, потому что среда кислая. О том, что она кислая, нам говорит наличие кислоты в левой части реакции (если бы мы записали ионно-молекулярную форму реакции, слева остались бы ионы H+)
Cr2O72- + 14H
Шаг четвертый: уравниваем заряды с помощью электронов. Слева заряд +12, справа 2 раза по +3, нужно добавить слева 6 электрона. Хром электроны забирает, значит, он в реакции окислитель, а его полуреакция является полуреакцией восстановления.
Cr2O72- + 14H+ + 6e → 2Cr3+ + 7H2O
Выписываем полуреакции рядом и производим манипуляции с электронами:
Al0 – 3e → Al3+ 3→1→2
Cr2O72- + 14H+ + 6e → 2Cr3+ + 7H2O 6→2→1
Собираем две полуреакции в ионно-молекулярную реакцию, домножив, соответственно, на полученные числа.
Cr2O72- + 2Al0 + 14H+ → 2Cr3+ + 2Al3+ + 7H2O
Восстанавливаем полную реакцию, расставляя найденные коэффициенты:
K2Cr2O7 + 2Al + 7H2SO4 → Cr2(SO4)3 + Al2(SO4)3 + K2SO4 + 7H2O
Для проверки я обычно считаю, сходятся ли количества атомов кислорода: слева у нас 7+7*4=35 атомов, справа – 3*4+3*4+4+7=35 атомов.
Кислород сошелся, значит, все верно.
Любую ОВР можно уравнять описанным методом. Бывают, конечно, более сложные варианты, но смысл всегда один и тот же.
Дерзайте, и у вас все получится.
Если у Вас есть вопросы по решению данной задачи (или другой), пишите на наш e-mail [email protected], мы всегда готовы помочь.
С уважением, Botva-Project
botva-project.ru
Метод полуреакций | Дистанционные уроки
Решаем Часть С задание №1
Дано уравнение:
h3S + K2Cr2O7 + h3SO4 → …
Как решать такие окислительно-восстановительные реакции?
Уравнивание окислительно-восстановительных реакций
Во-первых, давайте определимся, в каких случаях лучше использовать метод полуреакций:
- реакция происходит в растворе
- в реакции принимают участие больше чем 2 реагента, да и продуктов реакции больше, чем 2
Правила метода полуреакций
(проще всего будет объяснить их сразу на примере)
h3S + K2Cr2O7 + h3SO4 → …
1. Определяем участников окислительно-восстановительного процесса:
K2Cr2O7 — Сr находится в высшей степени окисления — +6, значит бихромат калия будет окислителем, т.е. сам будет восстанавливаться. Обычно, в кислой среде раствора он восстанавливается либо до Cr2O3, либо до Сr3+
Давайте думать логически.
Допустим, у нас образовался оксид, один из реагентов это серная кислота . Будет она реагировать с оксидом? Конечно! Мы получим Cr3+
Второй реагент — h3S. Сера находится в минимальной степени окисления — -2. Значит, она будет окисляться. До S°.
2. Выписываем участников овр в ионной форме (!) (Т.е., те вещества. которые нельзя разбить на ионы, пишем в том виде, в каком они представлены)
Сr2O7(2)- → Cr(3+)
S(2-) → S(0)
3. Уравниваем количество атомов:
Сr2O7(2-) → 2Cr3(+)
S(2- ) → S(0)
4. Определяем среду реакции. У нас один из реагентов — серная кислота, значит, среда у нас однозначно кислая.
В кислой среде раствора уравнивание недостающих атомов идет по схеме:
h3O → H(+)
Причем, воду мы прибавляем в ту часть уравнения, где недостаток кислорода (!)
Сr2O7(2-) → 2Cr(3+) + 7h3O
теперь у нас изменилось количество водорода, надо его уравнять
Сr2O7(2-) +14H(+) → 2Cr(3+) + 7h3O
5. Уравниваем заряды:
Сr2O7(2)- +14H(+) → 2Cr(3+) + 7h3O
итоговый заряд: +12 → +6
Сr2O7(2-) +14H(+) + 6е- → 2Cr(3+) + 7h3O
S2- → S°
-2 0
S(2-) -2е- → S(0)
6. Теперь надо уравнять реакции восстановления и окисления между собой ( чтобы “количество принятых электронов было равно количеству отданных”)
Сr2O7(2)- +14H(+) +6e- → 2Cr(3+) + 7h3O |*1
S(2- ) -2е- → S(0 ) |*3
7. Выписываем все реагенты с учетом коэффициентов и все продукты овр:
Сr2O7(2-) +14H(+) + 3S(2-) → 2Cr(3+) + 7h3O + 3S(0)
8. Дописываем к каждому иону его “половинку” с учетом коэффициентов и сочетаем продукты реакции:
Сr2O7(2-) +14H(+) + 3S(2-) → 2Cr(3+) + 7h3O + 3S(0)
+2K(+) +7SO4(2-) + 6H(+) → +2K(+) +7SO4(2-) + 6H(+)
____________________________________________
K2Cr2O7 + 7h3SO4 + 3h3S → Cr2(SO4)3 + 7h3O + 3S + K2SO4 + 3h3SO4
9. Сокращаем одинаковые молекулы слева и справа:
K2Cr2O7 + 4h3SO4 + 3h3S → Cr2(SO4)3 + 3S + K2SO4 + 7h3O
Метод полуреакций удобен тем, что можно легко предсказать продукты реакции и сочетания ионов. Да и уравнивать таким способом легче.
Естественно, этот метод подходит только для водных растворов.
Для решения овр такого типа нужно просто натренироваться, для этого предлагаю вам решить следующие овр методом полуреакций:
- MnO2 + O2 + KOH → …
- Cl2 + NaOH → NaClO3 + …
- CrCl3 + H2O2 + KOH → …
Как всегда, в заданиях такого типа (часть С №1) нужно предсказать продукты реакции и уравнять. Если что-то не будет получаться или возникнут вопросы, пишите в комментариях — обсудим.
Как решать окислительно-восстановительные реакции в кислой среде раствора мы разобрали, в щелочной — смотрите << здесь >>
- в ЕГЭ это вопрос C1 — примеры окислительно-восстановительных реакций
Еще на эту тему:
Обсуждение: «Метод Полуреакций»
distant-lessons.ru
Метод полуреакций: алгоритм
Многие химические процессы проходят с изменением окислительных степеней атомов, которые образуют реагирующие соединения. Написание уравнений реакций окислительно-восстановительного типа часто сопровождается трудностью при расстановке коэффициентов перед каждой формулой веществ. Для этих целей разработаны методики, связанные с электронным или электронно-ионным балансом распределения зарядов. В статье подробно описан второй способ составления уравнений.
Метод полуреакций, сущность
Он еще называется электронно-ионным балансом распределения коэффициентных множителей. Основан метод на обмене отрицательно заряженными частицами между анионами или катионами в растворенных средах с разным значением водородного показателя.
В реакциях электролитов окислительного и восстановительного типа участвуют ионы с отрицательным или положительным зарядом. Уравнения молекулярно-ионного вида, в основе которых задействован метод полуреакций, наглядно доказывают суть любого процесса.
Для формирования баланса используют специальное обозначение электролитов сильного звена в качестве ионных частиц, а слабых соединений, газов и осадков в виде недиссоциированных молекул. В составе схемы необходимо указывать частицы, в которых изменяются степени их окисления. Для определения растворяющей среды в балансе обозначают кислые (H+), щелочные (OH—) и нейтральные (H2O) условия.
Для чего используют?
В ОВР метод полуреакций направлен на написание уравнений ионных отдельно для процессов окислительных и восстановительных. Конечным балансом будет их суммирование.
Этапы выполнения
Своими особенностями написания обладает метод полуреакций. Алгоритм включает следующие стадии:
— Первым делом следует записать формулы всех реагирующих веществ. Например:
H2S + KMnO4 + HCl
— Затем необходимо установить функцию, с химической точки зрения, каждого составляющего процесса. В данной реакции KMnO4 выступает в роли окислителя, H2S является восстановителем, а HCl определяет кислотную среду.
— Третьим этапом нужно записать с новой строки формулы ионные реагирующих соединений с сильным электролитным потенциалом, у атомов которых наблюдается смена степеней их окисления. В данном взаимодействии MnO4— выступает в роли окисляющего вещества, H2S является восстанавливающим реагентом, а H+ или оксониевый катион H3O+ определяет кислотную среду. Газообразные, твердые или слабые электролитические соединения выражают целыми формулами молекулярными.
Зная исходные компоненты, постараться определить, какая у окисляющего и восстанавливающего реагента будет восстановленная и окисленная форма соответственно. Иногда конечные вещества уже заданы в условиях, что облегчает работу. В последующих уравнениях указывают переход H2S (сероводорода) в S (серу), а аниона MnO4— в катион Mn2+.
Для баланса атомарных частиц в левом и правом участке в кислотную среду прибавляют водородный катион H+ или молекулярную воду. В раствор щелочной вносят ионы гидроксида OH— или H2O.
MnO4—→ Mn2+
В растворе атом кислорода из манганатных ионов совместно с H+ формируют молекулы воды. Для выравнивания количества элементов уравнение записывают так: 8H+ + MnO4— → 4H2O + Mn2+.
Затем проводят электрическую балансировку. Для этого считают общую сумму зарядов в левом участке, получается +7, а затем в правой стороне, выходит +2. Для уравновешивания процесса к исходным веществам добавляется пять отрицательных частиц: 8H+ + MnO4— + 5e— → 4H2O + Mn2+. Получается полуреакция восстановления.
Теперь уравнять по числу атомов следует процесс окисления. Для этого в правую часть добавляют водородные катионы: H2S → 2H+ + S.
После проводят уравнивание зарядов: H2S -2e— → 2H+ + S. Видно, что от исходных соединений отнимают две отрицательные частицы. Получается полуреакция окислительного процесса.
Записывают оба уравнения в столбик и выравнивают отданные и принятые заряды. По правилу определения наименьших кратных подбирают для каждой полуреакции свой множитель. На него умножается окислительное и восстановительное уравнение.
Теперь можно осуществить суммирование двух балансов, сложив левые и правые стороны между собой и сократив количество электронных частиц.
8H+ + MnO4— + 5e— → 4H2O + Mn2+ |2
H2S -2e— → 2H+ + S |5
16H+ + 2MnO4— + 5H2S → 8H2O + 2Mn2+ + 10H+ + 5S
В полученном уравнении можно число H+ сократить на 10: 6H+ + 2MnO4— + 5H2S → 8H2O + 2Mn2+ + 5S.
Проверяем правильность составления ионного баланса с помощью подсчета числа кислородных атомов до стрелки и после нее, которое равняется 8. Также необходимо сверить заряды конечной и исходной части баланса: (+6) + (-2) = +4. Если все совпадает, то он составлен правильно.
Метод полуреакций заканчивается переходом от ионной записи к уравнению молекулярному. Для каждой анионной и катионной частицы левой части баланса подбирается противоположный по заряду ион. Затем их переносят в правую сторону, в таком же количестве. Теперь ионы можно соединить в целые молекулы.
6H+ + 2MnO4— + 5H2S → 8H2O + 2Mn2+ + 5S
6Cl— + 2K+ → 6Cl— + 2K+
H2S + KMnO4 + 6HCl → 8H2O + 2MnCl2 + 5S + 2KCl.
Применять метод полуреакций, алгоритм которого сводится к написанию молекулярного уравнения, можно наряду с написанием балансов электронного типа.
Определение окислителей
Такая роль принадлежит ионным, атомарным или молекулярным частицам, которые принимают отрицательно заряженные электроны. Вещества окисляющие претерпевают восстановление в реакциях. Они обладают электронным недостатком, который легко можно восполнить. Такие процессы включают окислительно-восстановительные полуреакции.
Не у всех веществ имеется способность присоединять электроны. К сильным окисляющим реагентам относят:
- галогеновых представителей;
- кислоту типа азотной, селеновой и серной;
- калий перманганатный, дихроматный, манганатный, хроматный;
- марганцовые и свинцовые четырехвалентные оксиды;
- серебро и золото ионное;
- соединения газообразные кислорода;
- меди двухвалентной и серебра одновалентного оксиды;
- хлорсодержащие солевые компоненты;
- водку царскую;
- водорода перекись.
Определение восстановителей
Такая роль принадлежит ионным, атомарным или молекулярным частицам, которые отдают отрицательный заряд. В реакциях восстанавливающие вещества претерпевают окислительное действие при отщеплении электронов.
Восстановительными свойствами обладают:
- представители многих металлов;
- серы четырехвалентной соединения и сероводород;
- галогенсодержащие кислоты;
- железа, хрома и марганца сульфаты;
- олова двухвалентный хлорид;
- азотсодержащие реагенты типа кислоты азотистой, двухвалентного оксида, аммиака и гидразина;
- природный углерод и его оксид двухвалентный;
- водородные молекулы;
- кислота фосфористая.
Преимущества электронно-ионного способа
Чтобы написать окислительно-восстановительные реакции, метод полуреакций применяют чаще, чем баланс электронного вида.
Связано это с преимуществами электронно-ионного способа:
- Во время написания уравнения рассматривают реальные ионы и соединения, которые существуют в составе раствора.
- Можно изначально не иметь информации о получающихся веществах, их определяют на конечных этапах.
- Не всегда нужны данные об окислительной степени.
- Благодаря методу можно узнать число электронов, которые участвуют в полуреакциях, как меняется водородный показатель раствора.
- По сокращенным уравнениям ионного вида изучается особенность протекания процессов и структура получившихся веществ.
Полуреакции в кислом растворе
Проведение вычислений при избытке водородных ионов подчиняется основному алгоритму. Метод полуреакций в кислой среде начинают с записи составных частей любого процесса. Потом их выражают в форме уравнений ионного вида с соблюдением баланса атомарного и электронного заряда. Отдельно записывают процессы окислительного и восстановительного характера.
Для выравнивания атомарного кислорода в сторону реакций с его избытком привносят водородные катионы. Количества H+ должно хватить для получения молекулярной воды. В сторону недостатка кислорода приписывают H2O.
Затем проводят баланс водородных атомов и электронов.
Делают суммирование частей уравнений до и после стрелки с расстановкой коэффициентов.
Осуществляют сокращение одинаковых ионов и молекул. К уже записанным реагентам в суммарном уравнении выполняют добавление недостающих анионных и катионных частиц. Их количество после и до стрелочки должно совпадать.
Уравнение ОВР (метод полуреакций) считается выполненным при написании готового выражения молекулярного вида. Возле каждого компонента должен стоять определенный множитель.
Примеры для кислой среды
Взаимодействие нитрита натрия с кислотой хлорноватой приводит к получению натрия нитрата и кислоты соляной. Для расстановки коэффициентов используется метод полуреакций, примеры написания уравнений связаны с указанием кислой среды.
NaNO2 + HClO3 → NaNO3 + HCl
ClO3— + 6H+ + 6e— → 3H2O + Cl— |1
NO2— + H2O – 2e— → NO3— +2H+ |3
ClO3— + 6H+ + 3H2O + 3NO2— → 3H2O + Cl— + 3NO3— +6H+
ClO3— + 3NO2— → Cl— + 3NO3—
3Na+ + H+ → 3Na+ + H+
3NaNO2 + HClO3 → 3NaNO3 + HCl.
В данном процессе из нитрита получается нитрат натрия, а из хлорноватой образуется соляная кислота. Окислительная степень азота изменяется с +3 до +5, а заряд хлора +5 становится -1. Оба продукта не образуют осадка.
Полуреакции для щелочной среды
Проведение вычислений при избытке гидроксидных ионов соответствует расчетам для кислых растворов. Метод полуреакций в щелочной среде также начинают с выражения составных частей процесса в форме ионных уравнений. Отличия наблюдаются во время выравнивания числа атомарного кислорода. Так, в сторону реакции с его избытком привносят молекулярную воду, а в противоположную часть дописывают анионы гидроксида.
Коэффициент перед молекулой H2O показывает разницу в количестве кислорода после и до стрелки, а для ионов OH— его удваивают. В ходе окисления реагент, выполняющий роль восстановителя, отнимает атомы O от гидроксильных анионов.
Метод полуреакций заканчивается проведением оставшихся этапов алгоритма, которые совпадают с процессами, имеющими кислый избыток. Конечным результатом служит уравнение молекулярного вида.
Примеры для щелочной среды
При смешивании йода с натрия гидроксидом образуется натрия йодид и йодат, молекулы воды. Для получения баланса процесса используют метод полуреакций. Примеры для растворов щелочных имеют свою специфику, связанную с уравниванием атомарного кислорода.
NaOH + I2 →NaI + NaIO3 + H2O
I + e— → I— |5
6OH— + I — 5e— → I— + 3H2O + IO3— |1
I + 5I + 6OH— → 3H2O + 5I— + IO3—
6Na+ → Na+ + 5Na+
6NaOH + 3I2 →5NaI + NaIO3 + 3H2O.
Результатом реакции является исчезновение фиолетового окрашивания молекулярного йода. Происходит изменение степени окисления данного элемента с 0 до -1 и +5 с образованием йодида и йодата натрия.
Реакции в нейтральной среде
Обычно так называют процессы, проходящие при гидролизе солей с образованием слабокислого (с водородным показателем от 6 до 7) или слабощелочного (с pH от 7 до 8) раствора.
Метод полуреакций в нейтральной среде записывают несколькими вариантами.
В первом способе не учитывают солевой гидролиз. Среду принимают за нейтральную, а слева от стрелочки приписывают молекулярную воду. В таком варианте одну полуреакцию принимают за кислотную, а другую – за щелочную.
Второй способ подходит для процессов, в которых можно установить примерное значение водородного показателя. Тогда реакции для метода ионно-электронного рассматривают в щелочном или кислом растворе.
Пример с нейтральной средой
При соединении сероводорода с натрия дихроматом в воде получается осадок серы, натрия и хрома трехвалентного гидроксиды. Это типичная реакция для нейтрального раствора.
Na2Cr2O7 + H2S +h3O → NaOH + S + Cr(OH)3
H2S — 2e— → S + H+ |3
7H2O + Cr2O72- + 6e— → 8OH— + 2Cr(OH)3 |1
7H2O +3H2S + Cr2O72- → 3H+ +3S + 2Cr(OH)3 +8OH—. Катионы водорода и гидроксид-анионы, соединяясь, образуют 6 молекул воды. Их можно убрать в правой и левой части, оставив излишек перед стрелкой.
H2O +3H2S + Cr2O72- → 3S + 2Cr(OH)3 +2OH—
2Na+ → 2Na+
Na2Cr2O7 + 3H2S +H2O → 2NaOH + 3S + 2Cr(OH)3
В конце реакции образуется осадок из гидроксида хрома голубого цвета и желтой серы в щелочном растворе с гидроксидом натрия. Окислительная степень элемента S с -2 становится 0, а хрома заряд с +6 превращается в +3.
fb.ru
Жизнь 81 | |
| |
| |
| |
| |
| |
| |
Коммерческие 14 | |
| |
| |
Работа 252 | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Учеба 270 | |
| |
| |
| |
| |
| |
planetcalc.ru
«Метод полуреакций, или электронно-ионного баланса»
Разделы: Химия
Тема: метод полуреакций или электронно-ионного баланса
Цель: расширить и углубить знания об ОВР.
Задачи:
- научить определять возможность протекания ОВР между данными веществами;
- научить устанавливать продукты реакции с опорой на схемы;
- раскрыть сущность метода полуреакций;
- рассмотреть правила и алгоритмы составления уравнений ОВР;
- научить применять полученные знания для решения конкретных задач.
Формы обучения: разъяснение, рассуждение, общая характеристика.
Методы обучения: словесные (беседа, объяснение), наглядные (компьютерные), практические (упражнения).
Общедидактические методы: объяснительно-иллюстративный, частично-поисковый, проблемный.
Ход урока.
1. Проверка домашнего задания.
Опрос у доски:
1) Самостоятельная работа у доски : определите тип следующих ОВР:
Подготовка устного ответа: классификация ОВР.
2) Самостоятельная работа у доски: расставить коэффициенты методом электронного баланса, указать окислитель и восстановитель, процессы окисления и восстановления:
3) Устный ответ: теория ОВР.
2. Новый материал.
Сегодня на уроке мы познакомимся со способами прогнозирования продуктов в ОВР и новом методе расстановки коэффициентов в ОВР – методе полуреакций или электронно-ионного баланса.
Чтобы написать уравнение реакции, протекающей в смеси заданных веществ, нужно ответить на следующие вопросы:
а) возможна ли в принципе ОВР между данными веществами;
б) если да, то установить продукты реакции;
в) подобрать коэффициенты в уравнении реакции.
Рассмотрим эти вопросы по порядку.
Что касается первого из них, вспомним, что в любой ОВР один из участников окисляется, т.е. повышает свою валентность, а другой – восстанавливается, т.е. понижает валентность. Поэтому реакция невозможна, если оба ее участника находятся в состояниях наиболее высокой или наиболее низкой степени окисления.
Исходя из сказанного, попробуем предположить возможность протекания ОВР.
Например, определим возможна ли ОВР между .
Определите степени окисления элементов.
Учащиеся определяют степени окисления элементов по формулам соединений. Рассматривают строение атомов серы и хлора, определяют высшую и низшую степень окисления элементов.
Формулируем вывод: степени окисления серы (-2) и хлора (-1) являются для них предельно низкими, следовательно, и сера, и хлор могут выступать только в роли восстановителя. Т.е. реакция между невозможна.
Рассмотрим другой пример. Возможно ли взаимодействие между ионами ?
Учащиеся рассматривают степени окисления марганца и хрома в ионах, определяют исходя из строения атомов, что оба металла находятся в высшей степени окисления, следовательно, могут выступать только в роли окислителя. Делают вывод: реакция между ионами и невозможна.
Если же один из участников может повысить, а другой понизить свои степени окисления, реакция в принципе возможна.
Указать продукты реакции только из общих соображений в таких реакциях практически невозможно. Исследование химических свойств элементов как раз и представляет собой экспериментальное выяснение того, при каких условиях его соединения вступают в реакцию с другими элементами и соединениями и какие продукты при этом получаются.
Часто в ОВР участвуют соединения хрома и марганца. Особый интерес представляет поведение пероксида водорода в ОВР. Для прогнозирования продуктов реакций с их участием можно использовать следующие схемы.
Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 1).
Что касается собственно процедуры подбора коэффициентов в уравнениях, то для реакций в растворах удобен так называемый метод полуреакций, или электронно-ионный. В нем сначала записывают и уравнивают отдельно процессы окисления и восстановления, а полная реакция получается их сложением.
Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 2).
Кроме алгоритма составления полуреакций, необходимо придерживаться нескольких очевидных правил:
- В кислой среде ни в левой, ни в правой части не должно быть ионов Уравнивание осуществляется за счет ионов и молекул воды.
- В щелочной среде ни в левой, ни в правой части не должно быть ионов . Уравнивание осуществляется за счет ионов и молекул воды.
- В нейтральной среде ни ионов , ни в левой части быть не должно. Однако в правой части среди продуктов реакции они могут появиться.
Рассмотрим, как работают предложенные схемы на конкретных примерах.
Задача. Закончить уравнение реакции между бихроматом калия и соляной кислотой.
Ион содержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная (HCl).
Полуреакция восстановления:
Ионы могут только окисляться, т.к. хлор имеет самую низшую степень окисления. Составим полуреакцию окисления:
Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой.
Получили сокращенное ионное уравнение.
Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым.
В данном случае источником ионов ─ была соль , поэтому с каждым молем в раствор попадает 2 моль ионов . В реакции они участия не принимают, поэтому в неизменном виде должны перейти в правую часть уравнения. Вместе с 14 моль ионов в раствор вносится 14 моль ионов . Из них 6 участвует в реакции в качестве восстановителя, а остальные 8, как и ионы , в неизменном виде остаются после реакции, т.е. дописываются в правую часть.
В результате получаем:
После этого можно объединить ионы в формулы реальных веществ:
Рассмотрим другой пример.
Задача. Закончить уравнение реакции → …
Ион содержит марганец в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда нейтральная.
Полуреакция восстановления:
Если ион будет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления:
Оформляем уравнение ОВР, протекающей в нейтральной среде:
- Т.к в нейтральной среде ни ионов , ни в левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:
- Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов:
- Перед ставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед — его удвоенный коэффициент:
- Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:
- Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой:
- Сокращаем в правой и левой части одинаковые молекулы и ионы:
Таким образом, получаем ионное уравнение.
- Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым:
Также рассмотрим пример ОВР, протекающей с щелочной среде.
Задача. Закончить уравнение реакции:
Определяем окислитель и восстановитель в данной ОВР. В нитрате ртути (II) ртуть содержится в ее высшей степени окисления, следовательно, может выступать только в роли окислителя. Составим полуреакцию восстановления.
Полуреакция восстановления:
- Если ион будет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления пероксида водорода в щелочной среде:
- Оформляем уравнение ОВР, протекающей в щелочной среде:
- Добавляем недостающие катионы и анионы.
Преимущества электронно-ионного метода при составлении уравнений реакций и подборе коэффициентов в сравнении с методом электронного баланса особенно проявляются при составлении уравнений реакций с участием органических соединений.
Задача. Составьте уравнение окисления ацетилена раствором до щавелевой кислоты в нейтральной среде.
Составляем схему реакции:
выступаем в роли окислителя, т.к. содержит марганец в его высшей степени окисления.
Следовательно, схема полуреакции восстановления имеет вид:
Схема полуреакции окисления:
Оформляем уравнение ОВР, протекающей в нейтральной среде:
- Т.к в нейтральной среде ни ионов , ни в левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:
- Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов. Перед ставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед его удвоенный коэффициент. Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:
- Составляем ионное уравнение:
- Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионы:
Задача. Составьте уравнение реакции окисления фенола дихроматом калия в кислой среде до хинона:
Ион содержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная .
Используем правила оформления уравнений ОВР, протекающих в кислотной среде.
Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионыи анионы:
Рассмотрев метод электронно-ионного баланса или метод полуреакций можно выделить следующие достоинства данного метода:
- Рассматриваются реально существующие ионы и вещества.
- Не нужно знать все получающиеся вещества, они появляются в уравнении реакции при его выводе.
- Необязательно знать степени окисления. Понятие степени окисления в органической химии употребляется реже, чем о неорганической химии.
- Этот метод дает сведения не только о числе электронов, участвующих в каждой полуреакции, но и о том, как изменяется среда.
- Сокращенные ионные уравнения лучше передают смысл протекающих процессов и позволяют делать определенные предположения о строении продуктов реакции.
Домашнее задание: Закончить уравнения:
В качестве проверочной работы по изученной теме предлагаю учащимся лабораторные опыты. Учащимся необходимо провести ОВР, объяснить происходящие явления, составив уравнения реакций с помощью метода полуреакций.
Лабораторные опыты «Окислительно-восстановительные реакции»
В три стакана налейте малиновый раствор перманганата калия. Добавьте в первый стакан немного раствора серной кислоты, во второй – воду, в третий – концентрированный раствор гидроксида калия. Окраска растворов при этом не изменяется. Добавьте во все стаканы по 5 мл сульфита калия и хорошо перемешайте смеси стеклянной палочкой.
Задание: объясните изменение окраски растворов, составив ОВР методом полуреакций.
Литература:
Д.Д. Друзцова, Л.Б. Бестаева Окислительно-восстановительные реакции. – М.:Дрофа,2005.
3.03.2009
xn--i1abbnckbmcl9fb.xn--p1ai
Составление уравнений ОВР методом полуреакций — Мегаобучалка
Метод полуреакций основан на составлении ионных уравнений для процессов окисления восстановителя и восстановления окислителя с последующим суммированием их в общее ионное уравнение. При составлении уравнений методом полуреакций необходимо руководствоваться следующими правилами.
1. Если участники ОВР — восстановитель, окислитель и продукты их взаимодействия — сильные электролиты, то они записываются в виде ионов; а слабые электролиты, газы и вещества, выпадающие в осадок — в виде молекул. Продукты реакции устанавливаются на основании известных свойств элементов.
2. Если исходное вещество содержит больше атомов кислорода, чем продукт реакции, то освобождающийся кислород связывается в кислых растворах ионами Н+ с образованием молекул воды, а в нейтральных и щелочных растворах — молекулами воды с образованием гидроксид-ионов, например:
MnO4— + 8H+ + 5 e ® Mn2+ +4H2o,
MnO4—+2H2O+3 e ® MnO2 + 4OH—.
3. Если исходное вещество содержит меньше атомов кислорода, чем продукт реакции, то недостаток их восполняется в кислых и нейтральных растворах за счет молекул воды, а в щелочных — за счет гидроксид-ионов. При этом образуются ионы водорода (в кислых и нейтральных растворах) и молекулы воды (в щелочной среде), например:
SO32-+H2O — 2 e ® SO42-+2H+ ,
SO32- + 2OH— — 2 e ® SO42-+H2O.
4. Коэффициенты для полуреакций окисления и восстановления подбираются таким образом, чтобы количество отданных и принятых электронов было одинаково.
5. Для каждой из полуреакций и суммарного уравнения ОВР должны выполняться правила сохранения материального баланса и баланса электрических зарядов — количество атомов каждого вида и суммарный заряд в левой и правой частях уравнений должны быть одинаковы.
Применение перечисленных правил поясним на примере. Если через подкисленный серной кислотой раствор перманганата калия KMnO4 пропускать сероводород H2S, то малиновая окраска исчезает и раствор мутнеет. Опыт показывает, что помутнение раствора происходит в результате образования элементарной серы: H2S ® S. Для уравнивания зарядов от молекулы сероводорода надо отнять два электрона (что полностью соответствует изменению степени окисления серы с -2 до 0) и в итоге получаем первую полуреакцию — процесса окисления восстановителя — сероводорода:
Н2S — 2 e ® S + 2H+ .
Обесцвечивание раствора перманганата калия связано с переходом иона MnO4— (имеет малиновую окраску) в ион Mn2+ (почти бесцветный), что можно выразить схемой MnO4— ® Mn2+. В кислом растворе кислород, входящий в состав ионов MnO4— , связывается ионами водорода Н+ в молекулы воды (на 4 атома кислорода в ионе MnO4— необходимо 8 Н+), что может быть записано в виде схемы:
MnO4— + 8 Н+ ® Mn2++4H2O .
Чтобы уравнять заряды (заряды исходных веществ — (+7), конечных — (+2)), необходимо к исходным веществам прибавить 5 электронов (что полностью согласуется с уменьшением степени окисления у марганца с (+7) до (+2)):
MnO4—+8H++5 e ® Mn2++4H2O.
Это есть вторая полуреакция — процесс восстановления окислителя — MnO4—.
Для составления общего уравнения реакции надо уравнения полуреакций почленно суммировать, предварительно уравняв число отданных и полученных электронов. Для этого определяют соответствующие множители (в приведенном примере 5 и 2), на которые умножаются полуреакции. Проведенные операции записываются следующим образом:
H2S — 2 e ® S + 2H+ ´5
MnO4— + 8H+ + 5 e ® Mn2++4H2O ´2
5H2S + 2MnO4— + 16H+ ® 5S +10H+ +2Mn2++8H2O
После приведения подобных членов (ионов Н+) окончательно получаем
5H2S + 2MnO4— +6H+ ® 5S + 2Mn2++8H2O.
Проверяем материальный баланс; баланс зарядов в левой и правой частях уравнения: -2+(+6) = 2×(2+).
Методом полуреакций составляется сокращенное ионное уравнение реакции. Чтобы от ионного уравнения перейти к молекулярному, необходимо в левой части ионного уравнения к каждому аниону и катиону подобрать соответствующий катион и анион. Затем такие же ионы в таком же количестве записываются в правой части уравнения, после чего ионы объединяются в молекулы, и окончательно получаем
2K++3SO42-+ 5H2S+2MnO4— +6H+ ® 2K++3SO42-+ 5S + 2Mn2++8H2O,
5H2S + 2KMnO4+3H2SO4 ® 5S+2MnSO4 + K2SO4 + 8H2O.
Реакции окисления-восстановления могут протекать в различных средах: в кислой (избыток Н+ — ионов), нейтральной (Н2О) и щелочной (избыток гидроксид-ионов ОН—). В зависимости от среды может изменяться характер протекания реакции между одними и теми же веществами; среда также влияет на изменение степени окисления атомов. Ниже приводятся схемы восстановления в зависимости от среды раствора наиболее типичных окислителей: KMnO4, H2O2, K2Cr2O7.
Перманганат калия в водных растворах полностью диссоциирует с образованием перманганат-иона MnO4—, который обуславливает окислительные свойства и малиновый цвет растворов. В кислой среде в присутствии восстановителей протекает реакция
MnO4—+8H++5 e— ® Mn2++4H2O,
раствор становится бесцветным. В нейтральной среде протекает другая реакция
MnO4—+ 2Н2О + 3 е— ® MnO2¯ + 4OH— ,
сопровождающаяся выделением бурого осадка MnO2. В нейтральной среде малиновый цвет меняется на светло-зеленый, обусловленный образованием манганат-ионов:
MnO4—+ е— ® MnO42-.
Обычно для создания в растворе кислой среды используют серную кислоту. Азотную и соляную кислоты применять не рекомендуется: азотная кислота сама является окислителем, соляная кислота способна окисляться. Для создания щелочной среды применяют растворы КОН и NaOH.
Пероксид водорода восстанавливается также по-разному в зависимости от среды:
кислая H2O2 + 2H+ + 2 e— ® 2H2O ,
щелочная и нейтральная H2O2 + 2 e— ® 2OH— .
Однако с очень сильными окислителями (KMnO4, K2Cr2O7, (NH4)2S2O8) пероксид водорода выступает как восстановитель:
Н2О2 — 2 е— ® О2 + 2Н+ .
Хром в своих соединениях имеет устойчивые степени окисления +6 и +3. В первом случае соединения хрома проявляют свойства окислителей, во втором — восстановителей. В зависимости от среды для соединений Cr (VI) имеет место равновесие :
2CrO42- + 2H+ « Cr2O72-+H2O; Cr2O72- +2OH— « 2CrO42- + H2O .
В кислой среде ионы Сr2O72- — сильные окислители, они восстанавливаются до соединений Cr3+:
Сr2O72- + 14H++6 e— ® 2Cr3++7H2O.
В щелочной среде ионы [Cr(OH)6]3- окисляются до ионов CrO42-:
[Cr(OH)6]3- + 2OH— — 3 e— ® CrO42- + 4H2O.
Достоинство метода полуреакций по сравнению с методом электронного баланса состоит в том, что в нем применяются не гипотетические ионы, а реально существующие. При методе полуреакций не нужно знать степеней окисления атомов, и видна роль среды как активного участника всего процесса. Наконец, при использовании метода полуреакций не нужно знать все получающиеся вещества: они появляются в уравнении реакции при выводе его.
ВНИМАНИЕ: основная ошибка, приводящая к неверным результатам, — проставление в полуреакциях не зарядов частиц, а степеней окисления атомов.
megaobuchalka.ru